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Abstract  

Diabetes is a metabolic disorder characterized by blood glucose levels above normal limits. Diabetes occurs when the body is 

unable to produce sufficient insulin to regulate blood sugar levels. As a result, blood sugar management becomes impaired 

and there is no cure for diabetes. Early detection of diabetes provides an opportunity to delay or prevent its progression into 

acute stages. Clustering can help identify patterns and groups of diabetes symptoms by analyzing attributes that indicate these 

symptoms. In this study, researchers are using K-Medoid and Quantum K-Medoid methods for clustering diabetes data. 
Quantum computing utilizes quantum bits, or qubits, which can represent multiple states at the same time. Compared to 

classical computers, quantum computing has the potential for an exponential speedup in problem-solving. Researchers 

conducted a comparison between two methods: the classic K-Medoids method and the K-Medoids method utilizing quantum 

computing.  The researchers found that both Quantum K-Medoid and Classic K-Medoid achieved the same clustering accuracy 

of 91%. In testing with the Quantum K-Medoids algorithm, it was found that the cost value in the 8th epoch showed a significant 

decrease compared to the Classical K-Medoids algorithm. This demonstrates that Quantum K-Medoid can be considered a 

viable alternative for clustering purposes. 
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1. Introduction  

Diabetes is a metabolic disorder characterized by blood 

glucose levels above normal limits [1]. In diabetes, the 

human body is unable to create enough insulin to 

manage blood sugar levels, or the insulin produced is 

insufficiently utilized [2]–[4]. Currently, diabetes 

cannot be cured. However, early detection of diabetes 

provides a crucial opportunity to delay or prevent its 

progression into acute stages [5]. One of the techniques 

used in data processing is clustering [6]. Clustering is 

an unsupervised data mining method used to group data 

that does not have labels [7]. It can categorize data into 

several clusters based on similarities [8], [9]. In the 

context of diabetes, clustering can help identify patterns 

and groups of diabetes symptoms based on attributes 

that indicate these symptoms. This can aid in 

understanding diabetes subtypes, leading to more 

personalized and effective treatment plans.  

In the current study, researchers utilized the k-medoid 

with the Manhattan distance algorithm, enhanced by 

quantum computing. The k-medoid algorithm is a 

clustering algorithm similar to k-means but more 

resilient against outliers and noise [10]–[13]. Manhattan 

Distance is used to calculate the absolute difference 

between the coordinates of a pair of objects [14], [15]. 

Manhattan Distance is more sensitive to differences 

between features and more robust to outliers. It 

generally achieves better accuracy compared to 

Euclidean Distance, which makes Manhattan Distance 

work quite well for clustering purposes [16], [17]. 

Using K-Medoids with Manhattan Distance provides 

more accurate clustering by minimizing sensitivity to 

outliers and better capturing differences between 

features. This combination is especially useful for 

https://doi.org/10.29207/resti.v8i6.5894


Solikhun, Muhammad Rahmansyah Siregar, Lise Pujiastuti, Mochamad Wahyudi 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)  

 

This is an open access article under the CC BY-4.0 license                                                                                 711 

 

datasets with non-uniform distributions or when 

robustness against extreme values is essential. 

Quantum computing offers a promising solution for 

optimizing healthcare by efficiently executing complex 

algorithmic instructions [18]. quantum mechanism 

utilizes quantum bits, or qubits, which can represent 

multiple states at the same time, unlike classical 

computers [19], [20]. Classic bits, which can only be 0 

or 1, qubits can exist in states other than |0⟩ or |1⟩, 
making them distinct from conventional [21]–[24]. 

Compared to classical, quantum computing has the 

potential for an exponential speedup in problem-solving 

[25]. The research aimed to utilize the quantum k-

medoid algorithm for clustering diabetes data and to 

assess its performance using quantum mechanics. 

Several research studies have been conducted on 

clustering for diabetes: 

In the study [26], the researchers compare Manhattan 

and Euclidean distance metrics to assess the accuracy of 

k-means clustering in categorizing heart disease data. 

The study uses a dataset containing cholesterol and age 

attributes to determine how the choice of distance 

metric affects clustering outcomes. Using the silhouette 

coefficient, they found that k-means with Manhattan 

distance achieved a silhouette score of 0.5374, slightly 

outperforming Euclidean distance, which scored 

0.5355. This indicates that Manhattan distance is 

marginally more effective. 

