A Cost-Effective Vital Sign Monitoring System Harnessing Smartwatch for Home Care Patients

Dodon Turianto Nugraha1, Rudy Herteno2, Mohammad Reza Faisal3, Nursyifa Azizah4∗,
Friska Abadi5, Irwan Budiman6, Muhammad Itqan Mazdadi7
1,2,3,4,5,6,7 Computer Science Department, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
1dodonturianto@ulm.ac.id, 2rudy.herteno@ulm.ac.id, 3reza.faisal@ulm.ac.id, 4nursyifaziza@gmail.com,
5friska.abadi@ulm.ac.id, 6irwan.budiman@ulm.ac.id, 7mazdadi@ulm.ac.id

Abstract

Telemedicine applications enable online health consultation services, but they have limitations: there is no vital sign examination as in offline consultation. Furthermore, vital sign examinations for patients treated outside hospitals, such as outpatients and home care patients, are not as routine as for inpatients. Although patient monitors can be used to monitor vital signs in real-time, they are expensive, making it difficult to use them for home care patients. This research aims to develop a vital sign monitoring system for home care patients that integrates a smartwatch as a data acquisition sensor device, a mobile application as a gateway that collects vital sign data and sends it to a web server, and a web application to remotely monitor vital signs and changes in their values. This system also aims to make it easier for patients and their families to communicate with doctors and nurses while viewing vital sign information and the risk of patient deterioration in the form of Early Warning Score (EWS). The smartwatch chosen is based on its features and low price, so a cost-effective vital sign monitoring system can be produced. Testing using the black-box method shows that the system functions well and meets the expected functionality.

Keywords: home care; national early warning score; vital sign; smartwatch; e-health

1. Introduction

Telemedicine applications such as KlikDokter, Alodokter, and Halodoc have made it easier for the public to obtain online health consultation services. These applications allow users to consult with doctors through chat or voice calls to receive advice on their symptoms or complaints. However, the drawback of these applications is the lack of vital sign examination that typically takes place during face-to-face consultations. In face-to-face consultations, patients have their vital signs examined, including blood pressure, heart rate, respiratory rate, and body temperature, as part of their condition assessment. The absence of vital sign examinations in telemedicine implementation can result in incomplete patient condition information, affecting the quality of diagnoses or advice given by doctors [1], [2]. If the user's complaint or symptoms are serious, doctors may recommend face-to-face consultations [3]. Therefore, the use of telemedicine in Indonesia is currently limited to non-emergency patients [4].

Vital signs during face-to-face consultations are measured one by one using appropriate tools such as a sphygmomanometer to measure blood pressure, a thermometer to measure body temperature, and a stethoscope to listen to the sound of the heartbeat. Sometimes, the respiratory rate is also examined by observing the patient's chest or belly movements for one minute. However, for the general public or patients using telemedicine services, vital sign examinations can only be done independently by the patient. Patients need to purchase several measurement tools, which can be expensive when added up. These tools are also not directly connected to the telemedicine application. In order for the doctor to know the measurement results, the patient needs to either type it in the chat or manually input it in the application. Meanwhile, for home care patients, doctors or nurses usually make home visits according to the scheduled time. The more routine or frequent the home visits, the more time-consuming it becomes.
Routine monitoring of vital signs is mandatory for inpatients. It is usually accompanied by tools called the Early Warning Score (EWS), which help the medical team recognize early symptoms of patient deterioration [5], [6]. It is important to pay particular attention to patients who are treated outside the hospital, especially those who are suffering from certain diseases and are susceptible to changes. The application of EWS for patients outside the hospital is highly recommended because it not only helps detect patient condition deterioration [7] but also effectively identifies which patients need hospital admission [8]–[10].

Previous research has developed a remote vital sign monitoring system using self-designed wearable sensors [11]–[15]. These prototypes of wearable sensors generally use microcontroller boards as data collection platforms and use wired transmission between the sensor and processing board [16]. The example is shown in Figure 1. However, as they are still in prototype form, some of them lack packaging or have a relatively large size. In addition, the cost of large-scale development is not yet known.

