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Abstract  

Swiftlet nests are highly valued for their health and cosmetic benefits, with moisture content crucial in determining their quality. 

Traditional moisture measurement methods are often slow and can potentially damage the samples. This study introduces 

PRORESKA, an innovative system utilizing resistance sensors and Machine Learning (ML) for non-destructive, and real-time 

moisture measurement. The system incorporates a voltage divider circuit to establish a correlation between resistance data 

and moisture content. Three mathematical models (linear, exponential, and modulated exponential) and a neural network were 

employed to predict moisture content. Validation tests conducted on paper and swiftlet nests indicated that the neural network 

model, enhanced through transfer learning, achieved superior accuracy. The results demonstrated a strong correlation 

between predicted and actual moisture content (R² = 0.9759), with the neural network model attaining a mean squared error 

(MSE) of 0.01. This method holds significant potential to improve the efficiency and cost-effectiveness of moisture measurement 

for swiftlet nests and similar applications. 
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1. Introduction  

Highly prized for their use in health and cosmetic 

products, Swiftlet nests have substantial economic 

value in Indonesia and globally. These nests contain 

proteins, amino acids, and bioactive compounds that 

contribute to their health benefits, including anti-aging 

and antioxidant properties [1]. The quality of swiftlet 

nests critically depends on their moisture content [2], 

with optimal levels typically ranging between 13% and 

15% [3]. Accurate measurement of moisture content is 

thus essential for maintaining the quality and economic 

value of these nests. 

Traditional methods for measuring moisture content, 

such as gravimetry and light refractive index 

techniques, have been widely used [4]. Gravimetry 

involves drying the sample and measuring the weight 

difference, which can be time-consuming and may 

damage delicate swiftlet nests [5]. Similarly, light 

refractive index methods, while non-destructive, often 

need more precision for real-time monitoring [6]. 

Research by Dafico et al. [7] emphasized the limitations 

of these methods, noting that they are often unsuitable 

for continuous, on-site measurements, thus revealing a 

significant gap in the need for more efficient and real-

time measurement techniques. 

Recent advancements have introduced more efficient 

approaches to moisture measurement. The utilization of 

resistance sensors, particularly within Internet of 

Things (IoT) systems, has emerged as a promising 

alternative. Resistance sensors measure changes in 

electrical resistance caused by variations in moisture 

content, providing a non-destructive and real-time 

measurement method [8]. Resistance sensors measure 

changes in electrical resistance in response to moisture 

content, offering an efficient and durable solution for 

continuous monitoring [9]. In a review of several 

studies, Majhi et al. [10] showed that resistance sensors 

are effective in various agricultural applications, 
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especially for continuous monitoring of moisture 

content. They highlight the advantages of accuracy and 

speed over traditional methods. However, translating 

resistance measurements into accurate moisture content 

predictions requires sophisticated data analysis 

techniques. 

Machine Learning (ML) and Neural Network (NN) 

models are powerful tools for improving moisture 

content prediction by processing complex data patterns 

[11]. Techniques such as Artificial Neural Networks 

(ANN) and Convolutional Neural Networks (CNN) 

have proven highly effective in various measurement 

applications, including moisture detection. However, 

challenges remain in adapting these models to diverse 

materials and ensuring robustness under different 

environmental conditions [12]. Recent advancements 

focus on leveraging ML with IoT sensor data to develop 

intelligent, real-time monitoring systems. 

A 2024 study developed a real-time moisture detection 

system for agricultural drying processes using multi-

sensor fusion and CNN. By integrating data from 

sensors measuring load, air velocity, temperature, and 

tray position, the CNN model outperformed traditional 

models such as Partial Least Squares Regression 

(PLSR) and Support Vector Machine (SVM), achieving 

an accuracy of R² = 0.9989. System validation further 

confirmed the model’s reliability with R² = 0.9901 

demonstrating its effectiveness for online moisture 

detection [13, 14]. 

