
 Accepted: 18-02-2023 | Received in revised: 01-05-2023 | Published: 02-06-2023

628

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI
(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 7 No. 3 (2023) 628 - 636 ISSN Media Electronic: 2580-0760

Modified Q-Learning Algorithm for Mobile Robot Real-Time Path

Planning using Reduced States

Hidayat1, Agus Buono2, Karlisa Priandana3*, Sri Wahjuni4
1,2,3,4Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University

1Department of Computer Engineering, Faculty of Engineering and Computer Science, Universitas Komputer
Indonesia

1dedehidayat@apps.ipb.ac.id, 2agusbuono@apps.ipb.ac.id, 3karlisa@apps.ipb.ac.id, 4my_juni04@apps.ipb.ac.id

Abstract

Path planning is an essential algorithm in any autonomous mobile robot, including agricultural robots. One of the
reinforcement learning methods that can be used for mobile robot path planning is the Q-Learning algorithm. However, the
conventional Q-learning method explores all possible robot states in order to find the most optimum path. Thus, this method

requires extensive computational cost especially when there are considerable grids to be computed. This study modified the
original Q-Learning algorithm by removing the impassable area, so that these areas are not considered as grids to be
computed. This modified Q-Learning method was simulated as path finding algorithm for autonomous mobile robot operated
at the Agribusiness and Technology Park (ATP), IPB University. Two simulations were conducted to compare the original Q-
Learning method and the modified Q-Learning method. The simulation results showed that the state reductions in the modified
Q-Learning method can lower the computation cost to 50.71% from the computation cost of the original Q-Learning method,
that is, an average computation time of 25.74s as compared to 50.75s, respectively. Both methods produce similar number of
states as the robot’s optimal path, i.e. 56 states, based on the reward obtained by the robot while selecting the path. However,

the modified Q-Learning algorithm is capable of finding the path to the destination point with a minimum learning rate
parameter value of 0.2 when the discount factor value is 0.9.

Keywords: agricultural robot; mobile robot; path planning; Q-Learning algorithm.

1. Introduction

The rapid development of agricultural technology is

moving towards the Agriculture 4.0 paradigm, where

digitization, automation, and artificial intelligence play
a crucial role in crop production [1]–[4]. The

advancement in digital technology, automation, and

artificial intelligence is transforming agricultural

management processes, leading to increased yield and

sustainable agricultural production. However, this shift

from manual technology to mechanical and automated

devices presents both challenges and opportunities,

such as the use of agricultural robots [5]–[8].

Agricultural robots are utilized to achieve sustainable

production results, reduce high labor costs, and

minimize the risk of accidents for farm workers.

The use of agricultural robots has been implemented in
various tasks, including planting, harvesting,

monitoring, spraying, and pruning. In planting, the

robot aims to plant crops precisely for optimal growth.

In harvesting, robots are used to carefully and

accurately harvest crops to ensure high-quality results.

Monitoring plants with robots can help in managing the

growth process. In spraying, robots can perform faster

and more efficiently than humans. Pruning can also be
performed with precision using robots. The

performance of agricultural robots depends on both the

type of crops and the task being performed. For

instance, some studies have focused on general tasks for

robots in agriculture (such as [9], [10]), while others

have focused on specific tasks such as harvesting [11],

[12]. Additionally, research has also been conducted to

find solutions for mobile robot navigation problems in

agriculture [13], [14].

In the field of agricultural robots, autonomous

navigation is a crucial aspect, as discussed in [13], [15].

The process of autonomous navigation involves four
key requirements: localization, mapping, motion

control, and path planning. Path planning involves

finding a sequence of translational and rotational

movements from the starting point to the destination

while avoiding obstacles in the working space [16].

 Hidayat, Agus Buono, Karlisa Priandana, Sri Wahjuni

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4949

Creative Commons Attribution 4.0 International License (CC BY 4.0)

629

Robotic path planning research is a significant area of

study within robotics, particularly in the context of

mobile robots operating in agricultural environments

[6], [17]. In terms of topology, route planning refers to

calculating the optimal sequence of visiting nodes,

whereas path planning involves determining a collision-

free path between a specified start and target point,

taking into account topology, geometry, or trajectories.

In recent years, there has been a lot of research in the

field of robot path planning. Many intelligent
optimization algorithms have been proposed to provide

the robot with the ability to optimize its path through

multiple iterations. For example, algorithms such as the

ant colony algorithm, genetic algorithm, particle swarm

optimization (PSO), and others inspired by natural

phenomena or biological groups have been used to

improve the optimization of the robot's path. In studies

such as [18] by Wu et al. and [19] by Wang, the

improved ant colony algorithm was used to avoid

obstacles and find the optimal path. Sarkar et al. in [20]

and Hao et al. in [21] proposed improved genetic
algorithms to solve the path planning problem by

generating an effective path. Dewang et al. in [22],

Fernandes et al. in [23], and Hilli et al. in [24] used PSO

algorithms to avoid obstacles and reach the target more

quickly than conventional PSO algorithms. In addition,

other algorithms such as fuzzy algorithms [25]–[27],

A* algorithms [28], improved artificial fish swarm

algorithms [29], modified probabilistic roadmap

algorithms [30], artificial potential field algorithms

[31], and hybrid algorithms [32]–[34] have also been

applied in robot path planning. Additionally, in recent

years, reinforcement learning has been used to solve

path planning problems, as seen in studies [35]–[38].

