
 Received: 12-07-2024 | Accepted: 23-08-2024 | Published Online: 29-08-2024 

571 

 

  

Accredited SINTA 2 Ranking 
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021 

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026 

 

Published online at: http://jurnal.iaii.or.id 

 

JURNAL RESTI 

(Rekayasa Sistem dan Teknologi Informasi)  

Vol. 8 No. 4 (2024) 571 - 578 e-ISSN: 2580-0760 

Advanced Earthquake Magnitude Prediction Using Regression and 

Convolutional Recurrent Neural Networks 

Asep Id Hadiana1*, Rifaz Muhammad Sukma2, Eddie Krishna Putra3 
1,2,3Department of Informatics, Faculty of Science and Informatics, Universitas Jenderal Achmad Yani, Cimahi, Indonesia 

1asep.hadiana@lecture.unjani.ac.id, 2rifazms20@if.unjani.ac.id, 3eddie.krishna@lecture.unjani.ac.id 

Abstract  

Earthquake magnitude prediction is critical in seismology, with significant implications for disaster risk management and 

mitigation. This study presents a novel earthquake magnitude prediction model by integrating regression analysis with 

Convolutional Recurrent Neural Networks (CRNNs). It utilises Convolutional Neural Networks (CNNs) for spatial feature 

extraction from 2-dimensional seismic signal images and Long Short-Term Memory (LSTM) networks to capture temporal 

dependencies. The innovative model architecture incorporates residual connections and specialised regression techniques for 

sequential data. Validated against a comprehensive seismic dataset, the model achieves a Mean Squared Error (MSE) of 

0.1909 and a Root Mean Squared Error (RMSE) of 0.4369, with a coefficient of determination of 0.79772. These metrics, 

alongside a correlation coefficient of 0.8980, demonstrate the model's accuracy and consistency in predicting earthquake 

magnitudes, establishing its potential for enhancing seismic risk assessment and informing early warning systems. 
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1. Introduction 

Predicting earthquake magnitudes with high accuracy 

remains a critical challenge in seismology, bearing 

significant implications for disaster preparedness and 

risk mitigation. Despite advancements in technology, 

accurately forecasting earthquake magnitudes remains 

difficult due to the complex nature of seismic data. This 

study introduces an innovative method that merges 

traditional regression techniques with the advanced 

pattern recognition capabilities of Convolutional 

Recurrent Neural Networks (CRNNs). By leveraging 

the strengths of both methodologies, this hybrid 

approach aims to enhance earthquake prediction 

accuracy. 

At the core of this research is the integration of 

traditional regression techniques with CRNNs, 

designed to harness the predictive strengths of both 

methodologies. Convolutional Neural Networks 

(CNNs) have gained recognition in geoscience 

applications, particularly for their efficiency in 

processing and analyzing spatial data, which is crucial 

in earthquake prediction [1]. When combined with the 

temporal insights provided by Recurrent Neural 

Networks (RNNs), specifically Long Short-Term 

Memory (LSTM) networks, this approach aims to 

capture the intricate spatial-temporal dynamics of 

seismic data, essential for understanding and predicting 

seismic activities [2]. 

Recent advancements in deep learning for seismology 

have inspired the fusion of CNNs and RNNs, which 

have shown enhanced performance in seismic event 

prediction [3]. Notably, models like MagNet have 

demonstrated the potential for end-to-end magnitude 

estimation from raw waveform data, indicating a 

promising direction for real-time applications in 

earthquake early warning systems. Additionally, the use 

of Graph Neural Networks (GNNs) for earthquake 

location and magnitude estimation offers a novel 

perspective by incorporating network topologies into 

seismic analysis, underscoring the evolving landscape 

of machine learning in seismology [4], [5]. 

https://doi.org/10.29207/resti.v8i4.5922
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Complementary to these advancements is the 

exploration of deep learning models in natural disaster 

response. For instance, models like the Bidirectional 

Encoder Representations from Transformers (BERT) 

have been utilized to classify disaster-related 

communications, providing valuable insights into the 

real-time dynamics of disaster response and resource 

allocation [6], [7]. 