This study aims to address these challenges by 

developing and evaluating a novel prototype, 

PRORESKA, which combines resistance sensors with 

machine learning techniques. PRORESKA is designed 

to measure moisture content in swiftlet nests and 

substitute materials, such as paper, with improved 

accuracy and efficiency. The study focuses on 

validating the PRORESKA sensor in non-conductive 

materials, examining the relationship between 

resistance and voltage through a voltage divider circuit, 

and employing mathematical functions and neural 

networks to predict moisture content based on voltage 

data. 

The urgency of this research is underscored by the 

economic importance of swiftlet nests and the need for 

efficient measurement methods. By enhancing the 

accuracy and reducing the cost of moisture 

measurement, this study has the potential to benefit the 

industry significantly. Additionally, integrating transfer 

learning in neural network models aims to improve 

prediction accuracy for both swiftlet nests and their 

substitutes, facilitating better industrial applications. 

2. Research Methods 

This study took an innovative approach as shown in 

Figure 1, using swiftlet nest samples and substitutes to 

develop the PRORESKA prototype for moisture 

content measurement. The initial stage involved 

determining the optimal resistance and voltage through 

simulations with substitute materials, which were then 

applied to swiftlet nests using PRORESKA. Machine 

learning and simple neural networks were employed 

with Python for tool development, inspiring new ways 

of thinking in the field. 

 

Figure 1. Preliminary Design of PRORESKA 

2.1 Measurement of Moisture Content 

The moisture content of a material can be defined as 

Equation 1. 

ℎ =
𝑤1−𝑤2

𝑤2
              (1) 

ℎ is the moisture content, 𝑤1 is the weight of the 

material in the wet state by water, 𝑤2 is the weight of 

the material in the dry state, usually the material is 

heated to evaporate all the water. In definition (1), the 

wet weight is equal to the dry weight 𝑤2 plus the water 

weight 𝑤𝑎, so definition (1) becomes: 

ℎ =
𝑤𝑎

𝑤2
                (2) 

Equation 2 makes it easy to calibrate a resistor-based 

moisture content sensor by using a dry material and 

adding a certain weight of water, eliminating the need 

for a drying process. Another alternative for measuring 

moisture content is: 

ℎ =
𝑤1−𝑤2

𝑤1
=

𝑤𝑎

𝑤𝑎+𝑤2
             (3) 

In Equation 1, 100% moisture content is achieved when 

the weight of water equals the weight of dry matter, 

while in Equation 3 the value is 100% if the material 

consists entirely of water. In this research, both 

equations can be used with ℎ2 for Equation 1 and ℎ1 for 

Equation 3. 

2.2 Voltage Divider Circuit Method 

An electric voltage 𝑉0 is applied across a series circuit 

composed of a reference resistor 𝑅1 and the material 

with resistance 𝑅2. The voltage across the material is 

given by Equation 4. 

𝑉𝑏 = 𝑉0

𝑅2

𝑅1+𝑅2

              (4) 
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2.3. Mathematical Modeling Equation 

The moisture content in the material changes the 

resistance consistently or monotonically decreases [15]. 

The following models in Equations 5, 6 and 7 were 

used: 

Linear model: 𝑦 = 𝑎𝑥 + 𝑏 (5) 

Exponential model: 𝑦 = 𝑎 exp(−𝑏𝑥) + 𝑐 (6) 

Modulated-exponential model: 

𝑦 = 𝑎(1 − 𝑒𝑥𝑝(𝑏𝑥)) + 𝑐 (7)

      

y is the moisture content and x is the resistance value. 

2.4 Neural Network Regression Model 

The relationship between voltage 𝑉𝑏 and moisture 

content is modeled using a neural network in Equation 

8. 

𝑦 = 𝜓(𝑋, 𝑊1, 𝑏1, 𝑊2, 𝑏2, … )            (8) 

𝑊1, 𝑏1, 𝑊2, 𝑏2 are the weight and bias matrices (or 

parameters) in the neural network, the non-linear form 

will be obtained by the composition of linear functions 

with activation functions in multiple neural network 

layers. Two layers in the neural network are required to 

achieve complex non-linear representation as in 

Equation 9. 

