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Abstract  

Despite being in high demand as a lifelong learner and academic material supplement, the implementation of Massive Open 

Online Courses (MOOC) has problems, one of which is the dropout rate (DO) of students which reaches 93%. As one of the 

solutions to this problem, Machine Learning can be utilized as a risk management and early warning system for students who 

have the potential to drop out. The use of ensemble techniques to build models can improve performance, but previous research 

has not reviewed the most optimal ensemble technique for this case study. As a form of contribution, this study will compare 

the performance of models built from stacking and blending techniques. The algorithms used in the base model are KNN, 

Decision Tree, and Naïve Bayes, while the meta-model uses XGBoost. These algorithms are used to build models with stacking 

and blending techniques. The experimental results using stacking are 82.53% accuracy, 84.48% precision, 94.12% recall, and 

89.04% F1-Score. Meanwhile, blending obtained 83.39% accuracy, 85.31% precision, 94.21% recall, and 89.54% F1-Score. 

These results are supported by model testing using k-fold cross-validation and confusion matrix techniques which show the 

same results. That is, blending is 0.86% higher than stacking so it can be concluded that blending has better performance than 

stacking in the MOOC student dropout prediction case study. 
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1. Introduction  

Massive Open Online Course (MOOC) was developed 

to fulfil the needs of lifelong learners or as a supplement 

to formal education learning [1]. Although the 

enthusiasm of students is quite high, the reality of 

MOOC implementation is not free from problems. One 

of them is the dropout rate, which reaches 66% to 93% 

[2], [3]. The causes vary, ranging from lack of social 

support, motivation, and perseverance [4], difficulty 

understanding the material, lack of interaction with the 

instructor [5], lack of understanding of learning goals 

and intentions [6] and lack of peer support [7] -[9]. 

The impact of students who drop out includes difficulty 

getting adequate employment and income in the future, 

thus worsening economic and social conditions [4], 

while MOOC organisers can affect reputation, 

rankings, and income [10]. Therefore, risk management 

and early warning systems specifically for students who 

have the potential to drop out are needed, one of which 

is by utilising ML technology such as using 

classification algorithms. 

As a prediction system, ML can provide notifications to 

learners and instructors on a regular basis. For the 

learners, this can be used as motivation to continue 

completing the course. As for the instructor, it can be 

used as a basis for providing motivation and special 

attention because it can reduce the potential for 

dropouts by 14% [11]. In addition, for the course 

organisers, the prediction results can be used to simplify 

the learning path or adjust the material provided [12]. 

There are several classification algorithms that are 

popular and used by previous researchers including 

Logistic Regression (LR), K-Nearest Neighbor (KNN), 

and Random Forest (RF) [2]. The research was 

conducted by Zengxiao Chi, Shuo Zhang, and Lin 

Shing. The dataset used from the HarvardX Platform 

MOOC in the range of 2012 to 2013 with data totalling 

416,921 rows and 21 features. After the pre-processing 

https://doi.org/10.29207/resti.v8i3.5760
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stage, 241,992 lines were filtered. Model testing was 

done with 5-fold cross-validation. In this study, RF 

obtained the highest accuracy value of 91.72%. Even 

so, these results can still be improved. 

One way to improve the performance of ML models is 

ensemble learning. The ensemble is done by combining 

models in the first layer called weak learners that 

function as complex non-linear feature conversions and 

the second layer called meta learners utilizes residues 

from previous models [13]. There are four techniques 

for building ensemble models including bootstrap 

aggregating (bagging), boosting, stacking, and 

blending. An example of a model built from bagging 

techniques is Random Forest, while an example of 

boosting is the Extreme Gradient Boosting (XGBoost) 

algorithm [14]. 

Stacking and blending techniques are built from 

multiple base models and one meta-model. The 

difference between the two techniques lies in the 

division of the dataset. If stacking uses a dataset that is 

divided into two for training and testing, in blending the 

training data is separated into ensemble and blender 

[13], [14]. The ensemble data is used to train the base 

model and tested with blender data. The results are 

combined with blender data as new attributes trained on 

the metamodel and then tested with testing data. This 

makes blending not use overlapping data compared to 

stacking which in fact stacks prediction results data 

together for training and testing. 