![Image](https://example.com/image1)

Figure 1. An Example of a Self-Designed Sensor Prototype [12]

Other research focuses on utilizing commercially available wearable sensors. For example, a research has developed a telemedicine system for COVID-19 patients [17]. Their research was continued, and the system was able to reduce the number of nurse visits to patients' rooms, especially for vital sign examinations [18]. Another study developed a COVID-19 patient monitoring system in hospital isolation rooms using two types of commercial wearable sensors (Figure 2) [19]. They developed mobile and web applications equipped with EWS calculations. Research [17]–[19] uses commercial wearable sensors, however, the chosen sensor devices tend to be specific tools for measuring one or several specific vital signs, so patients need to use several sensor devices at once to obtain complete vital sign values. There are various types of wearable sensors available for monitoring vital signs, such as patches, clothing-based monitors, chest straps, and wristbands [7]. Wrist-worn commercial wearable sensors like smartwatches are the most commonly available on the market [20], [21]. Besides being small and comfortable to wear, they are affordable and capable of measuring multi-parameter vital signs. Smartwatch vendors usually provide mobile applications that can collect vital sign measurement data and display its history. However, data from vendor applications cannot be accessed by third parties, which means that others cannot use it to monitor vital signs. In other words, these applications are typically for personal use.

![Image](https://example.com/image2)

Figure 2. An Example of Commercial Wearable Sensors [19]

Smartwatches are a suitable and affordable option for monitoring vital signs, especially for patients who receive home care. With just one device, multi-parameter vital signs can be measured without limiting the patient's movement. However, to use smartwatches as a tool in vital sign monitoring, an application is needed that can capture and read smartwatch data, has EWS calculation, and allows data to be monitored remotely. Therefore, this research focuses on developing a telemedicine system integrated with smartwatches for home care patients. The proposed system consists of a mobile application used as a gateway and acts as a patient monitor, and a web application used by patients, patient families, doctors, and nurses. They can use the web application to communicate and view patient vital sign information along with their EWS scores. The purpose of this research is to complete the function of the existing telemedicine application in Indonesia, specifically by providing vital sign data remotely.

2. **Research Methods**

This research uses Rapid Application Development (RAD) in system development. The phase flow is shown in Figure 3. The requirements planning phase is carried out to identify the system's purpose and requirements. In this phase, a comparative analysis is conducted to understand the information structure, flow, and features commonly used in existing telemedicine applications that have been implemented in the real world. The results are used as a knowledge base, and applicable aspects are taken into account in the system being built. Besides comparative analysis,
The goal is for the developed mobile application to have similarity with the patient monitor in terms of simple layout but can clearly and easily convey vital sign values. After collecting requirements, they are transformed into the Unified Modeling Language (UML), which outlines the features and user interactions.

The output from requirements planning is continued to the design phase, which produces the database structure and interface design. The application development phase is carried out using a local web server that produces a prototype of the mobile and web applications. Finally, internal testing is carried out using the black-box method. Testing is carried out with participants acting as patients and doctors who are instructed to use the application’s functionality. The process and results of working on requirements, design, application development, and implementation will be explained further in the Results and Discussions section.

The type of EWS used in this research is the National Early Warning Score (NEWS). Table 1 shows the scoring system for physiological or vital sign parameters based on NEWS [23]. Each vital sign is given a score of 0-3, so the total score determines the risk level [10] and how often vital sign measurements are recommended according to NEWS thresholds and triggers.

The device used to capture vital sign data is a commercial wearable sensor in the form of a smartwatch: the SKMEI E66 than can be seen in Figure 4. This smartwatch is used to measure respiration rate, oxygen saturation, temperature, blood pressure, and heart rate. Meanwhile, supplemental oxygen and the level of consciousness are manually inputted into the mobile application. These two do not change as often as other vital signs.

The patient monitor instrument has undergone rigorous testing and is specifically designed for the purpose of monitoring the patient’s critical state. However, in terms of a meticulous domiciliary healthcare framework that is accessible to a multitude of individuals, the selected timepiece is deemed apt for such an undertaking.