Traditional earthquake prediction methods often 

struggle with accurately capturing the spatial-temporal 

dynamics of seismic data, leading to less reliable 

predictions. Our proposed method integrates CNNs for 

spatial feature extraction and LSTMs for capturing 

temporal dependencies, combined with regression 

techniques to enhance prediction accuracy. 

Unlike previous studies that primarily focus on either 

CNNs or RNNs independently, our approach 

synergistically combines these technologies with 

regression methods, providing a more comprehensive 

predictive model. The innovative use of residual 

connections and specialised regression techniques for 

sequential data in CRNNs marks a significant 

advancement in earthquake prediction methodologies. 

This research enriches the evolving domain of 

seismology by introducing a robust and applicable 

model that combines the analytical strengths of 

regression analysis with CRNNs. A thorough 

evaluation using real-world seismic data has been 

conducted to refine the predictive precision of existing 

earthquake forecasting systems. This study highlights 

the synergistic potential of combining statistical 

modeling techniques with sophisticated deep-learning 

architectures. Through this innovative methodology, 

the study aims to enhance seismic risk assessment 

capabilities, paving the way for more resilient and 

better-prepared communities to respond to seismic 

events. 

The structure of this paper is organized as follows: 

Section 2 provides a comprehensive literature review of 

related research and methodologies that have been 

employed in the domain of earthquake prediction. 

Section 3 offers a detailed description of the data 

collection process, the preprocessing steps undertaken, 

and the architecture of the proposed model. This section 

elaborates on the integration of CNNs and LSTMs with 

regression techniques to enhance predictive accuracy. 

Section 4 presents and discusses the results obtained 

from the experimental evaluation, highlighting the 

performance metrics and comparing them with existing 

models. Finally, Section 5 concludes the paper by 

summarizing the key findings, discussing the 

implications of the research, and suggesting potential 

directions for future research to further advance 

earthquake magnitude prediction. 

The integration of convolutional recurrent neural 

networks (CRNNs) and regression techniques for 

earthquake prediction represents a transformative shift 

in seismic analysis, leveraging the strengths of both 

advanced machine learning architectures and traditional 

statistical methods. This literature review synthesizes 

findings from various studies that explore these 

methodologies, aiming to enhance the accuracy and 

timeliness of earthquake predictions. 

One of the forefront methodologies in this area is the 

application of CRNNs, which combine convolutional 

neural networks (CNNs) for spatial feature extraction 

from seismic data and recurrent neural networks 

(RNNs) for analyzing temporal sequences. For 

instance, [8], [9] have utilized deep learning-based 

techniques that show promise in accurately predicting 

seismic activities by processing complex spatial-

temporal data. Further, [10], [11] introduced structural 

recurrent neural network models tailored for earthquake 

prediction, highlighting the application of machine 

learning to enhance structural data analysis in 

seismology. 

Regression techniques, while older, still play a crucial 

role in the predictive landscape [12], [13]. These 

methods, particularly when integrated with neural 

networks, provide a solid foundation for forecasting 

earthquake magnitudes and occurrences. For example, 

the study by [14] applied the Levenberg-Marquardt 

algorithm within a back-propagation neural network 

framework to refine predictions using both seismic and 

DEMETER data, illustrating the synergy between 

traditional and modern approaches. 

Moreover, the integration of vast and diverse datasets 

into predictive models is becoming increasingly 

common. [15], [16] investigated the use of machine 

learning algorithms, including Random Forest and 

neural networks, to predict earthquake parameters by 

analyzing extensive seismic and geographical data, thus 

improving the models' comprehensiveness and 

reliability. 

Innovative neural network models have also been 

developed to enhance prediction capabilities. For 

example, [17] applied meta-learning based neural 

networks for multi-step forecasting of earthquake 

magnitudes, which outperformed traditional machine 

learning models. Similarly, [18] explored neural 

networks based on rough set theory to improve the 

effectiveness of earthquake prediction models, 

demonstrating the potential of integrating advanced 

mathematical theories into neural network 

architectures. In addition, research on Fog Computing 

Architecture for Indoor Disaster Management  [19] has 

shown significant advancements in utilizing edge 

computing resources for real-time data processing and 

decision-making during indoor disaster scenarios, 

further illustrating the potential of combining diverse 

computational approaches for disaster management and 

prediction. 