In the case study of dropout prediction in a massive 

open online course (MOOC), the use of ensemble 

algorithms built with stacking or blending techniques 

can improve the performance of the prediction model. 

One of the ensemble models proposed by Kumar et al. 

is called Ensemble Deep Learning Network (EDLN) 

[15]. The dataset used is KDD Cup 2015 which contains 

student activity logs on XuetangX MOOC from China. 

The data selected is the first five weeks. The results of 

the study obtained an accuracy value of 97.4%. The 

accuracy value is still not confirmed for complex data 

during a one-course period. 

Research conducted by Shou et al. by building a 

Multiscale Full Convolutional Network and Variational 

Information Bottlenecks (MFCN-VIB) [16]. The model 

can overcome noise in student behaviour time series 

data that may cause interference. The dataset used is the 

same as previous research, namely KDD Cup 2015. The 

results of this study are a precision value of 0.887, recall 

0.960, F1-Score 0.922, and AUC 0.872. One of the 

weaknesses of this research is that the model built is 

quite complex so the execution time is longer, namely 

133 seconds. In addition, the accuracy value is not 

written. 

Another ensemble model proposed by Fu et al. called 

CLSA is a combination of Convolutional Neural 

Network (CNN) and Bi Long Short-Term Memory 

(LSTM) [17]. The dataset used is the same as previous 

research, namely KDD Cup 2015 which has been pre-

processed so that 60 thousand activity log data from 12 

thousand student data are randomly selected and 7 

features are selected related to behavioural 

characteristics in the first to fifth week. With CLSA, the 

accuracy was increased by 2.8% from the basic model 

to 87.6%. 

Although the three studies above have concluded that 

ensemble can improve model performance, they still do 

not explain the most optimal ensemble technique to use 

between stacking and blending. Therefore, this study 

will conduct a comparative analysis of the performance 

of ensemble algorithms with stacking and blending 

techniques to determine the most optimal technique for 

improving model performance. To get accurate results, 

the datasets and algorithms used are made the same. 

In order not to widen the research conducted, there are 

several limitations, namely the type of data used is 

single data and not time series data, hybrid models built 

for academic research purposes and not used for 

implementation in MOOCs and not for optimal learning 

path customization. The research starts from a literature 

study, model building is done with Google Colab using 

Python programming language and supported by 

libraries from SK-Learn, obtaining test results and 

conducting descriptive analysis to determine the most 

optimal ensemble technique. 

2. Research Methods 

This research compares the prediction performance of 

hybrid models built with stacking and blending 

techniques. In order to get an equal comparison, the 

base learner algorithms used include KNN, Decision 

Tree (DT), and Naïve Bayes.  The meta-learner 

algorithm used is Extreme Gradient Boosting 

commonly abbreviated as XGBoost. An explanation of 

the flow and reasons for selecting the four algorithms 

will be explained in the next paragraph below. 

The dataset used in this study is the same as the previous 

three studies, namely KDD Cup 2015. The dataset was 

uploaded by contributor Anas Nofal on Kaggle.com and 

can be downloaded for free 

(https://www.kaggle.com/datasets/anasnofal/mooc-

data-xuetangx) and processed into frequency per 

activity log. The raw data 

(http://moocdata.cn/data/user-activity) is in JSON 

(JavaScript Object Notation) format, while the data that 

has been processed based on frequency is presented in 

tabulations. 

The class distribution in the training data is 137,237 DO 

classes and 43,476 non-DO classes. The percentage 

comparison is 75.95% and 24.05%. Meanwhile, the 

class distribution in the test data is 33,896 DO classes 

and 11,033 non-DO classes. The percentage 

comparison is 75.44% and 24.56%. This is in 

accordance with the results of previous research [2][3]. 

Visually, the class distribution on the training and test 

data is presented in Figure 1 and Figure 2. 

https://www.kaggle.com/datasets/anasnofal/mooc-data-xuetangx
https://www.kaggle.com/datasets/anasnofal/mooc-data-xuetangx
http://moocdata.cn/data/user-activity
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Figure 1. Training Data Class Distribution 

The research flow begins with a literature study aimed 

at finding research gaps or practical problems related to 

the case used as the object of research. Furthermore, 

collecting datasets from the site previously described. 