One of the currently used reinforcement learning

algorithms in path planning is the Q-Learning

algorithm. It is a classical reinforcement learning

algorithm that has been applied in several studies for

path planning [38]–[44]. These studies have shown that

the Q-Learning algorithm is able to produce optimal

path planning for mobile robots. The Q-Learning

algorithm is often used for path planning on moving

robots [39]–[41]. However, its traditional approach of

exploring all states can lead to long computation times,
especially when dealing with a large number of grids in

unknown environment [39]–[42]. For example, the

study results cited in [39] claim that their improved Q-

learning method is able to reduce computing time

required to achieve convergence, but the resulting route

is not as smooth as with conventional Q-learning. This

study aims to modify the original Q-Learning algorithm

by eliminating inaccessible areas, thereby reducing the

number of states to be calculated. Different from the

previous studies, it is expected that the modification

proposed in this paper maintains the ability of the Q-

learning algorithm in finding the optimum path while
reducing its computation time. By eliminating states, it

is expected that smaller parameter values can be used to

find the path from the starting point to the target point.

Furthermore, this study also analyzes the effects of the

learning rate and discount factor parameters to the

success of the Q-learning algorithm in finding the

optimum path. In this paper, the modified Q-Learning

algorithm is tested as a pathfinding algorithm for

autonomous robots at the Agribusiness and Technology

Park (ATP) IPB University, and the results are

compared with the conventional Q-Learning methods.

2. Research Methods

2.1 Q-Learning Algorithm

The Q-Learning algorithm is a type of reinforcement

learning (RL) method, first introduced by Watkins [45].

It uses the concepts of rewards and penalties to explore

an unstructured environment. In this method, important

terms include state, action, agent, reward, and penalty.

The agent, such as a mobile robot, moves through the

environment. The state (S) represents the position of the

agent in the environment, and the action (A) represents

the movement made by the agent from one state to
another. Rewards are positive values that increase the Q

value for each correct action taken by the agent in a

particular state, while penalties are negative values that

decrease the Q value for each incorrect action.

The agent gains experience through exploration and

exploitation. Exploration involves randomly selecting

actions in the early stages of the learning process,

allowing the agent to visit all state-action pairs in the

environment without considering the current state.

Exploitation, on the other hand, involves the use of the

agent's acquired knowledge to select actions that

maximize the reward from the current state. In Q-
Learning, it is not necessary to have a complete model

of the environment, as the transition probability matrix

for all states and actions can be learned over time.

The Q-Learning algorithm uses a two-dimensional Q

table to store the Q values for each state and potential

action. The algorithm selects the action with the highest

benefit by searching the Q table. This method has been

proven to be effective in medium-sized applications,

such as robot path planning and chess games. The

equation (1) below is the Q-Learning equation by

Watkins [46] that updates the Q value.

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1 , 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] (1)

The 𝑆𝑡 represents a state or the position of agent (A) at

time t. The 𝐴𝑡 represents the action taken by the agent

in state 𝑆𝑡 . The reward 𝑅𝑡+1 is the value received after

the agent performs action 𝐴𝑡+1 in state 𝑆𝑡 . The 𝑄(𝑆𝑡 , 𝐴𝑡)

is the value of Q generated by action 𝐴𝑡 in state 𝑆𝑡 . The

gamma (γ) or discount factor is a parameter that
determines the importance of future rewards. The value

of γ ranges from 0 to 1. If γ is close to zero, the agent

will only consider immediate rewards. If γ is close to

 Hidayat, Agus Buono, Karlisa Priandana, Sri Wahjuni

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4949

Creative Commons Attribution 4.0 International License (CC BY 4.0)

630

one, the agent will consider future rewards more heavily

and be willing to delay immediate rewards. The alpha

(α) or learning rate is a parameter that sets the speed at

which convergence is achieved. The value of α can

range from 0 to 1. If α is close to one, the agent will

make aggressive adjustments to the Q value, leading to

fluctuating results that may not converge. On the other

hand, if α is close to zero, adjustments will be slower

and it will take more time to converge. The Q-Learning

algorithm is described in procedure 1 [46].