In the study[27], the researchers aim to improve the 

accuracy of the K-Medoids algorithm by incorporating 

a quantum computing approach using the Manhattan 

distance. The study involves clustering stroke patient 

data, which includes attributes like age, hypertension, 

and glucose levels. The researchers compare the 

classical K-Medoids algorithm with the quantum-

enhanced version. The results show that the quantum-

enhanced K-Medoids method achieves an accuracy of 

64%, outperforming the classical version's 52%. This 

demonstrates the effectiveness of integrating quantum 

computing for improved clustering outcomes 

Main Reference for this research  [28] titled Quality 

Based Analysis of Clustering Algorithms using 

Diabetes Data for the Prediction of Disease compares 

the performance of clustering algorithms k-Means and 

k-Medoids in analyzing diabetic datasets and predicting 

diseases. The study focuses on using the final bio-

chemistry prescription of diabetic patients for disease 

identification. The results indicate that the accuracy of 

the k-means algorithm is 87% and the accuracy of the 

k-medoids algorithm is 80%, making k-means one of 

the best techniques for disease prediction. 

In study [28], it was found that the accuracy of the K-

Medoids algorithm was 80%, which is lower than the 

K-Means algorithm, which had an accuracy of 87%. 

The K-Medoid algorithm also has limitations when 

dealing with noise and outliers. K-Medoid can be 

affected by unrepresentative data points, as the medoid 

is selected from the actual data, which can result in 

suboptimal cluster centers. This contrasts with the 

Quantum K-Medoid, which employs a quantum-based 

approach to minimize the impact of outliers and 

effectively find cluster centers that are more robust to 

noise.  

In this study, researchers conducted a comparison 

between two methods: the classic K-Medoids method 

and the K-Medoids method utilizing quantum 

computing. Both approaches will be assessed based on 

their accuracy in grouping results for the prediction of 

diabetes. The gap between this study and the reference 

study is that the researchers achieved higher clustering 

accuracy by finding better medoid values from both the 

K-Medoids and quantum K-Medoids algorithms. The 

novelty of this study lies in the utilization of quantum 

computing in conjunction with the K-Medoids method 

and Manhattan Distance calculations to forecast 

diabetes.  

The contribution from this study is for medical needs, 

k-medoid placement can provide better results for 

detecting diabetes, especially with larger data. The 

results of this approach can provide a short diagnosis 

that can be used for early detection of diabetes and 

researchers provide insights into the quantum k-medoid 

algorithm for diabetes clustering, enabling its 

application in other clustering tasks. 

This study consists of five research structures: 

introduction, related research, research methods, 

results, and conclusion. In the related research section, 

the researchers conduct a literature review to examine 

the potential of the K-Medoids algorithm for clustering. 

In the research methods section, the researchers explain 

the steps undertaken in this study. In the results section, 

the researchers present the findings of the study, and in 

the conclusion section, the researchers analyze and 

summarize the results of the research conducted. The 

contribution of this research is to enable early detection 

and identify groups affected by diabetes so that 

interventions can be quickly implemented to prevent or 

delay the onset of diabetes. 

2. Research Methods 

One study titled Clustering and visualization of a high-

dimensional diabetes dataset [29]. In this study, 

researchers explore the use of data clustering and 

visualization methods to analyze a diabetes dataset. The 

study evaluates the DBSCAN and K-Means algorithms 

with various distance measures and identifies several 

different groups of diabetes patients characterized by 

different attributes. 

In study [30], proposes two algorithms for clustering 

data, which are the K-medoids and random swap 

algorithms. The goal of this study is to detect human 

subjects who share common diseases to potentially 

predict future illnesses from previous medical history. 

This study [31], the study compares the Hierarchical 

Clustering method and the K-Medoid Clustering 
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method. The objective of this research is to classify 

Regional Apparatus Work Units. This study tests 

hierarchical clustering with five methods: Single 

Linkage, Average Linkage, Complete Linkage, 

Centroid Method, and Ward Method, comparing them 

using the correlation coefficient. The Centroid Method 

achieved the highest value. To determine the best K in 

K-medoid testing, the researchers used a dendrogram, 

finding the best K to be 2. The comparison of methods 

in this study uses the silhouette coefficient, resulting in 

a silhouette coefficient value of 0.9146 for both 

Hierarchical and K-medoid methods. 

