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Abstract  

Hydroponics is based on nutrients in water. It must be regularly monitored to prevent plant defects. The Internet of Things has 

become a solution for remote hydroponic monitoring and is currently being tested on the Yuan Hidroponik Kelompok Wanita 

Tani (KWT). This system will send data every minute, and each data has a possibility of loss in transmission. There is a chance 

that this system will be implemented in other hydroponic organizations. As more devices are involved, it will affect server 

resources. This research will compare Message Queue Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP) 

as popular protocols used in IoT. A test with increasing clients shows that at 50 clients HTTP needs 87% CPU, while MQTT 

needs 22.63% CPU. A test with increasing payload shows that at 10,000 payload HTTP needs 94% CPU while MQTT needs 

28.35% CPU. A test with fixed clients and payloads shows that HTTP has a CPU limit based on the clients involved. A transfer 

time test shows that HTTP needs 177.344 seconds while MQTT needs 3.24 seconds. An acceptance rate is calculated by 

incrementing the count for every incoming payload. It shows that HTTP can receive 30,000 payloads, unlike MQTT which can 

only receive 1680 payloads before losses. 
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1. Introduction  

Hydroponics is a method of growing plants using a 

solution of mineral nutrients in water [1]. Since it relies 

on nutrients in the water, lack or excess nutrients can 

lead to discoloured or defective leaves [2]. This makes 

hydroponics necessary to be monitored regularly. 

The Internet of Things (IoT) comes as a solution to help 

farmers remotely monitor hydroponics. The solution 

was tested on Kelompok Wanita Tani (KWT) Yuan 

Hidroponik. The owner of KWT Yuan Hidroponik 

mentioned the flow of nutrition addition in a manual 

way. The nutrient value in the container must be 

checked before and after adding nutrients. On the basis 

of that habit, the system will send data every minute. 

Each minute of data has the possibility of loss in 

transmission. 

Currently, this system is focused on KWT Yuan 

Hidroponik as a single user. There is a chance this 

system will be implemented in other hydroponic 

organizations as a multi-user. This may lead to more 

devices involved that impact server resources. The 

popular protocols used in IoT are MQTT (Message 

Queue Telemetry Transport) and HTTP (Hypertext 

Transfer Protocol) based on the Eclipse 2023 IoT & 

Edge Developer Survey. This survey also shows that 

MQTT has a higher use rate than HTTP. 

MQTT is a lightweight publish-subscribe protocol used 

for IoT communication [3]. This protocol is designed to 

focus on minimizing network bandwidth and device 

resources to ensure reliable delivery [4]. Meanwhile, 

HTTP is a protocol that becomes the basis of the client-

server model used in websites [5]. This protocol can 

transfer many data in tiny packets, which can cause a 

large overhead. This overhead can cause serious 

bandwidth problems in IoT [6].  

The HTTP and MQTT protocols exhibit packet loss, 

according to a study on the use of IoT in vehicle air 

quality. Despite HTTP's slower speed than MQTT, this 

study demonstrates that it has less packet loss [7]. A 

https://doi.org/10.29207/resti.v8i1.5561
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study on the implementation of IoT on the 

electrocardiogram (ECG) shows that packet loss in 

MQTT follows the growing number of patients [8]. 

Network congestion is termed packet loss at the 

network level in this study. In almost every experiment, 

a slightly higher packet loss on MQTT than HTTP is 

observed in another study on the integration of IoT in 

smart wheelchairs [9]. This study describes packet loss 

as the loss of a few data packets in a network. Thus, 

both studies highlight similar issues about packet loss at 

the network level in their IoT implementation, 

respectively. 

By focusing on application-level performance, this 

study filled the research void left by the two network-

level studies. Rather than watching the network, it will 

use the count variable to evaluate the message it 

received. Resource overload can cause the application 

or the MQTT broker to drop, which can impact 

application-level performance. Thus, although there is 

a small packet loss for both protocols at the network 

level, there may be a greater packet loss at the 

application level. This research is essential since packet 

loss can result in erroneous nutrient values, as was the 

case with IoT-based ECG [8]. More packet loss will 

occur if the application is down due to resource 

overload, which will stop the hydroponic system. 

