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Abstract  

Recycling of waste is a significant challenge in modern waste management. Conventional techniques that use inductive and 

capacitive proximity sensors exhibit limitations in accuracy and flexibility for the detection of various types of waste. Indonesia 

generates approximately 175,000 tons of waste per day, highlighting the urgent need for efficient waste management solutions. 

This study develops a waste classification system based on deep learning, leveraging the powerful EfficientNet-B0 model 

through transfer learning. EfficientNet-B0 is designed with a compound scaling method, which uniformly scales network depth, 

width, and resolution, providing an optimal balance between accuracy and computational efficiency. The model was trained 

on a dataset containing six classes of waste—glass, cardboard, paper, metal, plastic, and residue—totalling 7014 images. The 

model was trained using data augmentation and fine-tuning techniques. The training results show a test accuracy of 91.94%, 

a precision of 92.10%, and a recall of 91.94%, resulting in an F1-score of 91.96%. Visualisation of predictions demonstrates 

that the model effectively classifies waste in new test data. Implementing this model in the industry can automate the waste 

sorting process more efficiently and accurately than methods based on inductive and capacitive proximity sensors. This study 

underscores the significant potential of deep learning models, particularly EfficientNet-B0, in industrial waste classification 

applications and opens opportunities for further integration with sensor and robotic systems for more advanced waste 

management solutions. 
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1. Introduction  

Waste management is a significant global issue, 

particularly in densely populated countries like 

Indonesia. In 2020, the country generated more than 

175,000 tons of waste daily [1]. Much of this waste is 

not properly managed, leading to environmental 

pollution. One potential solution is the automation of 

waste sorting systems to enhance the efficiency of 

recycling processes [2]. 

Previous research has extensively explored the 

development of automated waste sorting systems using 

various sensors. For example, an automatic waste 

sorting machine based on proximity sensors employed 

several sensors such as PIR, LDR, inductive and 

capacitive proximity sensors, and ultrasonic sensors to 

detect and classify different types of waste. However, 

these systems still exhibited high error rates [3], [4]. 

Similarly, an automatic waste classification system that 

still used inductive and capacitive proximity sensors 

combined with modern algorithms like the binary tree 

concept and the Naïve Bayes algorithm showed limited 

performance [5], [6]. These systems continued to face 

errors in sorting waste due to sensor limitations and 

classification mechanisms. 

On the other hand, in the current era, deep learning has 

emerged as a powerful technology capable of handling 

complex classification tasks by learning hierarchical 

representations of data [7], [8]. Transfer learning, a 

technique within deep learning, allows models pre-

trained on large datasets to be fine-tuned on specific 

tasks, significantly reducing the need for extensive data 

and computational resources [9] - [11]. 

Recent research has begun to employ deep learning 

technologies to address the limitations of proximity 

sensor-based systems. Although these studies have 

https://doi.org/10.29207/resti.v8i4.5875
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demonstrated improvements in classification accuracy, 

Zhou et al.'s research was limited to classifying only 

medical waste [12]. Additionally, another study applied 

deep learning specifically to classify plastic waste, 

achieving significant results but focusing solely on 

plastic waste [13]. Other studies have attempted to 

apply deep learning to various types of waste using the 

Resnet-50 model, but the achieved accuracy has 

remained unsatisfactory [14]. 

Furthermore, several previous studies as shown in 

Table 1 have demonstrated the effectiveness of one of 

the deep learning models, EfficientNet-B0, in various 

classification tasks. For instance, in a study conducted 

by Kansal et al., EfficientNet-B0 achieved higher 

accuracy in classifying various lung abnormalities 

compared to the ResNet-50 model [15]. Additionally, 

research by Shaikh et al. indicated that EfficientNet-B0 

can be effectively used for medical image classification, 

delivering highly satisfactory results [16]. 

Table 1. Summary of Previous research 

Topic Performance 

Sensor-Based (inductive and 

capacitive proximity) Waste 

Classification [3], [4] 

High error rates due to sensor 

limitations. 

Inductive and capacitive 

proximity sensors combined 

with binary tree algorithm. [5] 

Inconsistent results for some 

types of waste 

 

Proximity sensors combined 

with Naïve Bayes algorithm. 

[6] 

Limited performance; 

difficulty in accurate 

classification of diverse waste 

types. 