Procedure 1. Description of The Q-Learning algorithm

Q-Learning Algorithm
1: Initiate 𝑄(𝑠, 𝑎), for all 𝑠 ∈ 𝒮+, 𝑎 ∈ 𝒜(𝑠)
2: Looping for each episode:

3: Initiate 𝑆
4: Loop for each step in the episode:

5: Select 𝐴 from 𝑆 by using policy from 𝑄

6: Take action 𝐴, observe 𝑅, 𝑆′

7: 𝑄(𝑆, 𝐴)𝑄(𝑆, 𝐴) + [R +  𝑚𝑎𝑥𝑎 𝑄(𝑆′, 𝑎) – 𝑄(𝑆, 𝐴)]

8: 𝑆  𝑆′

9: Until 𝑆 is target

Initially, the Q-table is initialized with all values of

𝑄(𝑠, 𝑎) set to zero. The variables 𝑠 and 𝑎 refer to the

state and action, respectively, which are elements of the

entire state space (𝒮+) and all possible actions of that

state 𝒜(𝑠). The initial state S is then determined. In the

looping section, the Q value is updated.

The process of the loop starts by selecting an action (A)

to be performed on the current state (S). The action

selection is based on the policy derived from Q. The

next step is to take action A and observe the resulting

reward (R) and the next state (S'). The value of Q in the

Q-table is then updated using Equation (1). Finally, the

current state (S) is updated to the value of the next state
(S'). The looping process continues until the current

state is the target state.

The Q-Learning process is depicted in Figure 1. At the

starting point, the agent is in state 𝑆𝑡 , which is labeled

as the initial state (n). The agent will then choose one of

the available actions, A, for state 𝑆𝑡 based on the policy

derived from Q 𝛾𝑚𝑎𝑥𝑄(𝑆𝑡+1 , 𝑎)
𝑎

) where a is an element

of all possible actions of that state. This action will
transition the agent to the next state, 𝑆𝑡+1, and yield a

reward value of 𝑅𝑡+1. This process will continue until a

converged Q value is achieved.

Figure 1. Illustration of the Q-Learning process

2.2 Modification of Q-Learning Algorithm

In this study, a modification to the original Q-Learning

algorithm is done by reducing the number of possible

states to be computed. In the original Q-learning

algorithm, all the robot’s working area are divided into

some grids and considered in the Q-learning

computation. Grids that can be traversed by the robot

have higher rewards, whereas grids that are impassable

are given punishment (minus rewards, for example).

Considering that the impassable grids are static, i.e. due
to the existence of buildings or other static obstacles, it

is therefore unnecessary to even consider these grids as

the possible states. Thus, removing these grids reduces

the computation cost of the algorithm while maintaining

the ability of the algorithm to find the optimum path.

As a case study, we conducted a simulation for an

agricultural mobile robot operated at the Agribusiness

and Technological Park (ATP), IPB University, Bogor,

Indonesia. Here, the mobile robot was given a task to

find the most optimum path to bring the agricultural

yields from one of the greenhouses to the warehouse in
ATP IPB. The considered area is from the front of the

greenhouse and stretched towards the warehouse. The

area was mapped and divided into grids with a 1𝑥1𝑚2

scale, resulting in a total of 936 states, as shown in

Figure 2. Here, gray grids represent buildings and static

obstacles that the mobile robot cannot pass through and

white grids represent areas that the mobile robot can

traverse. As can be seen from the figure, there are 552

gray states and 384 white states. The starting point was

at state L915, located at one of the greenhouse doors,

and the goal point was at state L015, located at one of

the warehouse areas. The original Q-Learning

algorithm considers all the grids into its computation,

and we refer this simulation as Scenario-1.

Figure 2. Original Q-Learning Method (Scenario-1): all grids in

ATP IPB are computed as the possible robot states – white grids

represent the traversable grids and gray grids represent the

impassable grids

In the next simulation, we propose a modified Q-

Learning algorithm by introducing the reduced states,

that is, by removing the grids that cannot be traversed

 Hidayat, Agus Buono, Karlisa Priandana, Sri Wahjuni

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4949

Creative Commons Attribution 4.0 International License (CC BY 4.0)

631

by the mobile robot, i.e., the gray grids. The “new”

considered grids are given new numbering/indexing as

shown in Figure 3 and we refer this simulation as

Scenario-2. Using the new grid indexing, the starting

point in Scenario-2 is at L383 which is similar to L915

in Scenario-1, and the goal point is at L001 which is

similar to L015 in Scenario-1.

Figure 3. Modified Q-Learning Method (Scenario 2): only the

traversable grids in ATP IPB are considered as the possible robot

states

3. Results and Discussions

The Q-Learning algorithm simulations for both

Scenario-1 (original Q-Learning algorithm) and

Scenario-2 (modified Q-Learning algorithm) were

conducted on a computer with an Intel Core i5-3570

processor, a clock speed of 3.4GHz and a 4GB of RAM.
The software used was a Jupyter Notebook with the

Python 3.9 programming language. The learning rate

(α) used was 0.9, and the discount factor (γ) was varied

from 0.1 to 0.9. Additionally, a fixed value of discount

factor (γ) (0.9) and a learning rate (α) that varied

between 0.1 to 0.9 were also used. The two variations

of these values were applied to both Scenario-1 and

Scenario-2, with a total of 250000 iterations. Each test

was conducted ten times.