This study [32] utilized the K-Means and K-Medoid 

algorithms to cluster COVID-19. The Davies-Bouldin 

Index (DBI) method was used to determine the most 

optimal data. When testing with K-Means, the best DBI 

value obtained was 0.139 with k=4. On the other hand, 

K-Medoid testing produced the best DBI value of 0.197 

with k=9. The study concluded that the K-Means 

algorithm demonstrates better cluster validity compared 

to the K-Medoid algorithm. 

In the study [33] , applied the Divisive Analysis 

Clustering method to categorize diabetes patients based 

on their medical records. The study identified two 

optimal clusters with a silhouette coefficient of 

0.468582, indicating a well-structured clustering. Age 

(X2) and blood sugar level (X8) were found to be the 

key variables contributing to diabetes, as these variables 

showed the highest average values across the clusters. 

This study [34], the study focuses on determining the 

optimal value for K to cluster E-Learner using the K-

Medoid algorithm. This study uses two methods, 

namely the Elbow and Silhouette methods. The cluster 

size returned by the Elbow method for the given dataset 

is K=5. The cluster size returned by the Silhouette 

method for the given dataset is K=10. This study 

concludes that the Silhouette method is the optimal 

method for validating cluster size for the given dataset. 

This study [35], the K-Medoid algorithm and the 

RapidMiner application were utilized to analyze sales 

data for transportation equipment. The study aimed to 

determine the most effective value for K by comparing 

several options. The accuracy of the clusters was 

assessed using the Davies-Bouldin Index (DBI) value. 

The study concluded that the optimal value for K is 2, 

with a corresponding DBI value of -0.838. 

This study [36], the study uses the K-Means and K-

Medoid algorithms to analyze the spread of the Covid-

19 virus in Indonesia. The Davies-Bouldin Index (DBI) 

value is used as the evaluation parameter, utilizing 

Python Version 3 programming language executed on 

the Jupyter Notebook tool. This study compares several 

K values from the two methods to find the optimal 

value. In the test with K-Means, the optimal K found 

was K=2 with a DBI value of 0.9762331449809145, 

while for the K-medoid test, the optimal K value was 

K=2 with a DBI value of 0.9809235412405508. This 

study concludes that K-Means produces better 

clustering than the K-Medoid method. 

This study [37], the study uses the K-Medoid algorithm 

to classify internet usage at Wahidin Vocational High 

School in Cirebon City. The research uses the 

RapidMiner application to perform clustering. This 

study compares K values to find the optimal value, with 

the optimal K found to be K=4 with a DBI value of -

0.974. 

This study [38], audiometry results were clustered using 

the K-Medoids algorithm, implemented with the 

RapidMiner application. The performance of the K-

Medoid algorithm in clustering was evaluated using a 

confusion matrix, which revealed an accuracy of 

28.3%, a precision of 64.3%, and a recall of 21.4%. 

In the study [39], the study compares various algorithms 

for solving the NP-complete Hamiltonian Cycle 

Problem (HCP). The study evaluates deterministic, 

probabilistic, and quantum approaches, with a focus on 

bounded-degree graphs. Quantum algorithms 

demonstrated only a quadratic speedup over classical 

methods, but significant performance improvements 

were observed under specific graph constraints. The 

results emphasize that quantum computing holds 

promise in reducing time complexity, especially with 

quantum interference techniques. 

This study implements 3 main stages as shown in 

Figures 1,2,3 and 4: data transformation to Bits, data 

transformation to Qubits, and clustering process using 

Quantum K-Medoid and Classic K-Medoid algorithms. 

The transformation into bits can be seen in Figure 1. 

Data transformation is performed to convert data into 1s 

and 0s, with the goal of transforming it into quantum 

bits. The transformed data must meet certain conditions 

to be classified as either 0 or 1. 