The pre-processing stage carried out is (1) ensuring data 

in the form of numerical numbers, (2) replacing empty 

values (null) to 0, (3) feature selection, and (4) data 

scaling which aims to optimize the potential for 

increasing data accuracy [18]. The type of scaling 

performed is Standard Scaler with the aim of making 

the average zero and variance one [19]. 

 

Figure 2. Testing Data Class Distribution 

In the feature selection sub-stage, was done manually 

by selecting features related to user activity logs only 

and 22 features were successfully selected. The manual 

feature selection method can be further optimized by 

utilizing feature weighting techniques or genetic 

algorithms so that only strong features are selected. This 

can be used as a topic for further research. Then, to find 

out the correlation between features, it is visualized 

with a heatmap as in Figure 3.

 

Figure 3. Feature Correlation Heatmap

After pre-processing, data splitting is done. The 

stacking technique does not require data splitting 

anymore because it only uses training data and test data. 

Meanwhile, the blending technique requires splitting 

the training data with a ratio of 60:40 so that it becomes 

ensemble data totalling 108,427 and blender data 

totalling 72,286. The class distribution on the ensemble 

data is 82,515 DO classes and 25,912 non-DO classes. 

And then, the class distribution on the blender data is 

54,722 DO classes and 17,564 non-DO classes. 

Visually, the class distribution on the training and test 

data is presented in Figure 4 and Figure 5.  

The ready data will be subjected to data training and 

testing processes with three algorithms in the first layer 

including KNN, Decision Tree, and Naïve Bayes. The 

stacking technique performs training and testing using 

training data and test data. While the blending technique 

conducts training with ensemble data and testing with 
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blender data and testing data. In stacking the test results 

are collected into one new data frame and in blending 

the test results are used as new features in the blender 

data and testing data. 

 

Figure 4. Ensemble Data Class Distribution 

 

Figure 5. Blender Data Class Distribution 

KNN was chosen because it was widely used by 

previous researchers such as Nithya and Umarani [20] 

and Chi et al. [2]. The advantages of KKN are the 

flexibility of the k value that can be changed according 

to certain needs or conditions, for example, based on 

mean error, suitable for binary classification, and 

effective on data that is complex enough to produce 

more accurate predictions [21]. The value of k in the 

KNN algorithm is determined based on the results of 

pre-research using the dataset presented in graph form 

in Figure 6, showing that k=9 has the lowest mean error 

value. 

 

Figure 6. Error Rate k Value 

KNN aims to find the closest distance or the highest 

similarity value. The stages in building the KNN model 

are (1) determining the value of k, (2) calculating the 

Euclidean distance with the formula in Formula 1, (3) 

determining the closest distance with the minimum 

distance in K, (4) the nearest neighbor label and the 

dominant label are used to predict the new data class. In 

addition, KNN prediction can be determined from the 

similarity formula written in Formula 2. 

𝐷 =  √(𝑋1 −  𝑌1)2  +  (𝑋2 −  𝑌2)2  (1) 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑇, 𝑆) =  
∑ 𝑓 (𝑇𝑖,   𝑆𝑖) 𝑥 𝑤𝑖

𝑛

𝑖=1

∑  𝑤𝑖
𝑛
𝑖=1

 (2) 

DT as the second base model was chosen because it can 

find unexpected data patterns, is suitable for 

classification [22], produces acceptable accuracy 

values, and can handle numeric data [23]. Therefore, in 

the pre-processing stage, all data is ensured to be 

numeric in order to produce maximum accuracy in DT. 

Previous studies that applied DT are Park and Yoo [24], 

and Moreno-Marcos et al. [8]. 

There are three components in a decision tree including 

roots, branches, and leaves. The feature used as the root 

or root node is determined through the gain formula in 

Formula 3. To find the gain value, it is necessary to 

know the entropy through the formula in Formula 4. 

After all attributes become branches, the leaves can be 

determined whose values are classification labels. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) = ∑ − 𝑝𝑖 ∗  log2𝑝𝑖𝑛
𝑖=1   (3) 

𝐺𝑎𝑖𝑛 (𝑆, 𝐴) =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆)  − ∑
|𝑆𝑖|

|𝑆|

𝑛

𝑖=1
∗  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑖)   (4) 

Similar to the other two base model algorithms, Naïve 

Bayes functions as a non-linear feature converter. Some 

of the advantages of Naïve Bayes are simplicity, fast 

training and execution time, and good performance 

[17][18]. The Naïve Bayes algorithm is processed based 

on the equation proposed by Thomas Bayes and known 

as Bayes Theorem with the formula written in Formula 

5 and can determine the probability value of the target 

class. 