The use of ensemble learning techniques is another 

notable trend, as highlighted by [20], who demonstrated 

the effectiveness of neural networks ensemble for 

estimating future earthquake situations, thus providing 
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a robust predictive tool by combining multiple model 

outputs. 

Additionally, the specific applications of these 

technologies vary across different geographies and data 

types. For instance, [21] employed tree-based ensemble 

classifiers for short-term earthquake prediction in the 

Hindukush region, emphasizing the adaptability of 

these models to regional characteristics. 

These studies collectively underscore the significant 

advances and potential of using CRNNs and regression 

techniques in earthquake prediction. By harnessing both 

the detailed data handling capabilities of machine 

learning and the established processes of statistical 

analysis, researchers are setting a new standard for 

predictive accuracy in seismology, aiming to mitigate 

risks and enhance preparedness for seismic events. 

2. Research Methods 

The data collection phase of this study is anchored on 

the utilization of the STanford EArthquake Dataset 

(STEAD), a publicly available and globally 

comprehensive compilation of seismic data. STEAD is 

an expansive repository containing high-fidelity 

seismic signal recordings along with an array of non-

seismic noise records. The dataset has been 

thoughtfully assembled, ensuring a balanced mix of 

data that captures a wide spectrum of seismic activity, 

from minor tremors to significant quakes, as well as 

various types of noise that can mimic or obscure seismic 

readings. 

By incorporating STEAD, the study benefits from a rich 

and varied collection of seismic events, enabling the 

exploration and analysis of multifarious seismic 

signatures. This diversity is critical for the design and 

training of machine learning models, providing them 

with the range of inputs needed to learn the subtle 

differences between noise and authentic seismic 

signals. Moreover, the comprehensive nature of the 

dataset supports the development of predictive models 

capable of generalizing across the complex landscape 

of global seismic phenomena. The goal is to utilize 

STEAD's breadth of data to train models that can 

reliably identify seismic patterns and predict earthquake 

magnitudes with high accuracy. 

Given the extensive nature of STEAD, preprocessing 

steps are crucial to ensure the data is suitable for model 

training. These steps include Noise Filtering: 

Application of digital filters to remove low-frequency 

noise and enhance signal clarity; Normalization: 

Scaling of seismic signal amplitudes to a uniform range 

to prevent bias towards larger magnitudes; 

Segmentation: Division of continuous seismic records 

into shorter, fixed-length segments to facilitate efficient 

processing by the CRNN model. 

The initial layer of the convolutional neural network 

(CNN) component of the CRNN model serves as an 

automatic feature extractor, transforming raw seismic 

data into a set of features that effectively represent the 

underlying patterns associated with different 

earthquake magnitudes. The selection of features is 

implicitly determined by the model during the training 

process, focusing on those that contribute most 

significantly to prediction accuracy. 

The proposed model architecture integrates 

convolutional layers with recurrent layers. The CNN 

layers are designed to extract spatial features from 

seismic signals, while the recurrent layers, specifically 

Long Short-Term Memory (LSTM) units, are employed 

to capture temporal dependencies and sequences within 

the data. This combination allows the model to learn 

from both the spatial and temporal characteristics of 

seismic data, enhancing its predictive capabilities. 

Regression techniques are integrated into the model to 

translate the features extracted and learned by the CNN 

and LSTM layers into precise earthquake magnitude 

predictions. This study explores various regression 

models to determine the most effective approach for 

mapping the complex relationships between seismic 

data features and earthquake magnitudes. 

The model is trained using a subset of the STEAD 

dataset, with the data split into training, validation, and 

testing sets. Training involves adjusting the model's 

parameters to minimize prediction error, validated 

intermittently to prevent overfitting. The performance 

of the model is evaluated using metrics such as Mean 

Squared Error (MSE) for regression accuracy and R-

squared (R²) to measure the model's predictive power. 