3. Results and Discussions

The system proposed in this research is developed with the aim of: 1) enabling routine vital sign monitoring of patients even when they are being treated at home with affordable devices; and 2) facilitating communication between patients, their families, and medical teams through a consultation.
feature while also viewing the patient's vital sign information and the risk category of their health condition in the form of EWS.

3.1 Results

The requirement planning phase began by analyzing similar products or applications in telemedicine applications in Indonesia, such as KlikDokter, Alodokter, and Halodoc. We also analyzed telemedicine applications that are integrated with commercial wearable sensors based in Europe and America, such as VitalConnect, Huma, and Current Health. From the comparative analysis, we took what could be applied to the system that will be developed, so we can define the main functionalities of this system as shown in Table 2 and Table 3.

Table 2. Main Functionalities of the Web Application

<table>
<thead>
<tr>
<th>Main Functionalities of the Web Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register for an account</td>
</tr>
<tr>
<td>Register as a home care patient</td>
</tr>
<tr>
<td>Send consultation messages</td>
</tr>
<tr>
<td>Accept patients as home care patients</td>
</tr>
<tr>
<td>View the home care patient monitoring dashboard</td>
</tr>
<tr>
<td>View historical vital sign data for home care patients</td>
</tr>
<tr>
<td>End the monitoring period of home care patients</td>
</tr>
<tr>
<td>View the statistics of home care patients</td>
</tr>
</tbody>
</table>

Table 3. Main Functionalities of the Mobile Application

<table>
<thead>
<tr>
<th>Main Functionalities of the Mobile Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update vital sign data</td>
</tr>
<tr>
<td>Send vital sign data to web server</td>
</tr>
</tbody>
</table>

The main functionalities are further processed into system requirements and modeled into a use case diagram. In the following, we present some of the use case diagrams that are related to monitoring vital signs. Figure 5 shows the use case diagram of the web application in the Home Care Patient module, while Figure 6 shows the use case diagram of the mobile application.

Figure 5 depicts the use case diagram of the web application, specifically in the Home Care Patient module. Patients can register as home care patients and communicate with doctors and nurses through consultation messages. Doctors and nurses have the authority to accept patients into the home care program, view and filter patient lists based on monitoring status, search patients by ID or name, access historical vital sign data, respond to consultation messages, and end the monitoring periods.

Figure 6 shows the use case diagram of the mobile application, which serves as a gateway for collecting vital sign data from wearable sensors and transmitting it to the web server. The mobile application system is sending the vital sign data to the web server. Patients can view their latest vital sign data and update vital sign data measurements. In the event of a sudden or emergent situation, the patient's family or caregivers may update the level of consciousness or additional oxygen values.

Other outputs of the requirement planning phase are activity diagrams that show the overall flow of the system. Some activity diagrams related to the vital sign monitoring of home care patients are shown.

DOI: https://doi.org/10.29207/resti.v7i6.5126

Creative Commons Attribution 4.0 International License (CC BY 4.0)
below. Figure 6 shows the flow from the patient wanting to register for home care to being accepted as a home care patient, while Figure 7 shows the flow of vital sign data acquisition.

Figure 6. Activity Diagram of Home Care Patient Registration

Figure 7. Activity Diagram of Home Care Patient Registration

Figure 7 illustrates the activity diagram depicting the step-by-step process of home care patient registration within the system. The registration procedure begins with a face-to-face consultation between the patient and the doctor to discuss the home care program. If the doctor recommends or states that the patient is eligible, the patient is encouraged to register through the web application. The patient then opens the eVitaCare landing page. If the patient has registered and completed the home care monitoring program before, the patient just needs to log in. If they are new to this program, they will create an account first. After logging in, the patient navigates to the Home Care Registration menu and fills out the form. The system stores the data in the database. Then a confirmation message is displayed, prompting the patient to await an email notification. On the nurses’ and doctors’ sides, they will review the patient’s registration data and approve the registration. Finally, upon successful confirmation, the patient enters the monitoring phase, marked by the dispatch of an email notification.