 

Figure 1. Research Flow Diagram 1 

Figure 2, it is shown that if the transformation into bits 

is successful, the process will proceed to the stage of 

transforming the data into quantum bits (qubits). In 

qubits, data is represented as either bra or ket. In this 

transformation, it will only be represented as ket | >, 
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which will later the state ∣0⟩ is represented as  [
1
0

] and 

the state ∣1⟩ is represented as[
0
1

]. 

 

Figure 2. Research Flow Diagram 2 

After the data has been successfully converted into 

qubits and bits, calculations are then performed using 

classical K-medoids and quantum K-medoids. The 

calculations are carried out over 14 epochs, with the 

centroids selected randomly from data points 220 to 

246. 

 

Figure 3. Research Flow Diagram 3 

The data from the calculation results using both 

methods are then compared and evaluated to determine 

which algorithm is most effective for clustering 

diabetes data. 

 

Figure 4. Research Flow Diagram 4 

Before presenting the results and discussion, here are 

some scientific explanations of the methods used 

2.1 Data Collection 

The data collection stage aims to gather relevant 

information for clustering diabetes diseases. For this 

study, the researchers utilized a dataset obtained from 

the Kaggle website. The focus was on five key attributes 

related to diabetes: hypertension, heart disease, BMI, 

HbA1c level, and blood glucose level. 

A total of 248 sample data points were used for the 

clustering process. These attributes were selected to 

provide a comprehensive analysis of factors associated 

with diabetes, enabling the identification of patterns and 

relationships within the dataset. 

2.2 Data Transformation 

In this stage, the data is transformed into a binary format 

for further calculations. This process involves 

converting data, which may have various values, into a 

format that uses only two values, 0 and 1. 

In the diabetes clustering data transformation, BMI is 

assigned a value of 0 if it falls between 18.5 and 24.9, 

and a value of 1 if it is greater than 24.9. For HbA1c, a 

value of 0 is assigned if it is less than 5.7%, and a value 

of 1 if it exceeds 5.7%. Similarly, blood glucose is 

assigned a value of 0 if it is below 140, and a value of 1 

if it is greater than 140. These rules ensure that diabetes 

medical record data is standardized and can be used 

effectively for further analysis and processing in a 

consistent format 

2.3. Quantum Bit Transformation 

After the data is transformed into a binary format, the 

next step is to convert it into qubits. Qubits, as the basic 

unit of information in quantum computing, can store 

and process information quantumly. This conversion 

enables the application of the K-Medoids algorithm 

within a quantum computing system. 

The dataset of diabetes undergoes a rule-based 

transformation process to ensure a standardized 

representation. In this process, the data is encoded into 

qubits using values of 0, 1, or both simultaneously, 

employing Dirac notation with ket (| >) and bra (< |). 
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2.4 K-Medoid Method 

K-Medoid is a clustering method used to group data into 

several clusters based on the similarity or distance 

between data points. Unlike other clustering techniques, 

this method ensures that each cluster is represented by 

a central point known as a medoid. 

A medoid is an actual data point from the dataset that 

minimizes the total distance to all other points within 

the same cluster. This characteristic makes K-Medoid 

robust to outliers and effective for clustering tasks 

where interpretability and accuracy are important. 

2.5 Quantum K-Medoid Method 

Quantum K-medoid is a variant of the K-medoid 

clustering algorithm that leverages the principles of 

quantum computing. This algorithm aims to cluster data 

into several groups by selecting data points (medoids) 

that minimize the total distance to all other points in the 

cluster. In the quantum context, Quantum K-medoid 

uses qubits and quantum gates to process information, 

allowing for parallel exploration of solutions and 

greater efficiency compared to classical methods. The 

following is the formula for developing K-Medoids 

with quantum computing using Manhattan Distance 

calculations. The Formula of the K-Medoids algorithm 

with Manhattan Distance is using Equation 1. 

𝑑(𝑎𝑥, 𝑏𝑦) = ∑ ||𝑎𝑎𝑧 > − |𝑏𝑏𝑧 >|𝑛
𝑧=1   (1) 

 

Equation 1 represents a quantum distance metric used 

to measure the difference between two quantum states, 
|𝑎𝑎𝑧 > − |𝑏𝑏𝑧 >.These quantum states are expressed in 

ket notation, where |𝑎𝑎𝑧 > represents the quantum state 

of the 𝑧-th element of the vector 𝑎𝑥, and |𝑏𝑏𝑧 > 

represents the quantum state of the 𝑧-th element of the 

medoid vector 𝑏𝑦. The vector 𝑎𝑥,  refers to a data point 

within cluster 𝑥, while 𝑏𝑦 is the medoid, or central data 

point, of cluster 𝑦, chosen directly from the dataset. 