3. Results and Discussion 

The proposed method in this study seeks to transform 

seismic signal data into two-dimensional grayscale 

images, encapsulating the complexity of seismic 

activity within a visual format. The process involves 

sampling seismic signals at a length of 6000, converting 

these extensive data points into a form that is both 

analytically robust and visually interpretable.  

 

Figure 1. Characteristics of seismic signals  

This transformation is pivotal for utilizing 

convolutional neural networks, which require spatially 

oriented input. The grayscale images serve as a canvas, 
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detailing the intensity variations and structural patterns 

of the seismic signals. The visualization, as depicted in 

Figure 1, offers a nuanced perspective on the seismic 

data, highlighting features such as frequency bands and 

amplitude variations that are crucial for pattern 

recognition and subsequent predictive modelling. This 

innovative representation enables the application of 

advanced machine learning techniques for detecting 

precursors to seismic events, potentially enhancing 

earthquake prediction models. 

The architectural model utilized is an amalgamation of 

a Convolutional Neural Network (CNN) and a 

Recurrent Neural Network (RNN), augmented by 

residual connection schemes and tailored regression 

techniques pertinent to sequential datasets, as depicted 

in Figure 2. Initially, the CNN operates as a feature 

extractor, articulating the spatial attributes of the data. 

This CNN architecture comprises a multifaceted 

sequence of operations to distill spatially relevant 

features from the seismic signal. Configurations, such 

as filter choices and additional parameters, are 

manually adjusted to enhance the feature 

representation. A schematic of this CNN configuration 

is illustrated in Figure 2. 

Figure 2 illustrates an integrated machine learning 

architecture combining Convolutional Neural Networks 

(CNN) and Recurrent Neural Networks (RNN) with 

Long Short-Term Memory (LSTM) units. This 

architecture is designed to capture both spatial and 

temporal dependencies within the dataset, which in this 

context, is presumably seismic data represented in a 

two-dimensional matrix format. 

Input: The input is a seismic image or a 2D matrix with 

dimensions of 100x150x1, indicating width, height, and 

depth (channels) respectively. 

CNN Sequential: The CNN segment of the model 

processes the data through multiple layers, including 

Convolutional Layers: These layers apply convolution 

operations to extract important features from the input 

using convolutional filters; Pooling Layers: Following 

convolution, pooling (typically max pooling) reduces 

the spatial dimensions while retaining critical features; 

Fully Connected Layer: After several convolution and 

pooling layers, the data is flattened into a 1D vector and 

connected to a dense layer, learning non-linear 

representations. 

Reshape: The resultant vector from the CNN is 

reshaped to conform to the LSTM input requirements. 

LSTM: This section utilizes two LSTM layers with a 

residual connection strategy, implying that the output 

from the first LSTM layer is not only fed to the 

subsequent LSTM layer but is also added back to the 

input of the subsequent LSTM layer, addressing the 

vanishing gradient issue in deep networks and 

enhancing long-term feature learning. Residual 

LSTM(64): The first LSTM layer with 64 units. 

Residual LSTM(32): The second LSTM layer with 32 

units, receiving inputs from the first LSTM layer as well 

as its own original inputs (residual learning). 

Output: Finally, the output from the RNN is passed 

through a dense layer to produce a single prediction 

value, which, in the given context, likely represents the 

predicted magnitude of an earthquake. 

This structure leverages the CNN's capability to extract 

spatial features from image data and the LSTM's ability 

to model sequential temporal dependencies, making it 

well-suited for tasks such as speech recognition, natural 

language processing, and time-series prediction that 

involve data with spatial and temporal components 

Subsequently, the CNN’s output is transformed to align 

with the input specifications of the Long Short-Term 

Memory (LSTM) variant of the RNN. This network is 

tasked with deciphering the temporal correlations 

present in the data, factoring in the sequential timing of 

the seismic signal to forecast time series. The 

incorporation of LSTM facilitates the model’s 

capability to discern intricate patterns and extended 

temporal information within the seismic data, which is 

pivotal for precise predictions. 