Figure 8 shows an activity diagram that outlines the process of acquiring vital sign data. The process begins with the patient installing the mobile application via a link provided in the acceptance email. After logging in using their credentials (the same ones they use to log in to the web application), the patient connects their smartwatch and smartphone through the app. Once connectivity is confirmed, the patient can click a button to update data and trigger the data acquisition process. This action prompts the mobile application system to request vital sign data from the smartwatch. The collected data is then transmitted to the web server through the REST API and stored in the database. Finally, the mobile application system displays the measured values on the user interface.

Figure 7 shows the flow of vital sign data acquisition.

Figure 8. Activity Diagram of Vital Sign Data Acquisition

Next is the design phase. As an overview, the proposed system consists of several components, including: 1) a smartwatch capable of measuring multi-parameter vital signs; 2) a mobile application installed on a smartphone as a gateway; 3) a web server; and 4) a web application. The system architecture can be seen in Figure 8.
This page shows an overview of the system architecture. During the patient's stay at home and during the monitoring period, the patient wears a smartwatch and connects it to the mobile application via Bluetooth. The patient clicks the refresh button as a trigger for the mobile application to request the latest measurement data from the smartwatch and then upload it to the web server. The measurement data that has been stored in the database can finally be accessed remotely by doctors and nurses.

The result of the database structure design used in this system is shown in Figure 10.

Figure 11 shows the home care patient registration page after the patient has registered an account and has logged in. In the first section, there is personal information about the patient. In the next section, there is information about the patient contact, and the last is a drop-down to choose the doctor who has advised the patient to take the home care program. The doctor who suggested the patient register for the home care program will be identified as the patient-responsible doctor.

The next step is for the doctor or nurse to review the registration data on the Home Care Patient menu (Figure 12).

Figure 12 shows all patients that have registered for the home care program in all monitoring statuses. On this page, doctors and nurses can edit the patient-responsible doctor, view the registration data and patient details, and change the monitoring status. If the registration data is valid, the patient's status will be changed to “Monitoring” by doctors or nurses, which means the patient is in the monitoring period. An acceptance email will be sent to the patient's email, and each patient will be lent a smartwatch. Patients are encouraged to connect the smartwatch to the mobile application and measure their vital signs every day at home.

This section will explain the interface for the flow during the monitoring period. Doctors and nurses monitor by observing the dashboard page (Figure 13).
Figure 13. Dashboard Page (Doctor and Nurse Roles)

Figure 13 shows the dashboard page, which displays patients filtered by patients who are in "Monitoring" status, with one home care patient represented as one card. All patients that are currently monitored can be easily seen along with the risk of their condition.

Figure 14. Home Care Patient Card Component

Figure 14 shows the details of the home care patient card component. Each card contains the name of the patient, an indicator icon for consultation messages, the NEWS score and risk category, and the five main vital sign values. When one of the home care patient names is clicked, the web application will direct to the patient's detail page.

Figure 15. Home Care Patient Detail Page (Latest Data)

Figure 15 shows the home care patient detail page. It contains the patient's personal information, recommended vital sign measurement frequency information according to NEWS regulations, and the latest vital sign data.

Figure 16. Home Care Patient Detail Page (Historical Data)

Figure 16 shows the home care patient detail page too, but now in the tab Historical Data. It contains historical vital sign data in the form of records by time and date.

Figure 17. Home Care Patient Detail Page (Consultation)

Figure 17 is the home care patient detail page on the tab Consultation that allows patients or their families to communicate with nurses or doctors.

Figure 18. Report Page
The next part is the interface for functionality to view the statistics of the number of home care patients.

Figure 18 shows the Report page, which provides information on the number of home care patients in that month and statistics on the number of home care patients in chart form based on the selected time range.

The following are some of the results of the mobile application interface.

Figure 19 shows the home page that appears when the application is connected to the smartwatch. It contains the last updated data on the patient’s vital sign data. The button on the top right is the button to trigger data acquisition to ask for and collect data from the smartwatch.

Figure 20 is the home page interface in the landscape version. The layout is designed to resemble a patient monitor layout.