3.1 Simulation using a fixed learning rate value

The results of the simulation test with a fixed learning
rate (α) of 0.9 can be seen in Table 1 (for Scenario-1)

and Table 2 (for Scenario-2). The computation time was

measured to determine the amount of time taken from

the start of program execution until the optimal path

was obtained. For discount factor (γ) values of 0.0, 0.1,

0.2, 0.3, and 0.4, the Q-Learning algorithm failed to find

a path from the starting point to the target point because

these settings did not converge during the iteration

process. The optimal path is first discovered when the

value of the γ parameter is 0.5 or greater. This indicates

that the minimum value of the discount factor for the

algorithm to discover a path under the condition that the

learning rate parameter is 0.9 is 0.5.

Table 1. The computation time with a fixed learning rate (0.9) and

250000 iterations on Scenario-1

No. Computation time (second)

 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

1 50.45 50.42 50.41 50.59 50.67

2 50.37 50.39 50.54 50.82 50.31

3 50.43 50.57 50.44 50.70 50.71

4 51.06 50.53 50.79 50.64 50.41

5 51.37 50.51 50.32 50.63 50.79

6 50.56 50.73 51.55 51.11 51.47

7 50.43 50.55 50.57 50.67 50.80

8 50.47 51.54 50.82 51.30 50.43

9 50.42 50.58 50.48 51.30 50.48

10 50.54 50.30 51.44 50.19 51.26

𝒙̅ 50.61 50.61 50.74 50.79 50.73

Table 2. The computation time with a fixed learning rate (0.9) and

250000 iterations on Scenario-2

No. Computation time (second)

 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

1 25.48 25.76 25.73 25.70 25.69

2 25.72 25.67 25.73 25.72 25.73

3 25.61 25.83 25.60 25.60 25.71

4 25.67 25.58 25.64 25.71 25.70

5 25.61 25.79 25.61 25.57 25.66

6 25.73 25.71 25.74 25.66 25.74

7 26.26 25.70 25.65 25.69 25.75

8 25.58 25.65 25.74 25.75 25.77

9 25.80 25.66 25.70 25.62 25.75

10 25.79 26.19 25.82 25.63 25.73

𝒙̅ 25.72 25.76 25.70 25.67 25.72

In Table 1, the shortest computation time to find the

optimal path in Scenario-1 was 50.19 seconds, which

was achieved when the discount factor was 0.8. The

longest computation time was 51.55 seconds, which

was achieved when the discount factor was 0.7. The

average computation time in Scenario-1 was 50.70

seconds. In Scenario-2, the shortest computation time to

find the optimal path was 25.48 seconds, which was

achieved when the discount factor was 0.5. The longest

computation time was 26.26 seconds, also when the

discount factor was 0.5. The average computation time

in Scenario-2 was 25.71 seconds.

Figure 4. Differences in computational time trends to find the

optimal path using a variety of discount factor (γ) values with a

fixed learning rate () of 0.9 and 250000 iterations in the Scenario-2

and Scenario-1 areas

 Hidayat, Agus Buono, Karlisa Priandana, Sri Wahjuni

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4949

Creative Commons Attribution 4.0 International License (CC BY 4.0)

632

The differences in computation time for finding the

optimal path using different values of the discount

factor (γ) with a fixed learning rate (α) of 0.9 and

250000 iterations in both scenarios can be seen in

Figure 4. The computation time in Scenario-2 was faster

than in Scenario-1, which aligns with previous studies,

such as [39]–[41], which found that the more states

there are, the longer it takes to reach convergence.

3.2 Simulation using a fixed discount factor

The simulation results using a fixed discount factor
value of 0.9 are presented in Table 3 (for Scenario-1)

and Table 4 (for Scenario-2).

Table 3. The computation time with a fixed discount factor (0.9) and

250000 iterations on Scenario-1

No. Computation time (second)

  = 0.5  = 0.6  = 0.7  = 0.8  = 0.9

1 50.47 50.26 50.70 51.36 50.67

2 50.66 50.42 50.65 51.56 50.31

3 51.37 51.31 50.73 50.57 50.71

4 50.82 50.82 51.37 50.83 50.41

5 50.50 51.66 50.64 50.40 50.79

6 50.58 51.61 50.33 50.45 51.47

7 50.58 50.56 50.58 50.87 50.80

8 50.94 51.21 50.51 50.22 50.43

9 50.94 51.71 50.94 50.55 50.48

10 50.80 50.52 51.07 50.74 51.26

𝒙̅ 50.77 51.01 50.75 50.76 50.73

Table 4. The computation time with a fixed discount factor (0.9) and

250000 iterations on Scenario-2

No Computation time (second)