The synthesis of CNN and RNN, coupled with the 

integrated residual and regression methodologies, is 

anticipated to yield a representation of the seismic 

signal that is both informative and accurate, enhancing 

comprehension of the geophysical phenomena under 

study. This approach is adaptable to various contexts, 

such as the modelling and prognostication of seismic 

activity magnitudes. 

 

Figure 2. The Model Architecture 
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The empirical outcomes of this study attest that the 

constructed models for magnitude prediction have 

attained a notable accuracy after 25 training epochs 

using the Adam optimizer with a learning rate of 

0.0001. The evaluation via Mean Squared Error (MSE), 

registering an error of 0.1909 (see Figure 4), and Root 

Mean Squared Error (RMSE) at 0.4369, evidences the 

model’s proficiency in rendering high-precision 

magnitude estimations.  

Moreover, a coefficient of determination (R^2) at 

0.79772 suggests that the model accounts for 

approximately 79.77% of the variance in the observed 

data, showcasing a fairly precise data pattern modelling. 

These results are buttressed by a high correlation 

coefficient of 0.8980 (refer to Figure 3), signalling a 

robust positive correlation between predicted outputs 

and actual values. In essence, the model not only 

approximates values close to the actuals but also 

reproduces the predictor-target variable relationship 

with consistency.  

Collectively, these findings corroborate the exemplary 

quality and reliability of the magnitude prediction 

model for practical applications in seismic signal 

analysis. This makes a significant stride toward 

enriching the understanding and mitigation of 

earthquake hazards and paves the way for further 

innovations in geophysical modelling and prediction. 

Figure 3 presents a scatter plot evaluating the 

performance of a Convolutional Recurrent Neural 

Network Regression (CRRNN) model. The horizontal 

axis denotes the observed values, representing actual 

measurements or true values from the dataset. The 

vertical axis displays the predicted values as output by 

the CRRNN model. 

 

Figure 3. Correlation between Predicted and Observed Earthquake 

Magnitudes using CRNN Regression Model  

A concentration of data points near the identity line 

indicates predictions align closely with actual 

observations for a significant number of cases, 

suggesting an effective model fit in those instances. The 

identity line itself depicts the point of perfect prediction, 

where predicted and observed values are equivalent. 

The deviation of data points from the identity line 

reflects prediction errors. Data points situated above the 

identity line represent overestimations by the model, 

while those below indicate underestimations. 

The data points' general alignment along the identity 

line suggests a strong linear correlation between 

observed and predicted values, signifying that the 

CRRNN model possesses considerable predictive 

power for the examined dataset. 

This plot acts as a visual gauge of the regression model's 

accuracy, highlighting the model's strengths and 

pinpointing areas where enhancement may be required. 

The graph in Figure 4 illustrates the training and 

validation loss of a machine learning model over 

epochs, labelled as 'Model Accuracy'. The horizontal 

axis represents the number of epochs, which are 

iterations over the entire dataset used during training. 

The vertical axis measures the loss using Mean Squared 

Error (MSE), a common metric for evaluating the 

performance of regression models. 

The red line tracks the loss on the training set, while the 

blue line represents the loss on the test set. Initially, the 

training loss starts at a higher value, indicating a greater 

error between the model’s predictions and the actual 

values. As epochs increase, the training loss rapidly 

decreases, suggesting the model is learning and 

improving from the training data. 

Concurrently, the test loss decreases alongside the 

training loss, which is a positive indication that the 

model is generalizing well to unseen data and not 

overfitting to the training set. However, there's a slight 

divergence starting to occur after around epoch 10, 

where the test loss begins to stabilize and shows minor 

fluctuations. 

 

Figure 4. Model Accuracy 

Overall, the downward trend in loss for both training 

and test sets suggests that the model’s predictions are 
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becoming more accurate as training progresses. The 

goal in such a training process is to minimize the loss to 

an acceptable level while ensuring the test loss remains 

low to achieve a model that is well-fitted and 

generalizes well to new data. 