𝑦 = 𝑊2 ∙ (𝑓𝑎(𝑊1 ∙ 𝑋 + 𝑏1) + 𝑏2            (9) 

 𝑓
𝑎
 is the activation function, if a layer is added with an 

activation function 𝑓
𝑏
 then the neural network model is 

as shown in Equation 10. 

𝑦 = 𝑊3 ∙ (𝑓𝑏(𝑊2 ∙ 𝑓𝑎(𝑊1 ∙ 𝑋 + 𝑏1) + 𝑏2) + 𝑏3      (10)  

In obtaining the optimal parameters, a function of the 

sum of the squares of the difference between the data 

and the model is required, which is called a loss-

function with Equation 11. 

𝐿 =
1

2
Σi(𝑦𝑖 − 𝜓𝑖)

2           (11) 

The optimal parameters are obtained through Equation 

12. 

𝑊1, 𝑏1, 𝑊2, 𝑏2 

= arg min
1

2
Σi(𝑦𝑖 − 𝜓𝑖(𝑊1, 𝑏1, 𝑊2, 𝑏2, ))2      (12)  

Optimal parameters with a gradient-descent-based 

method that performs iterative calculations until 

converging results are achieved through Equation 13.: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜆
𝜕𝐿(𝜃𝑡)

𝜕𝜃
             (13) 

In Equation 13, 𝜃 represents each parameter 

𝑊1, 𝑏1, 𝑊2, 𝑏2 dan 𝜆 as the learning rate [16].  

3. Results and Discussions 

3.1 Moisture Content Measurement Using PRORESKA 

In this study, the method of measuring moisture content 

using electric current was applied to materials that do 

not conduct electricity, such as paper and swiftlet's nest. 

The assumption is that electric current is consistently 

related to the moisture content of a material. However, 

for materials that conduct electricity when dry, such as 

sand and iron, this method is not effective due to their 

changing conductivity. In non-conductive materials, the 

electric current is transported by ions in the water 

contained within. 

Therefore, moisture sensors for each material need to be 

specially designed and calibrated according to the 

characteristics of the material, such as soil moisture 

sensors and wood moisture sensors. PRORESKA is 

specifically designed to measure the moisture content 

of a swiftlet's nest and its substitutes, such as paper. It 

uses an ESP32 microcontroller equipped with 15 

sensors integrated on one board and resistors selected 

based on simulation analysis results to optimize 

moisture content measurement. The calculation method 

used has been adapted to the characteristics of water 

content measurement to ensure measurement accuracy 

and reliability. 

3.2 Voltage Divider Circuit 

The relationship between the value of resistor 𝑅2 and 

the voltage 𝑉𝑏 is generated by varying resistor 𝑅1. The 

ESP32 microcontroller adjusted the initial voltage 𝑉0 

value to 3.3V. Resistor 𝑅1 is set at 0.5, 1, 1.5, 2 and 

resistor 𝑅2 is varied from 0 to 5, with a total of 50 

simulation data points. 

 

Figure 2. Graph of The Effect of R1 Selection on Vb Voltage 

The graph in Figure 2 shows that the higher the value of 

resistor R1, the voltage Vb tends to decrease in the same 

range of resistor R2 values. Then, simulations were 

conducted to determine the relationship between 

resistor R2 and voltage Vb by setting two different initial 

voltages, namely 3.3V and 5V. Resistor R1 remains 

constant at 1 MΩ, while resistor R2 is varied from 0 to 

5 MΩ with 50 data points. 

The results in Figure 3 show graphs of the relationship 

of voltage Vb with resistor R2 for two different initial 

voltage values (V0), namely 3.3V and 5V, with resistor 

R1 fixed at 1 MΩ. The resulting curves show that as the 
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value of resistor R2 increases, the voltage Vb tends to 

increase proportionally for both values of V0. The curve 

with V0 = 5V shows a more significant voltage increase 

compared to V0 = 3.3V over the same range of R2 

resistor values. 