 =

0.2

 =

0.3

 =

0.4

 =

0.5

 =

0.6

 =

0.7

 =

0.8

 =

0.9

1 25.89 25.61 25.83 25.68 25.84 25.65 26.22 25.69

2 25.66 25.76 25.71 25.74 25.70 25.66 25.67 25.73

3 26.06 26.19 25.63 26.24 25.84 25.71 25.67 25.71

4 25.85 25.69 25.64 25.67 25.58 25.79 25.72 25.70

5 25.99 25.49 25.60 25.55 25.64 25.77 25.73 25.66

6 25.83 25.70 25.68 25.72 25.64 25.71 25.74 25.74

7 26.00 25.59 25.72 25.72 25.63 25.71 25.66 25.75

8 25.94 25.71 25.70 25.74 25.72 25.76 25.70 25.77

9 25.88 26.17 25.85 25.65 25.69 25.75 25.74 25.75

10 25.73 25.70 25.57 25.60 25.65 25.72 25.99 25.73

𝒙̅ 25.88 25.76 25.69 25.73 25.70 25.72 25.78 25.72

In Scenario-1, when the learning rate (α) values are 0.0,

0.1, 0.2, 0.3, and 0.4, the Q-Learning algorithm cannot

find the optimal path from the starting point to the target

point. The optimal path starts to emerge when the
learning rate value is 0.5. The shortest computation time

to obtain the optimal path in Scenario-1 is 50.22

seconds, which is achieved when the learning rate value

is 0.8. The longest computation time, 51.71 seconds, is

obtained when the learning rate value is 0.6. The

average computation time in Scenario-1 is 50.80

seconds. In Scenario-2, the optimal path is first

discovered when the value of the α parameter is 0.2 or

greater. This indicates that the minimum value of the

learning rate for the algorithm to discover a path,

provided that the discount factor parameter is 0.9, is 0.2.

The shortest computation time to obtain the optimal

path in Scenario-2 is 25.49 seconds, which is achieved

when the learning rate value is 0.3. The longest

computation time, 26.24 seconds, is obtained when the

learning rate value is 0.5. The average computation time

in Scenario-2 is 25.75 seconds.

The difference in computation time to find the optimal
path using different learning rate (α) values with a fixed

discount factor (γ) of 0.9 and 250000 iterations in

scenario-2 and Scenario-1 areas is shown in Figure 5.

The computation time in Scenario-2 is faster than the

computation time in Scenario-1, which is consistent

with other studies [39]–[41].

Figure 5. Differences in computational time trends to find the

optimal path using a variety of learning rate () values with

a fixed discount factor (γ) values of 0.9 and 250000

iterations in the Scenario-1 and Scenario-2 areas

4.3 The path planning results and the computation time
for the original Q-Learning algorithm and the modified

Q-Learning algorithm

The results of optimum path for the original Q-Learning

algorithm (Scenario-1) are shown in Table 5.

Meanwhile, the obtained optimum path for the modified

Q-Learning algorithm (Scenario-2) are shown in Table

6. These results showed that both the original and

modified Q-Learning algorithms produce the same

number of states as the optimum path: 56 states.

Variations are observed in the chosen 56 states as

shaded gray in Table 5 and Table 6, with a maximum of

five state variations.

Table 5 and Table 6 also showed the comparison of the

computation time between the two algorithms. The

original Q-Learning algorithm (Scenario-1) required

50.75s in average to find the most optimum path,

whereas the modified Q-Learning algorithm (Scenario-

2) required only 25.74s. These results indicate that the

modified Q-Learning algorithm reduces the

computation time by 50.71% while maintaining the

algorithm’s ability to find the most optimum path.

 Hidayat, Agus Buono, Karlisa Priandana, Sri Wahjuni

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4949

Creative Commons Attribution 4.0 International License (CC BY 4.0)

633

Table 5. Original Q-Learning algorithm: the obtained optimum path and its computation cost

 γ Total

states

Sequence of states from L915 to L015 Computation

time (s)

0.5 0.9 56 'L915', 'L889', 'L890', 'L891', 'L892', 'L866', 'L867', 'L868', 'L842', 'L843', 'L817', 'L791',

'L792', 'L793', 'L794', 'L768', 'L769', 'L743', 'L744', 'L745', 'L746', 'L747', 'L748', 'L722',

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L540', 'L514', 'L513', 'L487', 'L486', 'L460',

'L434', 'L408', 'L382', 'L381', 'L355', 'L329', 'L328', 'L302', 'L276', 'L250', 'L224', 'L198',

'L172', 'L146', 'L120', 'L094', 'L068', 'L042', 'L016', 'L015'

50.61

0.6 0.9 56 'L915', 'L889', 'L890', 'L891', 'L892', 'L893', 'L867', 'L868', 'L869', 'L843', 'L844', 'L845',

'L819', 'L793', 'L794', 'L795', 'L796', 'L797', 'L798', 'L772', 'L746', 'L747', 'L748', 'L722',

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L565', 'L539', 'L513', 'L512', 'L486', 'L460',

'L434', 'L408', 'L407', 'L381', 'L355', 'L354', 'L328', 'L302', 'L276', 'L250', 'L224', 'L198',

'L172', 'L146', 'L120', 'L094', 'L068', 'L042', 'L016', 'L015'