𝑃 (𝐻|𝑋) =  
𝑃 (𝑋|𝐻) 𝑃(𝐻)

𝑃(𝑋)
 (5) 

The notation in Bayes Theorem is divided into two 

variables, X as the sample data of the unknown class 

and C as the hypothesis that X is the class data. P(X|C) 

is the probability based on the conditions in the 

hypothesis, P(X) is the probability of the observed 

sample data, and P(C) is the probability of the 

hypothesis C. The largest probability will be chosen as 

the prediction result. Previous research using Naïve 

Bayes is Zheng et al. [25]. 

The second layer uses the XGBoost algorithm. New 

frame data in stacking is used as training data and 

testing is done using testing data. In addition, in 

blending, blender data that has been added with features 

is used as training data and testing data that has been 

added with features is used as test data. Then, the test 

results are presented in tabulated form for easy reading 

and understanding. 

The selection of the XGBoost algorithm is used as a 

meta-learner to utilize the previous model residue in the 

form of base model prediction results. XGBoost is an 
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algorithm that applies the concept of Gradient Boosting 

Decision Tree (GBDT) [26] while improving 

performance by adjusting iterative learning features to 

reduce the loss function [27]. The use of XGBoost was 

conducted by Wunnasri et al. [28] which is intended for 

the first phase of the model as a classification algorithm. 

The advantage of XGBoost is that the computational 

process is 10 times faster and the accuracy value is 

higher than Random Forest [29]. The prediction 

concept in XGBoost utilizes a decision tree. Formula 6 

is a differentiable loss function to measure whether the 

model that has been built matches the training data and 

Formula 7 determines the complexity of the model [30]. 

As the complexity of the model increases, the 

corresponding score will decrease in value. 

𝛾1 = ∑ 𝑓𝑘 (𝑋𝑖), 𝑓𝑘  ∈  𝐹
𝐾

𝑘
  (6) 

𝑜𝑏𝑗(𝜃) = ∑ 𝑙 (𝑦𝑖 , 𝛾1)  + 
𝑛

𝑖=0
∑ Ω (𝑓𝑘) 

𝐾

𝑘
  (7) 

To validate the prediction results of the model that has 

been built, k-fold cross-validation and confusion matrix 

techniques are performed. To perform validation 

testing, all datasets that have been split will be 

combined into one and then processed or will be split 

again based on the iteration of the k-fold. Each k-fold 

iteration is calculated for accuracy, precision, recall, 

and F1-Score. These results will be compared and 

analyzed to produce a conclusion. 

The research flow is designed and structured to get 

comparable results by making the same treatment, 

starting from the dataset used, pre-processing, the 

algorithm used, and the test validation technique. The 

difference is the separation of datasets, the training for 

the second layer model, namely stacking, uses the test 

results from the first layer which are stacked while 

blending uses the test results from the first layer to be 

used as additional features. Visually, the research flow 

is presented in Figure 7.

 

Figure 7. Research Flow

3. Results and Discussions 

First, a hybrid model was built with the stacking 

technique. Training 180,713 data with KNN, Decision 

Tree, and Naïve Bayes algorithms and testing was done 

with 44,929 data. The k-fold value chosen is five which 

means the data will be divided into five subsets, one 

subset is used as testing and the other is used as training. 

For each iteration, the confusion matrix will be 

calculated. In addition, the execution time is also 

calculated to determine the prediction speed. 

The test results of the first three layers of algorithms, 

namely KNN, get an accuracy value of 82.43%, 

precision of 85.10%, recall of 92.99%, and F1-Score of 

88.88%. Decision Tree results are 76.97% accuracy, 

84.25% precision, 85.44% recall, and 84.84% F1-

Score. Then, the results of Naïve Bayes are accuracy 

81.08%, precision 82.47%, recall 95.14%, and F1-

Score 88.35%.  Furthermore, k-fold cross-validation 

and confusion matrix testing are presented in Table 1. 