The final phase is implementation. In this phase, we test the application. The individuals comprising the testing team are not directly engaged in the development of the application program code, as their primary focus is centered on the systematic design and analysis of the system at hand. The results of testing the functionalities of both applications are shown in Table 4 and Table 5.

<table>
<thead>
<tr>
<th>Functional Test of Web Application</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register for an account</td>
<td>Passed</td>
</tr>
<tr>
<td>Register as a home care patient</td>
<td>Passed</td>
</tr>
<tr>
<td>Send consultation messages</td>
<td>Passed</td>
</tr>
<tr>
<td>Accept patients as home care patients</td>
<td>Passed</td>
</tr>
<tr>
<td>View the home care patient monitoring dashboard</td>
<td>Passed</td>
</tr>
<tr>
<td>View historical vital sign data for home care patients</td>
<td>Passed</td>
</tr>
<tr>
<td>End the monitoring period of home care patients</td>
<td>Passed</td>
</tr>
<tr>
<td>View the statistics of home care patients</td>
<td>Passed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functional Test of Mobile Application</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>View the latest vital sign data</td>
<td>Passed</td>
</tr>
<tr>
<td>Update vital sign data</td>
<td>Passed</td>
</tr>
<tr>
<td>Update level of consciousness value</td>
<td>Passed</td>
</tr>
<tr>
<td>Update additional oxygen value</td>
<td>Passed</td>
</tr>
<tr>
<td>Send vital sign data to web server</td>
<td>Passed</td>
</tr>
</tbody>
</table>

At the stage of implementation, numerous hindrances are encountered. The initial hurdle arises during the implementation of mobile applications, specifically when deploying them on certain categories of smartphones. This issue arises due to the lack of compatibility between the mobile application being built and the operating system environment on said smartphones. Another challenge arises when extracting vital sign data from the watch using the mobile application. In order to accomplish this, the user must first activate the specific vital sign they wish to measure on the watch, following which the new value of the vital sign can be updated. Obstacles pertaining to monitoring patients’ vital signs at home have not been identified, as testing is currently being conducted under ideal conditions where the watch and mobile app are always in close proximity.

3.2 Discussions

Based on the test results, the vital sign monitoring system has functioned according to its expected functionality. The advantage of this system is that it uses an affordable commercial smartwatch. Patients only need to use one small device that does not interfere with their daily activities. In addition, the mobile application interface and the web application dashboard page are designed to resemble the color, layout, and information structure of the bedside patient monitor to facilitate users easier observation and monitoring of vital sign values.

The outcomes presented in the segment on results and testing interface are discernments that can be applied by a developer in the creation of a home care patient monitoring system that merges interlinked mobile applications with vital sign sensors in the shape of a...
This paper proposes a vital sign monitoring system that can be used as an alternative to manual vital sign measurement for home care patients. The system consists of a smartwatch as a vital sign data acquisition tool connected to a mobile application installed on the patient’s smartphone, a web server, and a web application. This system allows vital sign data and the risk of patient condition deterioration to be available remotely. Doctors and nurses can enroll patients and monitor changes in vital signs remotely. Home care patients and their families can also send consultation messages and find out vital sign values and the level of patient health condition risk. Because it uses an affordable smartwatch, this vital sign monitoring system can save costs compared to using available vital sign monitoring devices.

At the moment of execution, various challenges encountered in this investigation have been cited. The primary hindrances encompass the acquisition of essential physiological information, which is not achievable autonomously sans patient intervention. Consequently, real-time monitoring becomes unattainable. Within mobile applications, there remain two critical parameters for Early Warning Score (EWS) computations that necessitate manual configuration, specifically oxygen consumption and patient consciousness, as these necessitate external input to ascertain their respective magnitudes.

For future work, other researchers can search for smartwatches or wearable sensor options that can measure and send vital sign data in real-time with an easy-to-use SDK. The consultation feature can also be improved by using a chat framework so consultations can be done in real-time.

Acknowledgment
This research is the result of a final project in the Computer Science Department, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University.

References
[7] S. Soon, H. Svavarsdottir, C. Downey, and D. G. Jayne,