This study develops a neural network model employing 

a synergy of Convolutional Neural Network (CNN) and 

Long Short-Term Memory (LSTM) for predictive 

analysis. Initially, the model is constructed with 

tf.keras.models.Sequential() by integrating 

Convolutional (Conv2D) and MaxPooling layers to 

distill features from the input image. Subsequently, the 

CNN output is flattened to a one-dimensional array via 

Flatten() for further processing by Dense layers. The 

model's configuration is depicted in Figure 5. 

Figure 5 illustrates the architecture of a Convolutional 

Neural Network (CNN) model specifically designed for 

feature extraction from seismic signals. In the context 

of seismic signal analysis, the architecture aims to 

automatically detect and learn spatial features that are 

relevant for tasks such as earthquake detection, seismic 

event localization, or magnitude estimation. 

 

Figure 5. The architecture of the CNN model for feature extraction 

from seismic signals 

Here’s how the components serve the purpose of feature 

extraction from seismic signals: 

Convolutional Layers: These layers apply a set of 

learnable filters to the input seismic data. Each filter 

convolves across the width and height of the input 

volume, computing the dot product between the filter 

and input, and producing a 2-dimensional activation 

map of that filter. As a result, the network learns filters 

that activate when they see specific types of features at 

given spatial positions in the input, such as edges, 

ridges, or blobs of seismic energy. 

Pooling Layers: After feature maps are created by the 

convolutional layers, pooling (typically max pooling) 

reduces the dimensionality of each map while 

preserving the most important information. This makes 

the detection of features robust to noise and variation in 

the seismic signal. The reduction in data size also helps 

improve computational efficiency. 

Fully Connected Layer: The output from the final 

pooling layer, which contains a condensed 

representation of the input's features, is flattened into a 

one-dimensional vector. This vector is then fed into a 

fully-connected layer where further learning occurs. 

The network combines features from the previous 

layers to determine which features improve the 

predictive performance of the model. 

The formulae indicated in the layers of the CNN 

provide a mathematical representation of how the 

dimensions of the feature maps are determined, which 

is crucial for understanding how the network transforms 

the input data at each layer. 

For seismic signals, Convolutional Neural Network 

(CNN) models are highly effective in identifying 

complex patterns within the raw signal data that indicate 

seismic activity. These models can automatically learn 

and extract features from the seismic data that are 

otherwise difficult to discern through manual analysis. 

The learned features might represent various aspects of 

seismic waves, such as the primary waves (P-waves) 

and secondary waves (S-waves), which are crucial for 

the analysis and interpretation of seismic events. P-

waves are the fastest seismic waves and the first to be 

detected by seismographs, while S-waves follow and 

provide additional information about the earthquake's 

characteristics. 

By automating the feature extraction process, CNNs 

significantly enhance the efficiency and accuracy of 

seismic data analysis. This capability is invaluable for 

seismologists and researchers who deal with vast 

amounts of data generated by seismic monitoring 

stations worldwide. The automation allows for real-

time processing and analysis, enabling quicker 

responses to seismic events.  

Additionally, the precise and detailed insights obtained 

from CNNs contribute to a deeper understanding of the 

underlying mechanisms of earthquakes, leading to 

improved predictive models and better preparedness for 

future seismic activities. Consequently, the use of 

CNNs in seismology represents a significant 

advancement in the field, fostering advancements in 

earthquake monitoring, risk assessment, and mitigation 

strategies. 

 

Figure 6. LSTM network for analyzing temporal sequences in 

seismic signals.  
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Following this, the CNN output is reformatted into a 

three-dimensional shape utilizing 

tf.keras.layers.Reshape(), rendering it compatible with 

the LSTM layer input. As demonstrated in Figure 6, the 

LSTM model commences with two LSTM layers, each 

consisting of 64 units with ReLU activation functions.  

The outputs from these layers are cumulatively merged 

with the initial output to establish a residual connection, 

as shown in Figure 7. This design is intended to mitigate 

the vanishing gradient issue and to enhance the model's 

capability to assimilate long-term dependencies. 

 

Figure 7. Illustration of residual connections within the LSTM 

network to enhance learning.  