2. Research Methods 

2.1 Testing Architecture 

Figure 1 illustrates the architecture of the system used 

to test the tools associated with each protocol. A virtual 

machine (VM) is used for each protocol. VM for MQTT 

is equipped with the MQTT Broker EMQX. This is 

done to demonstrate the impact of the local MQTT 

broker on CPU usage. Htop was used to monitor CPU 

usage in several tests [10]. 

 

Figure 1. System Architecture for Testing 

Both VMs were hosted on Google Cloud Platform 

(GCP) using the n1-standard-1 machine type. The more 

detailed specification of n1-standard-1 is explained in 

Table 1 [11]. There are also differences in how the 

HTTP and MQTT protocols operate. HTTP uses a 

request-and-response approach [12], while MQTT uses 

a publish-and-subscribe approach [13]. This leads to the 

use of different testing tools. 

The MQTT protocol in this research operates on Quality 

of Service (QoS) 0. This QoS level will make public 

that the reader does not receive any information about 

the delivery of messages [14]. 

Table 1. VM Specification 

Property Value 

vCPU 1 

RAM 3.75 GB 
Disk 10 GB 

The HTTP protocol will be tested using Autocannon to 

send many requests to the HTTP server [15], while the 

MQTT protocol will be tested using MQTT Stresser to 

send many messages to the local MQTT broker [16]. 

2.2 Payload Count Definition 

There is a difference in defining the payload count 

between Autocannon and MQTT Stresser. In 

Autocannon, the payload count can be defined directly. 

Meanwhile, the payload count in MQTT Stresser must 

be defined for each client. For a more detailed 

explanation, see Table 2. 

Table 2. Payload Rounding for MQTT 

Client Payload Payload per Client Rounding 

60 1,000 17 1,020 

60 5,000 84 5,040 

60 10,000 167 10,020 
60 15,000 250 15,000 

60 20,000 334 20,040 

To calculate the payload per client in MQTT Stresser, 

the payload count is divided by the client count as 

shown in Formula 1. 

𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑝𝑒𝑟 𝑐𝑙𝑖𝑒𝑛𝑡 =  ⌈
𝑃𝑎𝑦𝑙𝑜𝑎𝑑

𝐶𝑙𝑖𝑒𝑛𝑡
⌉               (1) 

This division results in a decimal value. The value will 

be rounded up to the nearest whole number. This 

rounding process ensures that each client receives an 

equal share of the payload. It is done to prevent 

fractional portions that could lead to imbalances in test 

conditions. 

To calculate the rounding value, the payload per client 

is multiplied by the client count as shown in Formula 2. 

𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 = 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑝𝑒𝑟 𝑐𝑙𝑖𝑒𝑛𝑡 × 𝑝𝑎𝑦𝑙𝑜𝑎𝑑         (2) 

The difference between the initial payload and the 

rounded payload will be calculated from the rounding 

result. For example, a test with 5,000 payloads 

distributed among 60 clients would result in a rounded 

payload value of 5040. The difference of 40 is a direct 

consequence of the rounding operation. 

2.3. Client Count Testing 

This test aims to calculate the effectiveness of 

increasing the client count of both HTTP and MQTT. 

The parameters used in this test are detailed in Table 3. 

The number of clients is incrementally increased until 

CPU utilization reaches 100%. Each test is repeated ten 

times, and the results are averaged. 
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Table 3. Client Count Parameters 

Property Value 

Fixed Payload 10,000 

HTTP Client Increment 5 

MQTT Client Increment 100 

A fixed payload of 10,000 is used for both protocols. 

For HTTP, the testing starts with 5 clients and increases 

incrementally by 5. Meanwhile, for MQTT, the testing 

starts with 10, 50, and 100 clients with increments in 

multiples of 100. The huge increase in MQTT clients is 

designed to accelerate MQTT testing. 