 
Figure 3. Graph of the Effect of Initial Voltage (V0) on Output 

Voltage (Vb) at Fixed Resistor (R1) 

The variation of the voltage curve Vb is highly 

dependent on the values of V0 and R1. The resistance R2 

as an experimental variable, is chosen according to the 

characteristics of the material being tested, such as 

paper which has an R2 value between 0.3 to 5 MΩ. The 

selection of V0 is important in ensuring that the voltage 

Vb does not exceed the maximum limit of the ESP32 

microcontroller, which is typically 3.3 volts at the 

maximum value of R2. 

The value of R1 is chosen to ensure the voltage curve Vb 

remains gentle. For example, R1 = 0.5 MΩ produces a 

sharp voltage rise at low R2, while R1 = 2 MΩ produces 

a gentler curve without reaching 3.3 volts. The 

combination of R1 = 2 MΩ and V0 = 5 volts, as shown 

in (Figure 3), produces a curve with a gentle decline and 

a maximum voltage of approximately 3.5 volts. 

In the initial research phase, measurements with 

PRORESKA were taken to determine the resistance 

domain (R2) of the swiftlet's nest substitute material, 

paper. Based on the previous discussion, a resistor 

range of 0.5 - 2.0 MΩ produces a gentle curve without 

exceeding a voltage of 3.3 volts. Therefore, for 

measurements on paper, a 1 MΩ resistor was used with 

a focus on one of the sensors, ADCSEN9. 

 

Figure 4. Resistance Value (R2) of Paper on ADCSEN9 PRORESKA 

The graph in (Figure 4) shows that the resistance 

domain (R2) on water-soaked paper and dry paper is 

0.13 - 2.54 MΩ. 

3.3 Modeling Using Three Mathematical Functions. 

The relationship between moisture content and 

resistance R2 was explored using three distinct 

mathematical models: a standard exponential function, 

a linear function, and a more complex one with 

additional modulation. Each model aims to capture how 

moisture content varies with resistance, which is crucial 

for accurate predictions in various applications such as 

agriculture, material science, and environmental 

monitoring. 

To investigate these models, resistance data were used 

as input to generate corresponding moisture content 

values. The output from each model was then plotted, 

allowing for a visual comparison of how well each 

function represents the moisture-resistance relationship. 

The exponential function typically effectively captures 

non-linear trends, while the linear model provides a 

simpler, though less precise, approximation. The 

exponential model with additional modulation is 

designed to account for more nuanced variations in the 

data, potentially offering the best fit. 

The plots were carefully crafted with detailed labels, 

distinct markers for each data point, and grids to aid 

visual analysis. These elements enhance the readability 

of the graphs and make it easier to discern the 

differences between the models. By examining these 

plots, it becomes evident that the relationship between 

moisture content and resistance is inherently non-linear, 

as the linear model needs to account for the 

complexities observed in the data as shown in Figures 5 

and 6. 

 

Figure 5.    Prediction Graph of Moisture Content Based on Resistance 

R2 Using Three Mathematical Models. 
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Figure 6. Graph of the Relationship Between Voltage (Vb) and 

Predicted Moisture Content Using Three Mathematical 

Models. 

3.4 Modeling Using Simple Neural Networks 

This study uses a simple Neural Network model to 

predict moisture content based on voltage data. Three 

Neural Network models with the same architecture 

were applied in predicting three different types of data: 

exponential, linear, and modulated exponential. The 

data in this study was normalized to facilitate model 

training. Voltage was divided by a constant k = 5 and 

moisture content was divided by a constant g = 100. 

Normalization is done in equalizing the scale of the 

data, so that the model training is more stable and 

converges quickly. 

Three neural network models with the same architecture 

were created using Keras. Each model consists of three 

layers: an input layer with 32 neurons and ReLU 

activation, a hidden layer with 16 neurons and ReLU 

activation, and an output layer with one neuron for 

moisture content prediction. The three models were 

then trained using normalized data for 300 epochs with 

Adam's optimizer and the loss function mean squared 

error (MSE) [13, 14]. 