In the medical context, quantum computing can 

accelerate the analysis of medical data, such as blood 

test results, to detect diabetes more quickly and 

accurately. For example, by analyzing various blood 

parameters (like hemoglobin levels, red blood cell 

count, etc.) and comparing them with vast medical 

datasets, quantum computers can assist doctors in 

diagnosing diabetes faster and determining the specific 

type of diabetes more precisely. 

2.6 Result 

At this stage, the results of data clustering are analyzed 

using both the classical K-Medoids method and the K-

Medoids method enhanced with quantum computing. 

The comparison between these approaches highlights 

differences in efficiency and accuracy. 

This analysis offers valuable insights into the data 

structure and the patterns identified by the clustering 

algorithm, helping to understand the impact of quantum 

computing on clustering performance and revealing 

potential improvements over the classical method. 

2.7 Evaluation 

The evaluation stage focuses on assessing the 

performance of classical methods and the K-Medoids 

algorithm implemented with quantum computing in 

clustering diabetes data. This involves comparing the 

clustering results to evaluate how effectively each 

method identifies meaningful groupings within the data. 

The evaluation utilizes metrics such as accuracy to 

determine the ability of the clustering model to correctly 

group diabetes cases based on their similarities or 

patterns. This helps in understanding the strengths and 

weaknesses of each approach in capturing relevant data 

structures. 

3. Results and Discussions 

3.1 Transformation to Bits 

The results of converting the data into binary code can 

be seen in Table 1. 

Table 1. Dataset After Transformation Biner 

No X1 X2 X3 X4 X5 Y 

1 0 1 1 1 1 0 

2 0 0 1 1 0 0 

3 0 0 1 1 1 0 

… … … … … … … 

… … … … … … … 

247 0 0 1 1 1 0 

248 0 0 0 1 1 0 

3.2 Transformation to Qubits 

Transformation into qubits is demonstrated using Table 

1. For instance, a sample is taken from dataset number 

1, represented by the binary code 011110. This code 

translates to the following attributes: hypertension = no, 

heart disease = yes, BMI > 24.9, HbA1c > 5.7%, blood 

glucose level > 140, and target (diabetes) = no. To 

convert classical data into qubits, encode each classical 

bit into the quantum state of the qubit. For example, bit 

1 in quantum notation is written as |1⟩ and bit 0 as |0⟩. 
In matrix notation, a qubit is represented as a column 

vector. For example, the state ∣0⟩ is represented as  

[
1
0

] and the state ∣1⟩ is represented as[
0
1

] . then for the first 

data, namely 011110, it is changed to 

[
1
0

] , [
0
1

] , [
0
1

] , [
0
1

] , [
0
1

]  𝑎𝑛𝑑 [
1
0

] . The data in Table 1 is 

converted into qubit form, as illustrated in Table 2. 

Table 2. Quantum Bit Transformation 

No X1 X2 X3 X4 X5 Y 

1 [
1
0

] [
0
1

] [
0
1

] [
0
1

] [
0
1

] [
1
0

] 

2 [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
1
0

] [
1
0

] 

3 [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] [
1
0

] 

… … … … … … … 

247 [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] [
1
0

] 

248 [
1
0

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
1
0

] 
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The findings of this research present an alternative 

model for the K-Medoids clustering method using 

Manhattan Distance calculations, specifically through a 

quantum computing approach.  

Before implementing the Quantum K-Medoids method, 

attribute values and medoid values were first converted 

to ensure compatibility with quantum computing. 

3.3 Classic K-Medoid and Quantum K-Medoid 

Calculation  

In this study, diabetes data was clustered using both the 

Classical K-Medoids and Quantum K-Medoids 

methods, with Manhattan Distance calculations. The 

comparison between these methods demonstrated an 

identical clustering accuracy of 90%. Tables 3 and 4 

present the results from testing the data in epoch-1 and 

epoch-2, offering valuable insights before applying 

quantum-based clustering techniques. 