Subsequent stages involve two additional LSTM layers 

endowed with ELU (Exponential Linear Unit) 

activation functions, again employing residual 

connections to amplify the assimilation of complex 

patterns and to address issues related to slow learning 

rates. 

Ultimately, the LSTM output is re-flattened to a single 

dimension and passed through two Dense layers with 

ReLU activation, culminating in a final Dense layer 

without an activation function to deduce the earthquake 

magnitude prediction. 

Notably, a potential area for further investigation within 

this deep learning approach pertains to the transition 

from Convolutional Neural Networks (CNN) to Long 

Short-Term Memory (LSTM) networks. In this process, 

the one-dimensional output generated by the CNN is 

transformed into a tensor format suitable for input into 

the LSTM network. This transformation involves the 

insertion of an additional dimension, which typically 

holds a value of 1. This extra dimension is crucial as it 

allows the tensor to meet the input requirements of the 

LSTM, enabling it to effectively process sequential 

data.  

The LSTM can then leverage this structured input to 

capture temporal dependencies and long-range patterns 

in the data, which are essential for accurate prediction 

and analysis in time-series applications. Exploring this 

transition in greater detail can uncover more nuanced 

insights into how these two powerful neural network 

architectures can be seamlessly integrated, potentially 

leading to improvements in model performance and 

prediction accuracy for complex temporal tasks such as 

earthquake magnitude forecasting. Further research 

could also investigate the optimal methods for 

transforming and scaling the data during this transition 

to maximize the efficiency and effectiveness of the 

combined CNN-LSTM architecture. 

Figure 8 delivers a cohesive visual analysis derived 

from the predictive model for earthquake magnitude 

estimation. It combines a spectrogram depicting the 

frequency and power distribution of a seismic signal 

over time with an amplitude-time plot highlighting the 

signal's intensity variations. The spectrogram portion 

illustrates high-intensity zones at early intervals, likely 

corresponding to the initial arrival of P-waves—key for 

early earthquake detection and magnitude estimation. 

The amplitude-time plot reveals a pronounced 

amplitude surge, presumed to be the P-wave arrival, 

succeeded by oscillations indicative of later wave 

arrivals such as S-waves and surface waves, which 

exhibit lower frequencies yet higher amplitudes. 

 

Figure 8. Predictive Analysis of Seismic Magnitude.  

In the model's predictive output, showcased beneath the 

amplitude-time representation, an earthquake 

magnitude of 5.097157 is forecasted. This figure, 

aligning with moderate earthquake criteria on the 

Richter scale, suggests an event with considerable 

potential effects, emphasizing the need for readiness 

and responsive measures. The effective processing and 

interpretation of intricate seismic data by the 

Convolutional Recurrent Neural Networks (CRNNs) 

are exemplified here. The alignment between the 
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spectrogram's high-intensity regions and amplitude 

peaks with the predicted magnitude reinforces the 

model's adeptness at pinpointing seismic signatures 

pivotal for magnitude prediction. This model's 

proficiency in yielding a precise magnitude estimation 

is demonstrated by a strong positive correlation with the 

actual data, highlighting the CRNNs' role in advancing 

seismic risk assessment and early warning system 

development. 

4. Conclusions 

The study successfully developed a model for 

predicting earthquake magnitudes by leveraging the 

combined strengths of regression techniques and 

Convolutional Recurrent Neural Networks (CRNNs). 

The integration of spatial feature extraction through 

CNNs and temporal sequencing via LSTMs effectively 

harnessed the spatio-temporal intricacies of seismic 

data. Validation on extensive datasets yielded an MSE 

of 0.1909 and an RMSE of 0.4369, while the high 

coefficient of determination (R²) of 0.79772 and 

correlation coefficient of 0.8980 demonstrated the 

model’s accuracy and reliability. These promising 

results affirm the model's capability to offer a 

substantial improvement over existing prediction 

systems, potentially transforming earthquake 

preparedness strategies. This approach signifies a 

noteworthy contribution to seismological modelling, 

presenting a robust framework that can be further 

refined and possibly extended to other geophysical 

prediction applications. 
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