51.61

0.7 0.9 56 'L915', 'L889', 'L890', 'L864', 'L865', 'L839', 'L813', 'L814', 'L788', 'L762', 'L763', 'L737',

'L738', 'L739', 'L740', 'L741', 'L742', 'L743', 'L744', 'L745', 'L746', 'L747', 'L748', 'L722',

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L540', 'L514', 'L488', 'L462', 'L461', 'L435',

'L409', 'L383', 'L357', 'L331', 'L305', 'L279', 'L253', 'L252', 'L226', 'L200', 'L174', 'L148',

'L147', 'L121', 'L095', 'L069', 'L043', 'L017', 'L016', 'L015'

50.74

0.8 0.9 56 'L915', 'L889', 'L890', 'L891', 'L892', 'L893', 'L867', 'L841', 'L815', 'L816', 'L817', 'L818',

'L819', 'L793', 'L767', 'L768', 'L742', 'L743', 'L744', 'L745', 'L746', 'L747', 'L748', 'L722',

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L540', 'L514', 'L488', 'L462', 'L436', 'L410',

'L384', 'L358', 'L332', 'L306', 'L280', 'L254', 'L228', 'L202', 'L176', 'L175', 'L149', 'L123',

'L097', 'L071', 'L070', 'L044', 'L043', 'L017', 'L016', 'L015'

50.79

0.9 0.9 56 'L915', 'L889', 'L890', 'L891', 'L892', 'L893', 'L894', 'L868', 'L869', 'L843', 'L844', 'L845',

'L846', 'L847', 'L848', 'L849', 'L823', 'L797', 'L771', 'L772', 'L773', 'L774', 'L748', 'L722',

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L540', 'L514', 'L488', 'L487', 'L461', 'L435',

'L409', 'L383', 'L382', 'L356', 'L330', 'L304', 'L303', 'L277', 'L276', 'L250', 'L224', 'L198',

'L172', 'L146', 'L120', 'L094', 'L068', 'L042', 'L016', 'L015'

50.73

0.9 0.8 56 'L915', 'L889', 'L863', 'L864', 'L865', 'L839', 'L813', 'L814', 'L815', 'L816', 'L817', 'L818',

'L792', 'L766', 'L767', 'L741', 'L742', 'L743', 'L744', 'L745', 'L746', 'L747', 'L748', 'L722',

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L565', 'L539', 'L538', 'L512', 'L511', 'L485',

'L459', 'L433', 'L407', 'L381', 'L355', 'L329', 'L303', 'L277', 'L251', 'L225', 'L199', 'L173',

'L147', 'L121', 'L095', 'L069', 'L068', 'L042', 'L041', 'L015'

50.76

0.9 0.7 56 'L915', 'L889', 'L890', 'L864', 'L865', 'L866', 'L867', 'L868', 'L842', 'L843', 'L817', 'L791',

'L792', 'L793', 'L794', 'L795', 'L769', 'L770', 'L771', 'L745', 'L746', 'L747', 'L748', 'L722',

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L540', 'L539', 'L513', 'L512', 'L486', 'L460',

'L434', 'L408', 'L407', 'L381', 'L355', 'L329', 'L328', 'L302', 'L276', 'L250', 'L224', 'L198',

'L172', 'L146', 'L120', 'L094', 'L068', 'L042', 'L041', 'L015'

50.75

0.9 0.6 56 'L915', 'L889', 'L890', 'L891', 'L892', 'L866', 'L867', 'L841', 'L842', 'L843', 'L817', 'L818',

'L819', 'L820', 'L794', 'L795', 'L796', 'L797', 'L771', 'L772', 'L773', 'L747', 'L748', 'L722',

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L565', 'L539', 'L513', 'L512', 'L511', 'L485',

'L459', 'L433', 'L407', 'L381', 'L355', 'L329', 'L303', 'L277', 'L251', 'L225', 'L199', 'L173',

'L172', 'L146', 'L120', 'L094', 'L068', 'L042', 'L041', 'L015'

51.01

0.9 0.5 56 'L915', 'L889', 'L863', 'L837', 'L838', 'L839', 'L840', 'L841', 'L842', 'L816', 'L817', 'L791',

'L792', 'L766', 'L767', 'L768', 'L769', 'L770', 'L744', 'L745', 'L746', 'L747', 'L748', 'L722',

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L565', 'L539', 'L538', 'L512', 'L486', 'L460',

'L434', 'L408', 'L382', 'L356', 'L330', 'L304', 'L278', 'L252', 'L226', 'L225', 'L199', 'L173',

'L147', 'L146', 'L120', 'L094', 'L068', 'L042', 'L041', 'L015'

50.77

 𝒙̅ 50.75

Table 6. Modified Q-Learning algorithm: the obtained optimum path and its computation cost

 γ Total

states

Sequence of states from L383 to L001 Computation

time (s)