This study follows the fixed scenario described in the 

previous literature [17]. However, our research uses 

more scenarios and will stop if CPU usage reaches 

100%. The results of this test are presented in a table 

and graph. The first protocol that reaches almost 100% 

CPU usage will be compared with other protocols on 

the same clients. The MQTT data points will be very 

few compared to HTTP. Trendline is used to draw the 

line in the combined graph for a better view. 

2.4 Payload Count Testing 

This test aims to calculate the effectiveness of 

increasing the payload count on both HTTP and MQTT. 

The parameters used in this test are detailed in Table 4. 

Table 4. Payload Count Parameters 

Property Value 

Fixed Client 60 

HTTP Client Increment 500 

MQTT Client Increment 5,000 

A fixed client of 60 is used for both protocols. For 

HTTP, the test starts with 1,000 payloads and increases 

incrementally by 500. Meanwhile, for MQTT, testing 

starts with 1,000, 5,000 and increases incrementally by 

5,000. The huge increase in MQTT payloads is 

designed to accelerate MQTT testing. 

The results of this test are presented in a table and graph. 

The first protocol that reaches almost 100% CPU usage 

will be compared with other protocols on the same 

payloads. The MQTT data points will be very few 

compared to HTTP. Trendline is used to draw the line 

in the combined graph for a better view. 

2.5 Key Determining Factors 

The purpose of this test is to determine whether 

increasing the client or payload affects CPU usage more 

on HTTP and MQTT. Table 5 provides specific 

information on the test parameters. Twenty, forty, and 

sixty clients are used in this test, with payload sizes 

ranging from 1000 to 5000. Growth will persist in 

multiples of 5,000 to 30,000. Even if one of the 

protocols does not reach 100% CPU utilization, the test 

will still be terminated. 

The results of this test are presented in a table and graph. 

If data points increase with an increasing number of 

clients, it indicates that the protocol is more affected by 

increasing number of clients. Otherwise, if the data 

points increase with increasing payload, it indicates that 

the protocol is more impacted by increasing payload. 

Table 5. Key Determining Factors Parameters 

Property Value 

Client Increment 20 

Maximum Client 60 
Payload Increment 5,000 

Maximum Payload 30,000 

2.6 Total Transfer Time 

This test aims to calculate the time needed to transfer all 

payloads on both HTTP and MQTT. The parameters 

used in this test are detailed in Table 6. 

Table 6. Total Transfer Time Parameters 

Property Value 

Fixed Client 60 

Payload Increment 10,000 

Maximum Payload 100,000 

This test starts with 1,000 and 10,000 payloads 

increasing in multiples of 10,000 to 100,000. The 

results of this test are presented in a table and graph. 

The line with a lower gradient indicates that the 

protocol is faster than the others. 

2.7 Acceptance Rate 

This test aims to calculate the number of payloads 

received on both HTTP and MQTT. The parameters 

used in this test are detailed in Table 7. 

Table 7. Acceptance Rate Parameters 

Property Value 

Fixed Client 60 
Payload Increment 5,000 

Maximum Payload 30,000 

The payloads received are calculated by the count 

variable. The count will increase by 1 for every 

incoming payload. A study using a similar approach 

involves inserting data into the database for each 

incoming payload [18]. 

This test starts with 1,000, 5,000 and increases 

incrementally in multiples of 5,000 to 30,000. The 

results of this test are presented in a table and graph. 

The protocol with packet loss greater than 50% 

indicated that the protocol is not reliable. It will be 

tested to identify its saturation point. 

There is a study that uses the opposite calculation 

method that focuses on the percentage of packet loss 

[19]. The packet loss can still be tolerated if it occurs 

for about 2%. 

2.8 Saturation Point 

This test aims to calculate the more accurate saturation 

point of the unreliable protocol based on the previous 

test. There is a chance that packet loss occurs below 

5000 payloads. The parameters used in this test are 

detailed in Table 8. 
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Table 8. Saturation Point Parameters 

Property Value 

Fixed Client 60 

Payload Increment 125 

This test starts with 125 payloads and increases 

incrementally by 125. The test will stop to determine 

whether payload loss has occurred. The payload count 

will be recorded for the reverse test. The reverse test 

uses a payload count from the previous test. It begins 

with 5 clients and increases incrementally by 5. The test 

will stop to determine whether payload loss has 

occurred. The parameters used in this reverse test are 

detailed in Table 9. 