Deep Learning for Medical 

Waste Classification [12] 

Improved accuracy but limited 

to medical waste only. 

Deep Learning for Plastic 

Waste Classification [13] 

High accuracy for plastic 

waste; limited scope and not 

generalizable to other types of 

waste. 

Deep learning for various 

types of waste [14]. 

Accuracy is still below 90 

 

Therefore, this study aims to explore a waste 

categorization system based on deep learning, using the 

EfficientNet-B0 model through a transfer learning 

strategy. By utilizing a dataset encompassing six waste 

categories, including glass, cardboard, paper, metal, 

plastic, and residue, this study brings forth notable 

advancements in precision and effectiveness for waste 

segregation within the sector. The novelty of this 

research lies in the integration of EfficientNetB0's 

advanced architecture with transfer learning to enhance 

classification capabilities, effectively addressing the 

limitations of previous sensor-based and single-class 

deep learning methods. The contribution of this 

research is manifested in a reliable, expandable 

resolution for automated waste segregation, surpassing 

conventional approaches by providing heightened 

precision and operational efficiency. 

2. Research Methods 

To achieve high accuracy in classifying waste, we 

utilized the EfficientNet-B0 model, known for its 

balance between performance and computational 

efficiency. EfficientNet-B0 leverages compound 

scaling, which uniformly scales the dimensions of 

depth, width, and resolution using a set of fixed scaling 

coefficients [17]. The model was fine-tuned with 

additional layers tailored to our specific dataset using 

the concept of transfer learning. Figure 1 shows the 

steps involved in our research methodology. 

 

Figure 1. Research Methodology [18] 

The dataset used in this study is the "Klasifikasi 

Sampah" dataset, which consists of six classes: glass, 

cardboard, paper, metal, plastic, and residue. The 

dataset includes a total of 7014 images, divided into 

4907 images for training, 1052 images for validation, 

and 1055 images for testing. The following is an 

example of an image in the dataset in Figure 2. 

 
Glass 

 
Cardboard 

 
Paper 

 
Metal 

 
Plastic  

Residue 
 

Figure 2. Example of an image in the dataset 

The dataset is sourced from Kaggle at this link: 

https://www.kaggle.com/datasets/fathurrahmanalfarizy

/sampah-daur-ulang. It is divided into 70% for training, 

15% for validation, and 15% for testing. The 

distribution of the dataset is presented in Table 2. 

Table 2. The distribution of the dataset 

Class Training 

Set 

Validation 

Set 

Testing 

Set 

Total 

Glass 779 166 165 1110 

Cardboard 437 93 94 624 

Paper 1264 271 272 1807 

Metal 847 182 181 1210 

Plastic 879 189 189 1257 

Residue 701 151 154 1106 

Total 4907 1052 1055 7014 

Before training the model, several data preprocessing 

steps were conducted to ensure consistency and quality 

across the dataset. Initially, the dimensions of all 

images were adjusted to 224 x 224 pixels, in accordance 

with the input size specifications of the EfficientNet-B0 

model [19]. This adjustment guaranteed consistency 

throughout the dataset and compatibility with the 

architectural requirements of the model. Furthermore, 

the pixel values underwent normalization to a scale 

ranging from 0 to 1 through division by 255.0. This 

https://www.kaggle.com/datasets/fathurrahmanalfarizy/sampah-daur-ulang
https://www.kaggle.com/datasets/fathurrahmanalfarizy/sampah-daur-ulang
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normalization step played a vital role in expediting the 

convergence process during model training by 

standardizing the intensity levels of pixels, thereby 

enhancing the model's capacity to effectively learn from 

the data. 

This research utilizes the EfficientNet-B0 model, 

recognized for its optimal balance between 

performance and computational efficiency. 

EfficientNet-B0 uses compound scaling to 

proportionally increase the network’s depth, width, and 

resolution through fixed scaling coefficients. Figure 3 

provides an illustration of the EfficientNet-B0 

architecture. 