0.9 0.5 56 'L383', 'L375', 'L363', 'L337', 'L311', 'L285', 'L259', 'L233', 'L234', 'L235', 'L236', 'L237',

'L238', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L136', 'L128',

'L120', 'L112', 'L104', 'L096', 'L088', 'L080', 'L072', 'L064', 'L056', 'L048', 'L040', 'L032',

'L024', 'L016', 'L006', 'L005', 'L004', 'L003', 'L002', 'L001'

25.72

0.9 0.6 56 'L383', 'L375', 'L363', 'L337', 'L311', 'L285', 'L259', 'L233', 'L234', 'L235', 'L236', 'L237',

'L238', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L136', 'L128',

'L120', 'L112', 'L104', 'L096', 'L088', 'L080', 'L072', 'L064', 'L056', 'L048', 'L040', 'L032',

'L024', 'L016', 'L006', 'L005', 'L004', 'L003', 'L002', 'L001'

25.76

0.9 0.7 56 'L383', 'L375', 'L363', 'L337', 'L311', 'L285', 'L259', 'L233', 'L234', 'L235', 'L236', 'L237',

'L238', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L136', 'L128',

'L120', 'L112', 'L104', 'L096', 'L088', 'L080', 'L072', 'L064', 'L056', 'L048', 'L040', 'L032',

'L024', 'L016', 'L006', 'L005', 'L004', 'L003', 'L002', 'L001'

25.70

 Hidayat, Agus Buono, Karlisa Priandana, Sri Wahjuni

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4949

Creative Commons Attribution 4.0 International License (CC BY 4.0)

634

 γ Total

states

Sequence of states from L383 to L001 Computation

time (s)

0.9 0.8 56 'L383', 'L375', 'L363', 'L364', 'L365', 'L366', 'L367', 'L368', 'L342', 'L343', 'L317', 'L318',

'L319', 'L320', 'L321', 'L322', 'L323', 'L297', 'L298', 'L299', 'L273', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L145', 'L135',

'L127', 'L126', 'L118', 'L110', 'L109', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060',

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L011', 'L001'

25.67

0.9 0.9 56 'L383', 'L375', 'L376', 'L377', 'L365', 'L366', 'L367', 'L368', 'L342', 'L343', 'L317', 'L291',

'L265', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L175', 'L165', 'L155', 'L145', 'L135',

'L134', 'L126', 'L118', 'L110', 'L102', 'L094', 'L093', 'L092', 'L084', 'L076', 'L068', 'L060',

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L002', 'L001'

25.72

0.2 0.9 56 'L383', 'L375', 'L376', 'L377', 'L378', 'L379', 'L380', 'L368', 'L342', 'L316', 'L290', 'L264',

'L238', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L185', 'L184', 'L183', 'L182', 'L172', 'L162',

'L152', 'L142', 'L132', 'L124', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060',

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L011', 'L001'

25.88

0.3 0.9 56 'L383', 'L375', 'L363', 'L337', 'L311', 'L285', 'L259', 'L260', 'L234', 'L235', 'L236', 'L237',

'L238', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L185', 'L184', 'L174', 'L173', 'L172', 'L162',

'L152', 'L142', 'L132', 'L124', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060',

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L011', 'L001'

25.76

0.4 0.9 56 'L383', 'L375', 'L376', 'L377', 'L378', 'L379', 'L367', 'L368', 'L342', 'L343', 'L344', 'L345',

'L346', 'L347', 'L321', 'L295', 'L269', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L185', 'L184', 'L183', 'L182', 'L172', 'L162',

'L152', 'L142', 'L132', 'L124', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060',

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L002', 'L001'

25.69

0.5 0.9 56 'L383', 'L375', 'L376', 'L377', 'L378', 'L379', 'L380', 'L368', 'L342', 'L343', 'L344', 'L345',

'L346', 'L347', 'L348', 'L322', 'L323', 'L297', 'L298', 'L272', 'L246', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L136', 'L135',

'L127', 'L126', 'L125', 'L117', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060',

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L011', 'L001'

25.73

0.6 0.9 56 'L383', 'L375', 'L363', 'L364', 'L365', 'L366', 'L367', 'L368', 'L342', 'L343', 'L317', 'L318',

'L292', 'L266', 'L267', 'L268', 'L269', 'L270', 'L271', 'L272', 'L273', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L185', 'L184', 'L174', 'L173', 'L172', 'L162',

'L152', 'L142', 'L132', 'L124', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060',

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L002', 'L001'

25.70

0.7 0.9 56 'L383', 'L375', 'L363', 'L364', 'L365', 'L366', 'L367', 'L368', 'L342', 'L343', 'L317', 'L318',

'L292', 'L266', 'L267', 'L268', 'L269', 'L270', 'L271', 'L272', 'L273', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L185', 'L184', 'L174', 'L173', 'L172', 'L162',

'L152', 'L142', 'L132', 'L124', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060',

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L002', 'L001'