Table 3. K-Medoids Epoch-1 Test Results 

C1 C2 
Shortest 

Distance 
Cluster Data Real Description 

3 1 1 2 0 False 

1 1 1 1 0 True 

2 0 0 2 0 False 

… … … … … … 

2 0 0 2 0 False 

3 1 1 2 0 False 

Total  

Shortest 
155 Accuracy 48 % 

In the first iteration, using Classical K-Medoids with 

medoid C1 (data point 220) and medoid C2 (data point 

221), the accuracy obtained was 48%. The researcher 

experimented with 14 medoids to improve the 

clustering performance, eventually achieving the best 

results in epoch 14, with an accuracy of 91% and a cost 

value of 254. The results from the other 14 iterations 

conducted by the researchers are shown in Table 4. 

Table 4. Epochs Performed Using Classical K-Medoid 

Epoch C1 C2 
Cost 

Value 
Accuracy 

1 220 221 155 48 

2 222 223 208 64 

3 224 225 290 88 

4 226 227 304 91 

5 228 229 238 57 

6 230 231 196 80 

7 232 233 155 52 

8 234 235 249 52 

9 236 237 196 79 

10 238 239 265 38 

11 240 241 196 67 

12 242 243 283 12 

13 244 245 155 52 

14 246 247 254 91 

As shown in Table 4, although the cost value which 

measures the assignment of data points to clusters based 

on the distance between each point and its closest 

medoid is stable in epochs 1, 2, 3, and 4, the best results 

are observed in epoch 14. This epoch has a lower cost 

value than epoch 4, suggesting that the data is relatively 

well-clustered. The calculations demonstrating the best 

results of the Classical K-medoids are presented in 

Table 5. 

Table 5. K-Medoids Epoch-2 Test Results 

C1 C2 
Shortest 

Distance 
Cluster Data Real Description 

2 2 2 1 0 True 

0 2 0 1 0 True 

1 1 1 1 0 True 

… … … … … … 

1 1 1 1 0 True 

2 2 2 1 0 True 

Total  

Shortest 

Distance 

254 Accuracy 91 % 

The calculation for iteration 14 was stopped after the 

Classical K-Medoids achieved an optimal accuracy of 

91% for diabetes clustering. In the quantum calculation, 

the researchers used the same centroids as in the K-

Medoids calculation. The simulation results from 

testing the K-Medoids algorithm with quantum 

computing also show an accuracy of 91% with epoch 

14. The results of the quantum K-Medoids calculations 

are presented in Tables 6, 7, and 8. 

Table 5. Quantum K-Medoids Epoch-1 Test Results 

C1 C2 
C1  

(Des) 

C2 

(Des) 
Shortest C 

Data 

Real 
Desc 

[
3
3

] [
1
1

] 4.24 1.41 1.41 2 0 False 

[
1
1

] [
1
1

] 1.41 1.41 1.41 1 0 True 

[
2
2

] [
0
0

] 2.83 0.00 0.00 2 0 False 

… … … … … … … … 

[
2
2

] [
0
0

] 2.83 0.00 0.00 2 0 False 

[
3
3

] [
1
1

] 4.24 1.41 1.41 2 0 False 

Total  

Shortest 
277.19 Accuracy 48 % 

in the quantum k-medoid calculation in the first 

iteration, the results are the same as the classical k-

medoid, which is 48%, but the total shortest distance 

value is different. To find out further results, the 

quantum approach is continued to the 2nd iteration. The 

researcher will display the calculation results from 

epochs 1 - 14 using quantum k-medoid in Table 6. 

Table 6. The 14 Epochs Performed Using Quantum K-Medoid 

Epoch C1 C2 
Cost 

Value 
Accuracy 

1 220 221 219.2 48 

2 222 223 294.16 64 

3 224 225 410.12 88 

4 226 227 429.92 91 

5 228 229 336.58 57 

6 230 231 280.01 80 

7 232 233 219.2 52 

8 234 235 252.14 52 

9 236 237 277.19 79 

10 238 239 374.77 38 

11 240 241 277.19 67 

12 242 243 400.22 12 

13 244 245 219.2 52 

14 246 247 359.21 91 

Has a similarity to the Classical K-Medoids, the 

Quantum K-Medoids also achieves the same accuracy 
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results; however, the cost values differ between the two 

algorithms. Despite this, the K-Medoids algorithm 

reaches optimal results at epoch 14, with an accuracy of 

91%. The calculations for the best epoch of the 

Quantum K-Medoids can be found in Table 6. 