KNN has the flexibility to determine the k value as the 

nearest neighbor circumference. The greater the value 

of k, the more neighbors there are so that it makes 

predictions more accurate, especially if the data 

classification is binary because the label is determined 

based on the majority of labels. However, prediction 

using KNN has the disadvantage of requiring a fairly 

long execution time on average of 213.00 seconds so 

the KNN model is suitable for predictions that require 

high accuracy and ignore execution time. 

In addition, Naïve Bayes gets the fastest average 

execution time which is less than one second to be 

precise 0.29. Although the accuracy value obtained is 

not as good as KNN. Then, the DT algorithm gets the 

lowest accuracy value because it is unable to handle the 

complexity of the attributes used. The more branches 

that are built, the more complex the decision. So, DT is 

more suitable for data that has fewer attributes and 

according to Ang Ji and David Levinson's research 

bootstrap aggregating (bagging) techniques can 

overcome these problems [31]. One implementation of 

the bagging technique is Random Forest which was 

introduced by Leo Breiman in 2001. 
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Table 1. Stacking Technique Base Model Testing Results 

Model Test Variable Iteration Mean 

1 2 3 4 5 

KNN Accuracy 82,94 82,64 82,60 82,93 82,79 82,78 

Precision 85,51 85,07 85,35 85,68 85,40 85,40 

Recall 93,93 93,31 93,08 93,10 93,29 93,23 

F1-Score 89,26 89,00 89,05 89,24 89,17 89,14 

Execution Time 222,29 216,17 212,03 206,55 207,95 213,00 

Decision 

Tree 

Accuracy 77,06 76,94 76,89 77,44 77,04 77,07 

Precision 84,42 84,19 84,49 84,87 84,62 84,52 

Recall 85,58 85,39 85,23 85,58 85,28 85,41 

F1-Score 85,00 84,79 84,86 85,22 84,95 84,96 

Execution Time 3,46 2,70 3,20 2,36 2,24 2,79 

Naïve Bayes Accuracy 81,38 80,86 80,96 81,58 81,08 81,17 

Precision 82,71 82,16 82,44 82,80 82,39 82,50 

Recall 95,43 95,23 95,22 95,63 95,51 95,41 

F1-Score 88,62 88,22 88,37 88,75 88,47 88,49 

Execution Time 0,29 0,27 0,30 0,28 0,30 0,29 

 

Next, meta-model building with XGBoost. The 

XGBoost library has been developed by the Distributed 

Machine Learning Community (DMLC). Residual data 

collected from the previous three base models are 

combined into one data frame for retraining with 

XGBoost. The test results show the accuracy value of 

the stacking model is 82.53%, precision 84.48%, recall 

94.12%, and F1-Score 89.04%. Then, the results of 

testing the stacking model with k-fold cross-validation 

and confusion matrix techniques are shown in Table 2. 

Table 2. Stacking Technique Hybrid Model Testing Results 

Model Test Variable 
Iteration 

Mean 
1 2 3 4 5 

Ensemble 

Stacking 

Accuracy 83,15 82,70 82,65 83,17 82,80 82,89 

Precision 84,93 83,93 84,64 85,05 85,87 84,88 

Recall 94,59 95,25 94,28 94,45 92,60 94,23 

F1-Score 89,50 89,23 89,20 89,51 89,11 89,31 

Execution Time 211,84 232,16 212,32 212,15 211,59 216,01 

Utilization of the previous residue makes XGBoost get 

an average value at a k-fold of 82.89%. While the 

average accumulation on the base model is 80.34% it 

can be concluded that the hybrid model built with the 

stacking technique can improve performance by 2.55%. 

However, in terms of execution time, XGBoost takes 

quite a long time, which is an average of 216.01 

seconds. This is due to the complexity of the XGBoost 

algorithm and can be reviewed for further research 

regarding the most optimal and fast algorithm to be used 

as a metamodel. 

Second, the next experiment is to build a model with the 

blending technique. Slightly different from stacking, 

blending does not use the base model test results as 

training data on the meta-model but the test results will 

be added to the blender data and testing data as new 

attributes and will be trained on the meta-model so that 

initially 22 features become 25 features. The large 

amount of data and features used can affect 

performance, but the blending technique can overcome 

this by separating the training data in each layer so that 

it does not accumulate like stacking. 