 

Figure 3. EfficientNet-B0 architecture [19] 

Figure 3 illustrates the architecture of the EfficientNet-

B0 model, an efficient convolutional neural network 

(CNN) designed for image classification tasks. The 

model starts with an input image sized 224x224 pixels, 

which is then processed through an initial convolutional 

layer with a 3x3 kernel, batch normalization (BN), and 

the Swish activation function, resulting in feature maps 

sized 112x112 pixels. This downsampling occurs due to 

the stride used in the convolutional layer. The core of 

EfficientNet-B0 consists of several Mobile Inverted 

Bottleneck Convolution (MBConv) blocks [20]. These 

blocks vary in kernel size and stride to maintain 

computational efficiency while enhancing performance. 

To utilize transfer learning, the initial layers from the 

input to block 5 are frozen to prevent retraining. These 

foundational layers capture fundamental features such 

as edges, textures, and simple patterns, which are 

applicable across various image classification tasks 

[21]. By preserving these layers, the model leverages 

robust, pre-trained features from large datasets like 

ImageNet [22]. 

The final layers, from block 6 to block 7, and newly 

added fully connected layers integrate seamlessly with 

EfficientNet-B0. These include a global average 

pooling layer that converts spatial dimensions into a 

single vector per feature map, three dense layers with 

512, 256, and 128 units using ReLU activation, and 

batch normalization and dropout layers to reduce 

overfitting [23]. The output layer has six units with 

softmax activation to produce a probability distribution 

over the classes. 

The use of EfficientNet-B0 is motivated by its state-of-

the-art performance in balancing accuracy and 

efficiency. Unlike traditional CNNs, EfficientNet-B0 is 

designed to maximize both accuracy and computational 

efficiency through a scalable architecture that adjusts 

dimensions proportionally. This makes it particularly 

suitable for deployment in resource-constrained 

environments typical in industrial applications [24], 

[25].  

Transfer learning is employed to tailor the pre-trained 

EfficientNet-B0 model specifically for waste 

categorization. This approach offers notable advantages 

by enabling the model to utilize insights derived from 

broad and varied datasets. Consequently, it reduces the 

requirement for extensive data and computing resources 

for training on our specific dataset. Moreover, transfer 

learning accelerates the training process and enhances 

model performance, particularly when the available 

dataset is limited or not as comprehensive as the 

original training dataset.  

This framework ensures that the model can effectively 

capture intricate waste attributes while remaining 

practically viable for real-world applications. By 

integrating these elements, a sturdy structure for precise 

and efficient waste classification is established, 

effectively overcoming the constraints associated with 

conventional proximity sensor-driven methods. The 

additional layers incorporated in the model are depicted 

in Figure 4.  

Figure 5 shows the implementation of these additional 

layers in the program. This setup allows the model to 

adjust its learned features to the waste classification 

dataset, enhancing its ability to accurately classify 

waste types while leveraging pre-trained weights from 
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the EfficientNet-B0 model. This approach optimizes the 

model's learning capability by retaining general image 

features in the early layers and specializing in waste 

classification in the latter layers. 

 

Figure 4. Additional architectural layers 

 

Figure 5. Program of Additional architectural layers 

The model was compiled using the Adam optimizer 

with a learning rate of 0.0001, chosen for its efficiency 

in handling sparse gradients and dynamic learning rate 

adjustment [26]. Categorical cross-entropy was used as 

the loss function, which is ideal for multi-class 

classification tasks like waste type identification. Early 

stopping was employed to monitor the validation loss 

and terminate training if no improvement occurred over 

a set number of epochs, thus preventing overfitting. 

Additionally, a learning rate reduction on the plateau 

was implemented to decrease the learning rate when 

validation loss stagnated, facilitating finer adjustments 

during the latter training phases. The model underwent 

training for 100 epochs with a batch size of 32, which 

provided a balanced approach to utilizing 

computational resources effectively while ensuring 

stable and consistent gradient updates. 

The performance of the model was evaluated using 

three metrics: accuracy, precision, and recall [27]. 

Accuracy measures the overall correctness of the model 

and is calculated as the ratio of correctly predicted 

instances to the total instances. Precision measures the 

correctness of positive predictions and is calculated as 

the ratio of true positive predictions to the sum of true 

positive and false positive predictions. Recall, also 

known as sensitivity, measures the model's ability to 

identify all relevant instances and is calculated as the 

ratio of true positive predictions to the sum of true 

positive and false negative predictions [28], [29]. The 

metric formula can be seen in Formulas 1-3. 

Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +𝑇𝑁 +𝐹𝑃 +𝐹𝑁
             (1) 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
              (2) 

Recall  = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
               (3) 

True Positive (TP) refers to the number of instances 

correctly identified as positive. True Negative (TN) 

denotes the number of instances correctly identified as 

negative. False Positive (FP) is the count of instances 

incorrectly predicted as positive, while False Negative 

(FN) represents the count of instances incorrectly 

predicted as negative. 

By evaluating the model using these metrics, we can 

gain a comprehensive understanding of its performance 

in terms of both accuracy and the ability to correctly 

identify and classify waste types. This evaluation helps 

ensure that the model not only performs well overall but 

also correctly identifies and distinguishes between 

different types of waste. 

3. Results and Discussions 

3.1 Results 

This research uses the EfficientNet-B0 model for 

classifying six classes of waste: glass, cardboard, paper, 

metal, plastic, and residue. The model is trained using 

transfer learning techniques, where the initial layers 

(from input to Block 5) are frozen to retain the general 

features already learned, while the final layers and the 

newly added fully connected layers are retrained with a 

new waste classification dataset. The accuracy and loss 

graphs during training are shown in Figure 5.  

The evaluation results from the training process reveal 

that the model achieved a test accuracy of 91.94% with 

a corresponding loss value of 0.2673. The accuracy 

graphs, as depicted in Figure 6 (a), illustrate that the 

model experienced a notable improvement in accuracy 

within the initial 30 epochs, subsequently stabilizing as 

the training progressed. This improvement reflects the 

model’s effective learning from the training data. The 

validation accuracy closely mirrors the trend of the 

training accuracy throughout the epochs, demonstrating 

consistency and indicating that the model is not 

significantly overfitting to the training data. This 
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consistency between training and validation accuracy 

suggests a good generalization capability of the model. 

 
(a) 

 
(b) 

Figure 6. Plot of (a) accuracy and (b) loss function on training   

 

In Figure 6 (b), the graphical representation of the loss 

function demonstrates a significant decrease in training 

loss in the initial phases, indicating proficient learning 

and optimization. The validation loss exhibits a 

decreasing trend, albeit with periodic fluctuations, 

which are common and could be linked to variations in 

the validation data batches. These fluctuations, 

particularly prominent around the 20th epoch, are likely 

a result of the diversity and intricacy present in the 

validation dataset. Despite these slight variations, the 

overall pattern suggests that the model attains a 

satisfactory level of convergence, effectively reducing 

the loss over time. The consistent convergence in loss 

and the correlation between training and validation 

accuracy highlights the resilience of the model and its 

capacity to sustain performance across diverse datasets, 

ensuring dependable classification accuracy in practical 

scenarios. 

The obtained model was subsequently tested on the test 

data, resulting in a confusion matrix in the output as in 

Figure 7.  

Figure 7 shows the confusion matrix of the model's 

performance on the waste classification task. A 

confusion matrix visualizes the performance of a 

classification algorithm by displaying the actual versus 

predicted classifications. The diagonal elements 

represent correctly classified instances, while off-

diagonal elements represent misclassifications. 

 
Figure 7. The plot of (a) accuracy and (b) loss function on the 

training process 

 

The matrix indicates that the model accurately 

classified glass waste in 152 instances, with 15 incorrect 

classifications. For cardboard, 80 instances were 

correctly classified with 14 misclassifications. Paper 

waste saw 255 correct classifications and 17 

misclassifications. Metal waste was correctly classified 

in 163 instances with 19 errors. Plastic waste had 178 

correct classifications and 11 errors. Lastly, residue 

waste was accurately classified in 142 instances with 9 

misclassifications. Detailed classification results are 

provided in the classification report in Table 3. 

Table 3. Precision, Recall, F1-Score Per Class 

Class Precision Recall F1-Score Support 

Glass 0.92 0.91 0.92 167 

Cardboard 0.87 0.85 0.86 94 

Paper 0.95 0.94 0.94 272 

Metal 0.97 0.90 0.93 182 

Plastic 0.91 0.94 0.93 189 

Residue 0.86 0.94 0.90 151 

Table 4. Metric Summary 

Metric Value 

Overall Accuracy 91.94 % 

Precision 92.10 % 

Recal 91.94 % 

F1-Score 91. 96 % 

 

Table 3 shows the classification report with precision, 

recall, and F1-Score metrics for each class, with the 

most notable results in the 'Metal' class, with a precision 

of 0.97 and a recall of 0.90. The 'Residue' class has 

lower precision compared to other classes but has a high 

recall of 0.94, indicating that the model tends to be more 

sensitive in detecting the residue class.  