Table 9. Reverse Test Parameters 

Property Value 

Fixed Payload <from the last test> 

Client Increment 5 

The results of this test are presented in two tables and 

graphs. Data points that dropped below 50% indicate 

the saturation point of that protocol. 

3. Results and Discussions 

3.1 Client Count Testing 

The results of comparing the CPU usage of the HTTP 

protocol with the increasing client count can be seen in 

Table 10. 

Table 10. HTTP Client Count Testing 

Payload Client Average CPU Usage 

10,000 5 17.75% 

10,000 10 28.00% 

10,000 15 40% 
10,000 20 45.28% 

10,000 25 56.11% 

10,000 30 60.73% 
10,000 35 68.63% 

10,000 40 75.28% 

10,000 45 80.67% 
10,000 50 87% 

10,000 55 91.31% 

10,000 60 97% 

 

Figure 2. HTTP Client Count Testing 

Table 10 shows that HTTP can handle up to 60 clients 

before reaching almost maximum CPU usage. The test 

results are also shown graphically in Figure 2. 

Table 11. MQTT Client Count Testing 

Payload Client Average CPU Usage 

10,000 10 17.51% 

10,000 50 22.63% 

10,000 100 27.54% 
10,000 200 33.99% 

10,000 300 39.55% 

10,000 400 46.71% 
10,000 500 55.92% 

10,000 600 61.80% 

10,000 700 67.70% 
10,000 800 70.44% 

10,000 900 73.94% 

10,000 1,000 77.08% 
10,000 1,100 82.55% 

10,000 1,200 86.50% 

10,000 1,300 88.38% 

10,000 1,400 92% 

10,000 1,500 97.14% 

 

Figure 3. MQTT Client Count Testing 

The same test was also carried out for the MQTT 

protocol. The result of comparing CPU usage of the 

MQTT protocol with increasing client count can be seen 

in Table 11. Table 11 shows that MQTT can handle up 

to 1,500 clients before reaching almost maximum CPU 

usage. The test results are also shown graphically in 

Figure 3. 

 

Figure 4. Combination Client-Count Testing 

The combination of HTTP and MQTT client count 

graphs is depicted graphically in Figure 4. Trendline is 

used due to the imbalanced data point of MQTT. Figure 

4 shows that for 50 clients, MQTT only needs 22.63% 

CPU usage. Meanwhile, HTTP needs 87% CPU usage. 
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This test shows that MQTT is more resource efficient 

than HTTP in terms of client count. 

3.2 Payload Count Testing 

The results of comparing the CPU usage of MQTT with 

increasing payload count can be seen in Table 12. 

Table 12. HTTP Payload Count Testing 

Client Payload Average CPU Usage 

60 1,000 21.68% 
60 1,500 30.22% 

60 2,000 41.16% 

60 2,500 44% 
60 3,000 51% 

60 3,500 62.73% 

60 4,000 65.29% 

60 4,500 70.04% 

60 5,000 74.19% 

60 5,500 76.09% 
60 6,000 78.35% 

60 6,500 80.02% 

60 7,000 87.00% 
60 7,500 89% 

60 8,000 90.28% 

60 8,500 91.97% 
60 9,000 93% 

60 9,500 93.30% 
60 10,000 94% 

 

Figure 5. HTTP Payload Count Testing 

Table 12 shows that HTTP can handle up to 10,000 

payloads before reaching almost maximum CPU usage. 

The test results are also shown graphically in Figure 5. 

The same test was also carried out for the MQTT 

protocol. The result of comparing CPU usage of the 

MQTT protocol with increasing payload count can be 

seen in Table 13. 

 

Figure 6. MQTT Payload Count Testing 

Table 13 shows that the MQTT protocol can handle up 

to 100,000 payloads before reaching almost maximum 

CPU usage. The test results are also shown graphically 

in Figure 6. 