The amount of training data or ensemble in the base 

model is 108,427 and the test data or blender is 72,286. 

After training and testing data, KNN produces an 

accuracy of 82.65%, precision of 85.27%, recall of 

93.19%, and F1-Score of 89.05%. Decision Tree 

obtained an accuracy value of 76.90%, precision of 

84.28%, recall of 85.41%, and F1-Score 84.84%. Then, 

Naïve Bayes gets an accuracy value of 81.19%, 

precision of 82.61%, recall of 95.19%, and F1-Score of 

88.46%. The difference in general, the average 

execution time on blending is faster because the amount 

of data used is less. The complete results of k-fold cross-

validation and confusion matrix testing are presented in 

Table 3. 

The data pattern in these results is the same as the base 

model stacking test. KNN gets the highest score in 

terms of accuracy. Compared to stacking, KNN on 

blending gets a higher accuracy value of 0.20% and the 

execution time is faster. Then, the Decision Tree gets 

the lowest accuracy value compared to the other two 

algorithms and there is an increase in the accumulated 

accuracy value of 0.24%. The same thing happens to 

Naïve Bayes, which is an increase of 0.12%. Here Naïve 

Bayes is the algorithm with the fastest execution time 

which only takes 0.27 seconds to do prediction. As 

explained earlier, the results are not put together in the 

frame data as in the stacking technique, but the results 

are put together with blender data and testing data as 

new features named 'knn_predictions', 'dt_predictions', 

'nb_predictions'. Previously, the features used were 22 

features, then three new features were added so that 

there were 25 features. The assumption of adding these 

new features is that there is an expected performance 

improvement when tested with k-fold cross-validation 

and confusion matrix. 
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Table 3. Blending Technique Base Model Testing Results 

Model Test Variable Iteration Mean 

1 2 3 4 5 

KNN 

 

Accuracy 82,74 82,64 82,79 83,07 82,78 82,80 

Precision 85,28 85,26 85,39 85,81 85,40 85,43 

Recall 93,30 93,18 93.28 93.27 93,28 93,26 

F1-Score 89,11 89,04 89,16 89,39 89,17 89,17 

Execution Time 183,42 218,82 188,79 164,11 160,06 183,04 

Decision 

Tree 

Accuracy 77,11 77,08 77,37 77,53 77,45 77,31 

Precision 84,40 84,49 84,62 85,12 84,76 84,68 

Recall 85,57 85,40 85,77 85,56 85,72 85,60 

F1-Score 84,98 84,94 85,19 85,34 85,24 85,14 

Execution Time 3,04 2,57 2,16 1,86 1,88 2,30 

Naïve Bayes Accuracy 81,17 81,19 81,14 81,78 81,17 81,29 

Precision 82,59 82,58 82,53 83,31 82,52 82,71 

Recall 91,18 95,25 95,31 95,24 95,42 95,28 

F1-Score 88,44 88,46 88,46 88,88 88,50 88,55 

Execution Time 0,19 0,19 0,21 0,24 0,21 0,21 

After training using blender data, then testing using test 

data. The following are the results of testing the 

blending technique, namely accuracy 83.39%, precision 

85.31%, recall 94.21%, and F1-Score 89.54%. 

Compared to stacking, there is an increase of 0.86%. 

The difference as well as the improvement occurred due 

to the dataset and mechanism in the meta-model. There 

are fewer datasets in blending so the complexity is 

lower. The construction of the meta-model from 

XGBoost which utilizes blender data with new features 

for training and testing data for testing is more effective 

than stacking which uses test data for training as well as 

testing on the meta model. Furthermore, the test results 

using k-fold cross-validation and confusion matrix are 

presented in Table 4.