 

Figure 8. MSE Graph for Evaluating the Performance of Three 

Mathematical Models 

An evaluation of model performance follows the 

training process by comparing the MSE value of each 

model for the first 50 epochs. The MSE graph in Figure 

8 shows a decrease in error as the number of epochs 

increases [19]. The graph shows whether or not the 

model adapts and learns from the given data. 

The chart shows the performance of three different 

learning rate schedules: exponential, linear, and 

modulated exponential. The exponential learning rate 

scheduler results in an MSE of ~0.01, while the linear 

and modulated exponential learning rate schedulers 

result in MSEs of ~0.02. This shows that the 

exponential learning rate scheduler is the best performer 

in this situation, likely because it decays at a faster rate 

early in training, allowing the model to find the optimal 

parameter values more quickly. 

The prediction results are compared with the 

normalized original data and visualized as a scatter 

graph after training. Based on the graph shown in 

(Figure 9), how accurately the model prediction 

compares exponential, linear, and modulated 

exponential data can be evaluated. 

A transfer learning approach can be used to reduce the 

expensive costs of measuring moisture content in 

Swiftlet's nest samples and to develop models for 

substitute materials such as paper [20]. 

 

Figure 9. Graph of Noise Addition on Water Content Prediction Based 

on R2 Resistance Using Three Mathematical Models 
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The neural network model uses transfer learning to 

predict the moisture content of the swiftlet with data 

from the wet and dry weighing process and input from 

the sensor voltage from PRORESKA. The NN 

architecture of Model1, which was pre-trained for the 

swiftlet surrogate material paper, was adapted for the 

swiftlet model by performing similar duplication on the 

weights and optimized using Adam's optimizer and the 

loss function MSE. The previous layers of the swiftlet 

model were not changed during optimization, focusing 

on adjusting the final parameters specific to the 

swiftlet's moisture content characteristics and retaining 

knowledge from the previous model as shown in Figure 

10. 

 

Figure 10. Neural Network Model Architecture for Predicting 

Swiftlet’s Nest Moisture Content. 

 

The training process is performed by dividing the 

normalized PRORESKA sensor voltage data by a 

constant k and the swiftlet moisture content data by a 

constant g for 1000 epochs. After training, the 

prediction results of the swiftlet model of voltage are 

visualized along with the original data and the 

prediction of the previous model. 

The graph in Figure 11 compares empirically observed 

moisture content data with predictions from both 

models, providing a direct evaluation of the accuracy of 

the models in generalizing the moisture content 

characteristics of swiftlet nests. 

 

Figure 11. Prediction Graph of Swiftlet Water Content Using 

PRORESKA Sensor Voltage Using Transfer Learning. 

In this study, the developed neural network model 

demonstrated excellent performance in predicting 

moisture content based on resistance measurements, as 

indicated by an R² value of 0.9759 obtained during the 

validation phase. This R² value, close to 1, suggests that 

the model successfully explained 97.59% of the 

variability in the validation data, indicating a robust 

correlation between the model's predictions and the 

actual values. These results highlight the model's high 

capability in capturing the complex relationship 

between resistance and moisture content, serving as a 

critical indicator of the accuracy and effectiveness of 

this predictive system in real-world applications. This 

success underscores the model's potential for precise 

moisture measurement, which is crucial for applications 

such as those required by the PRORESKA system. 

4. Conclusions 

Using a moisture content measurement method utilizing 

the PRORESKA sensor voltage effectively measures 

moisture content in non-conductive materials such as 

paper and swiftlet's nest. This research shows that 

PRORESKA, using an ESP32 microcontroller and 

integrated sensors, can provide accurate and reliable 

measurement results. In addition, the modeling 

approach using three mathematical functions and 

transfer learning to predict moisture content shows 

potential for reducing expensive measurement costs and 

increasing efficiency in model development for 

swiftlet's nest replacement materials. 
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