In addition to the class-specific metrics, the overall 

performance of the model is summarized in the Metric 

Summary as shown in Table 4. The model achieves an 

overall accuracy of 91.94%, indicating that 

approximately 92% of the predictions are correct across 

all classes. The precision across all classes averages to 

92.10%, reflecting the model’s ability to produce a high 

proportion of true positive identifications among all 

positive identifications. The recall is 91.94%, which 

underscores the model’s effectiveness in identifying 

most of the actual positive cases in the dataset. The F1-
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score, balancing precision and recall, stands at 91.96%, 

illustrating the model’s overall competency in waste 

classification tasks. 

Furthermore, Figure 8 shows the prediction results for 

sample images from each waste class, visualizing the 

model's ability to classify images from the test dataset 

accurately. Each image is labelled with the 

corresponding model prediction, and most of the 

prediction results match the actual labels, 

demonstrating high accuracy. 

 

 

 

 

 

Figure 8. Example of image prediction results from the data test 

Overall, the use of EfficientNet-B0 with transfer 

learning proves effective in waste classification. This 

model demonstrates strong performance and can be 

implemented in automated waste sorting systems, 

replacing traditional proximity sensor-based methods 

that tend to have limitations in accuracy and efficiency. 

With the achieved accuracy and the ability to handle 

various types of waste, this model offers the potential to 

improve waste management efficiency and recycling 

processes. However, there is still room for further 

improvement, such as addressing minor fluctuations in 

validation loss and testing the model with a more 

diverse dataset to enhance generalization. 

3.2 Discussions and Future Work 

The results of this study demonstrate the effectiveness 

of the EfficientNetB0 model with transfer learning in 

classifying waste into six categories: glass, cardboard, 

paper, metal, plastic, and residue. The model achieved 

high accuracy, precision, and recall, showing good 

generalization capabilities across various types of 

waste. These findings are consistent with the research 

by Shaikh et al., which demonstrated that 

EfficientNetB0 achieved high accuracy in medical 

image classification [16].  

Additionally, this study shows that using the 

EfficientNet-B0 model performs better than the study 

by Adedeji and Wang, which used the ResNet-50 model 

in waste classification [14]. The study by Kansal et al. 

also supports these findings, where EfficientNet-B0 

achieved higher accuracy in classifying various lung 

abnormalities compared to the ResNet-50 model [15]. 

The training graphs indicate a substantial improvement 

in accuracy during the initial 30 epochs, after which the 

accuracy stabilizes. The validation loss shows a 

consistent downward trend, though with occasional 

fluctuations. These patterns suggest that further 

stabilization of model performance could be achieved 

by implementing additional regularization techniques 

and increasing dataset diversity. The model was trained 

using the Adam optimizer with a learning rate of 

0.0001, which has proven effective in managing sparse 

gradients and dynamically adjusting the learning rate, 

as supported by previous research [26]. 

However, applying this model in real-time waste 

classification systems faces challenges such as 

performance stabilization in dynamic operational 

environments and the need for fast inference, as 

discussed in the studies by Bhattacharya et al. and Lin, 

which emphasize the importance of inference speed and 

performance stability in real-time applications [30], 

[31]. Future research should focus on integrating this 

model into real-time waste sorting systems, developing 

direct data acquisition mechanisms, and improving 

inference speed. 

4. Conclusions 

This study successfully developed a waste classification 

system using the EfficientNet-B0 model, retrained 

through transfer learning techniques. The model 

demonstrated high test accuracy at 91.94% with 

satisfactory precision and recall across all waste 

categories (glass, cardboard, paper, metal, plastic, and 

residue). This system significantly improves waste 

sorting efficiency and accuracy compared to methods 

relying on inductive and capacitive proximity sensors, 

which are prone to high error rates. This approach sets 
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the stage for further advancements in adaptive and 

efficient automated waste management systems. 
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