Table 4. Blending Technique Hybrid Model Testing Results 

Model Test Variable 
Iteration 

Mean 
1 2 3 4 5 

Ensemble 

Blending 

Accuracy 83,60 83,56 83,38 83,90 83,46 83,58 

Precision 85,63 85,44 85,46 85,81 85,46 85,56 

Recall 94,22 94,20 94,14 94,44 94,27 94,25 

F1-Score 89,72 89,61 89,59 89,92 89,65 89,70 

Execution Time 365,19 334,87 369,51 391,92 370,49 366,40 

Based on testing on k-fold cross-validation, the 

difference in the highest accuracy value in stacking and 

blending is 0.88%. This proves that the hybrid model 

built with blending has a better performance value than 

stacking. However, in terms of execution time, stacking 

is faster than blending with a difference of 134.41 

seconds. This is because the features used for training 

are fewer in stacking which is only three features while 

blending is 25 features. 

Then, in other confusion matrix values such as 

precision, recall, and F1-Score, blending is higher than 

stacking. Precision gives an idea of how the model can 

predict the positive class correctly among all positive 

predictions. Recall, also called sensitivity, is an 

evaluation to describe how well a model can correctly 

identify the positive class. Finally, the F1-Score reflects 

the balance between precision and sensitivity. In other 

words, F1-Score gives an idea of how good the model 

is at predicting true positives and true negatives. 

In general, the results of this study are in line with the 

research results of previous studies that ensemble can 

improve the performance value of hybrid models. 

Blending has better precision, recall, and F1-Score 

compared to the MFCN-VIB model proposed by Shou 

et al. and claimed to be able to overcome noise [16]. 

However, in the variable execution time, MFCN-VIB is 

faster with a considerable difference of 203.14 seconds. 

Another difference is in the type of data used, MFCN-

VIB uses time series data while blending uses a single 

time series data. 

The CLSA model proposed by Fu et al. and is a 

combination of CNN and Bi-LSTM algorithms [17] has 

a lower difference of 1.75% with blending, namely 

CLSA getting 87.4%. The dataset used is also different 

because CLSA only used 60 thousand data and selected 

seven features related to the characteristics of students 

in the first week to the fifth week. Meanwhile, stacking 

and blending used all the data in KDD Cup 2015. The 

number of features used is different and the complexity 

of the hybrid model built is also different. 

Finally, research was conducted by Kumar et al. with an 

ensemble model called EDLN [15]. The dataset used 

was only the first five weeks of the course and the 

amount of data was not written. The accuracy of the 

model is 97.4%. These results are influenced by the 

amount of data used and cannot be confirmed for the 

same results on complex data and over a specific period. 

In comparison, in this research, the blending achieved 

an accuracy of 89.35% and was built with all the data 

used in the 2015 KDD Cup with a total of 225k data, 

making it more complex. 

Despite getting good results, this research still has 

weaknesses including the hybrid model of the blending 
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technique still has the longest execution time and there 

is no testing based on the Area Under Curve (AUC) 

which can visualize all possible classification 

thresholds [32]. Future research can experiment with 

finding the best combination of algorithms that can 

reduce the execution time to be built in hybrid with 

blending techniques or apply metaheuristic type 

optimization techniques. 

4. Conclusions 

The results prove that ensemble or hybrid models can 

improve accuracy. This is in line with the results of the 

three studies listed in the previous section. However, 

there are some things that differ such as the amount and 

shape of the data as well as the complexity or 

combination of algorithms chosen to build the model. 

Building a hybrid model with stacking gets an accuracy 

value of 82.53% while blending gets an accuracy value 

of 83.39%. This means that blending gets 0.86% higher 

results in the case study of dropout students in MOOCs 

with data classification in the form of binary, single data 

and not time series. 

In addition, as a result of the additional lines of code in 

the hybrid model, the model execution time becomes 

longer. This can be a gap for further research to 

improvise the model so that the execution time is faster. 

In addition, related to the related features used, can be 

reviewed and selected again to ensure the correlation 

between features is strong, such as using genetic 

algorithms. Then, it can use metaheuristic optimization 

techniques such as Particle Swarm Optimization (PSO), 

Ant Colony, or Komodo Mlipir Algorithm (KMA). 

The results of this research are expected to provide 

inspiration and reference for similar research, namely 

dropout prediction in MOOCs using ensemble 

algorithms. In addition, the research results can be 

applied to the real world as an early warning system that 

sends regular notifications so as to reduce the potential 

for students to drop out. The information can be utilized 

by teachers to provide intensive guidance and for the 

MOOC system to determine a dynamic learning path so 

that the course can still be completed by students. 
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