Table 7. Quantum K-Medoids Epoch-2 Test Results 

C1 C2 
C1  

(Des) 

C2 

(Des) 
Shortest C 

Data 

Real 
Desc 

[
2
2

] [
2
2

] 2.82 2.82 2.82 1 0 True 

[
0
0

] [
2
2

] 0 2.82 0 1 0 True 

[
1
1

] [
1
1

] 1.41 1.41 1.41 1 0 True 

… …       

… …       

[
1
1

] [
1
1

] 1.41 1.41 1.41 1 0 True 

[
2
2

] [
2
2

] 2.83 2.83 2.83 1 0 True 

Total  

Shortest  
359.21 Accuracy 91 % 

The diagram in Figure 2 compares the cost values 

between the Quantum K-Medoids and Classical K-

Medoids algorithms. The comparison shows similar 

trends in the increase and decrease of cost values, but in 

the 8th epoch, the Quantum K-Medoids displays a more 

significant reduction in cost value compared to the 

Classical K-Medoids. Unfortunately, the accuracy in 

the 8th epoch is only 52%, which is not precise enough 

for effective data clustering. 

Figure 2. Cost Value Comparison Diagram 

 

The findings of this research present an alternative 

model of the K-Medoids method, facilitated by 

applying quantum computing methodology to 

Manhattan distance calculations. Simulation results 

show that the K-Medoids method achieves best 

accuracy rate of 91% when using quantum computing. 

The test results confirm this accuracy, consistently 

showing a 91% accuracy rate. This alternative model 

can detect diabetes with an accuracy of 91%. From both 

calculations, the researchers also found that 238 data 

points entered cluster 1, which is non-diabetes, and 10 

data points entered cluster 2, which is diabetes. For 

medical needs, the results obtained in this study can be 

used to detect diabetes with several medical attributes 

such as hypertension, heart disease, BMI, HbA1c level, 

and blood glucose level.  

Although the results obtained by the Quantum K-

Medoids algorithm are almost the same as those of the 

Classical K-Medoids in terms of accuracy, under 

certain conditions, the Quantum K-Medoids algorithm 

shows a greater reduction in cost value compared to the 

Classical K-Medoids. This study reveals that the 

Quantum K-Medoids algorithm can reduce the cost 

value more significantly than the Classical K-Medoids, 

highlighting its potential for more efficient clustering. 

4. Conclusions 

From calculations using K-Medoid and Quantum K-

Medoid, researchers found that 238 data were classified 

into the non-diabetes cluster and 10 data were classified 

into the diabetes cluster. The experimental results 

demonstrate that the Quantum K-Medoids method with 

Manhattan distance calculations achieves the same 

level of accuracy as the K-Medoids clustering method 

without quantum computing, effectively grouping data 

in a dataset. This study produces a final value of both 

classical k-medoid and quantum k-medoid calculations 

of 91%, although the results obtained are sufficient to 

perform clustering, but the results of classical k-medoid 

and quantum k-medoid have different costs, where the 

cost value of the quantum algorithm is higher than the 

cost value of the classical algorithm, but for the average 

addition of cost value, the quantum k-medoid algorithm 

has a fairly stable value in performing classification. 

The significant decrease in cost value at the 8th epoch 

for the Quantum K-Medoids algorithm indicates that it 

can perform clustering with a lower cost value when 

allowed to run for more iterations. This suggests that, 

with higher iterations, the Quantum K-Medoids 

algorithm has the potential to achieve more efficient 

clustering compared to the Classical K-Medoids. This 

research marks a significant contribution to the field, 

introducing a new alternative model that utilizes 

quantum computing to enhance the K-Medoids data 

mining method with Manhattan distance calculations. 

For further research, researchers suggest performing 

calculations with an application or quantum device to 

find a more optimal value, or using more complex and 

larger data to cluster diabetes data to find a more 

optimal value or find parameters such as medoids that 

are optimal for both methods. 
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