Table 13. MQTT Payload Count Testing 

Client Payload Average CPU Usage 

60 1,000 10.46% 
60 5,000 27% 

60 10,000 28.35% 

60 15,000 31.27% 
60 20,000 36.74% 

60 25,000 40.85% 

60 30,000 46.60% 
60 35,000 50% 

60 40,000 51.83% 

60 45,000 56.33% 
60 50,000 62.04% 

60 55,000 64.59% 

60 60,000 68% 
60 65,000 72.83% 

60 70,000 75% 

60 75,000 82% 
60 80,000 92% 

60 85,000 92.91% 

60 90,000 98% 
60 95,000 98% 

60 100,000 99% 

 

Figure 7. Combination Payload Count Testing 

The combination of HTTP and MQTT payload count 

graphs is shown graphically in Figure 7. Trendline is 

used due to the imbalanced data point of MQTT. Figure 

7 shows that for 10,000 payloads, MQTT only needs 

28.35% CPU usage. Meanwhile, HTTP requires 94% 

CPU usage. This test shows that MQTT is more 

resource efficient than HTTP in terms of payload count. 

3.3 Key Determining Factors 

The results to determine which increase in client or 

payload has the greatest impact on CPU usage can be 

seen in Table 14. 

Table 14. HTTP Key Determining Factors 

Payload 
Client 

20 40 60 

1,000 48.40% 79.90% 83.40% 
5,000 64.90% 71.70% 92.70% 
10,000 53.10% 72.70% 95.30% 
15,000 50.60% 76.00% 94.70% 

20,000 50.30% 77.80% 94.70% 

25,000 46.40% 76.30% 95.30% 
30,000 48.40% 77.80% 100% 
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Table 14 shows that each client count maintains a CPU 

usage range. For example, 40 clients maintain a range 

of 75% CPU usage. 

 

Figure 8. HTTP Key Determining Factors 

This test shows that HTTP has a CPU usage limit based 

on the client involved. The test results are also shown 

graphically in Figure 8. The same test was also carried 

out for the MQTT protocol, which can be seen in Table 

15. 

Table 15.  Key Determining Factors for MQTT 

Payload 
Client 

20 40 60 

1,000 4.60% 5.40% 7.90% 

5,000 11.30% 12.70% 14% 

10,000 19.50% 20.80% 22.70% 

15,000 27.30% 30.70% 31.80% 
20,000 37.10% 39.70% 41.30% 

25,000 44.70% 46.70% 48% 

30,000 57.30% 57.60% 58% 

Table 15 shows that each client has almost the same 

CPU usage as the payload increases. For example, a 

30,000 payload maintains a range of 58% CPU usage 

for every client count. This test shows that the increase 

in payload in MQTT is more impactful on CPU usage. 

The test results are also shown graphically in Figure 9. 

 

Figure 9.  Key Determining Factors for MQTT 

The results of both tests are consistent with previous 

studies. There is a study that shows that HTTP has a 

higher CPU usage compared to MQTT [20]. 

3.4 Total Transfer Time 

The results of comparing the total transfer time of both 

protocols with increasing payload count can be seen in 

Table 16. 

Table 16. Total Transfer Time 

Payload 
Total Transfer Time 

MQTT HTTP 

1000 0.565 3.315 
10000 0.839 20.335 

20000 1.092 37.338 

30000 1.371 56.343 
40000 1.596 74.336 

50000 1.918 93.369 

60000 2.157 109.352 

70000 2.443 127.347 

80000 2.77 143.35 

90000 3.038 161.349 
100000 3.24 177.344 

 

Figure 10 Total Transfer Time 

Table 16 provides an overview of the fact that the 

MQTT protocol is faster to receive the entire payload 

compared to HTTP. The entire payload is received 

using the MQTT protocol in only 3.24 seconds. 

Meanwhile, HTTP takes up to 177.344 seconds. The 

test results are also shown graphically in Figure 10. 

Figure 10 shows a line of HTTP that has a higher 

gradient than MQTT. It shows that HTTP has a longer 

transfer time than MQTT. 

3.5 Acceptance Rate 

The results of comparing the acceptance rate of both 

protocols with increasing payload count can be seen in 

Table 17. 

Table 17 shows that HTTP can receive all 30,000 

payloads without loss. On the contrary, MQTT 

experiences payload losses of more than 50% when it 

receives 5,000 payloads. The test results are also shown 

graphically in Figure 11. This test shows that MQTT 

has poorer reliability than HTTP, so MQTT will be 

tested to identify its saturation point. 

Table 17. Acceptance Rate 

Payload 
Acceptance Rate 

HTTP MQTT 

1,000 100.00% 100.00% 

5,000 100.00% 8.51% 
10,000 100.00% 14.19% 

15,000 100.00% 3.63% 
20,000 100.00% 6.80% 
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25,000 100.00% 2.29% 

30,000 100.00% 3.46% 

 

 

Figure 11. Acceptance Rate 

3.5 MQTT Saturation Point 

As MQTT is unreliable on the basis of the previous test, 

there is a chance that packet loss occurs below 5,000 

payloads. This test is done to find the exact point that 

causes packet loss for both client and payload 

parameters. The results of the comparison of the 

acceptance rate of the MQTT protocol with increasing 

payload count can be seen in Table 18. 

Table 18. MQTT Saturation Point by Payload 

Payload 
Payload Acceptance 

Expected Received Percentage 

125 180 180 100.00% 

250 300 300 100.00% 
375 420 420 100.00% 

500 540 540 100.00% 

625 660 660 100.00% 
750 780 780 100.00% 

875 900 900 100.00% 

1000 1020 1020 100.00% 
1125 1140 1140 100.00% 

1250 1260 1260 100.00% 
1375 1380 1380 100.00% 

1500 1500 1500 100.00% 

1625 1680 1680 100.00% 
1750 1800 120 6.67% 

 

Figure 12. MQTT Saturation Point by Payload 

Table 18 shows that the MQTT protocol can receive all 

payloads up to 1,680. The more payloads are added, the 

more payload losses. The test result is also shown 

graphically in Figure 12. 

Reverse testing is conducted after the saturation point is 

established at 1,750 payloads. The results of the 

comparison of the acceptance rate of the MQTT 

protocol with the increase in the client count can be seen 

in Table 19. 

Table 19. MQTT Saturation Point by Client 

Payload 
Payload Acceptance 

Expected Received Percentage 

5 1750 1750 100.00% 

10 1750 1750 100.00% 
15 1755 1755 100.00% 

20 1760 1760 100.00% 

25 1750 665 38.00% 
30 1770 324 18.31% 

Table 19 provides an overview of the MQTT protocol 

that successfully received all payloads when 

transmitted from 20 clients. As more clients are added, 

packet loss occurs. The test result is also shown 

graphically in Figure 13. 

 

Figure 13. MQTT Saturation Point by Client 

4. Conclusions 

This study shows that MQTT is more resource-efficient 

than HTTP.  50 clients on MQTT only need 22.63% 

CPU usage than HTTP which needs 87% CPU usage. It 

is also shown that 10,000 payloads on MQTT need 

28.35% CPU usage compared to HTTP which needs 

94% CPU usage. Another test shows that HTTP has a 

CPU usage limit based on the client involved. As more 

payload increases, it does not have a huge impact on 

CPU usage. This study also shows that MQTT has a 

faster transfer time than HTTP. It is shown that MQTT 

only needs 3.24 seconds compared to HTTP which 

needs 177.344 seconds. However, the faster transfer 

time on MQTT is inversely proportional to the MQTT 

acceptance rate, which is worse than HTTP. HTTP can 

receive all 30,000 payloads without any losses. 

Meanwhile, MQTT can only receive 1680 payloads 

before experiencing payload losses. More improvement 

can be made in this study by comparing the acceptance 

rate of MQTT and HTTP on larger virtual machines. 
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