25.72

0.8 0.9 56 'L383', 'L375', 'L376', 'L377', 'L378', 'L379', 'L380', 'L368', 'L342', 'L343', 'L344', 'L345',

'L346', 'L347', 'L348', 'L322', 'L323', 'L297', 'L298', 'L272', 'L246', 'L247', 'L248', 'L222',

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L136', 'L135',

'L127', 'L126', 'L125', 'L117', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060',

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L011', 'L001'

25.78

 𝒙̅ 25.74

4. Conclusion

This study proposes a modified version of Q-Learning

algorithm by removing the impassable grids from the

Q-Learning computation. Justification of the modified

Q-Learning algorithm was done by some simulations,
where both the original and the modified Q-Learning

algorithm were used to find the most optimum path for

an autonomous agricultural robot in Agribusiness and

Technology Park (ATP), IPB University, Bogor,

Indonesia. In this case, the agricultural robot was given

a task to find the most optimum path in order to bring

some agricultural yields from one of the greenhouses to

the warehouse in ATP IPB. Simulation results showed

that both the original and modified Q-Learning

algorithms produced the same number of states as the

optimum path for the robot, i.e., 56 states. However, the

modified Q-Learning algorithm is capable of finding

the path to the destination point with a minimum

learning rate parameter value of 0.2 when the discount

factor value is 0.9. This demonstrates that providing a

small learning rate parameter value in the modified Q-
Learning algorithm can still result in the discovery of

the optimal path. Furthermore, the results showed that

the original Q-Learning algorithm required an average

of 50.75s to find the optimal path, whereas the modified

Q-Learning algorithm required an average of 25.74s. In

other words, the proposed modified Q-Learning

algorithm reduced the computation cost to 50.71% from

the original Q-Learning algorithm, while maintaining

the ability of the algorithm in finding the most optimum

path. Further study will focus on the improvement of

modified Q-Learning algorithm so that the algorithm

 Hidayat, Agus Buono, Karlisa Priandana, Sri Wahjuni

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4949

Creative Commons Attribution 4.0 International License (CC BY 4.0)

635

can produce some different routes as the robot’s

optimum paths. This is important to avoid collisions

between robots, especially when there are multiple

agricultural robots that need to perform the same task at

a given time.

References

[1] S. S. Valle and J. Kienzle, Agriculture 4.0 - Agricultural

robotics and automated equipment for sustainable crop

production, vol. 24. Rome: FAO, 2020.

[2] M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “Enhancing

smart farming through the applications of Agriculture 4.0

technologies,” Int. J. Intell. Networks, vol. 3, no. July, pp. 150–

164, 2022, doi: 10.1016/j.ijin.2022.09.004.

[3] M. B. Ahsan, G. Leifeng, F. Mohammad, S. Azam, B. Xu, and

S. J. Rayhan, “Barriers, Challenges, and Requirements for ICT

Usage among Sub-Assistant Agricultural Officers in

Bangladesh : Toward Sustainability in Agriculture,”

Sustainability, vol. 15, no. 782, pp. 1–29, 2023.

[4] S. Ruzzante, R. Labarta, and A. Bilton, “Adoption of

agricultural technology in the developing world: A meta-

analysis of the empirical literature,” World Dev., vol. 146, p.

105599, 2021, doi: 10.1016/j.worlddev.2021.105599.

[5] L. F. P. Oliveira, A. P. Moreira, and M. F. Silva, “Advances in

agriculture robotics: A state-of-the-art review and challenges

ahead,” Robotics, vol. 10, no. 2, pp. 1–31, 2021, doi:

10.3390/robotics10020052.

[6] L. C. Santos, F. N. Santos, E. J. Solteiro Pires, A. Valente, P.

Costa, and S. Magalhaes, “Path planning for ground robots in

agriculture: A short review,” in 2020 IEEE International

Conference on Autonomous Robot Systems and Competitions,

ICARSC 2020, 2020, pp. 61–66, doi:

10.1109/ICARSC49921.2020.9096177.

[7] S. Chakraborty, D. Elangovan, P. L. Govindarajan, M. F.

ELnaggar, M. M. Alrashed, and S. Kamel, “A Comprehensive

Review of Path Planning for Agricultural Ground Robots,”

Sustain., vol. 14, no. 15, pp. 1–19, 2022, doi:

10.3390/su14159156.

[8] C. Cheng, J. Fu, H. Su, and L. Ren, “Recent Advancements in

Agriculture Robots: Benefits and Challenge,” Machines, vol.

11, no. 48, pp. 1–24, 2023.

[9] L. F. P. Oliveira, M. F. Silva, and A. P. Moreira, “Agricultural

robotics: A state of the art survey,” Robot. Hum. Life- Proc.

23rd Int. Conf. Climbing Walk. Robot. Support Technol. Mob.

Mach. CLAWAR 2020, no. August, pp. 279–286, 2020, doi:

10.13180/clawar.2020.24-26.08.44.

[10] S. Fountas, N. Mylonas, I. Malounas, E. Rodias, C. H. Santos,

and E. Pekkeriet, “Agricultural robotics for field operations,”

Sensors (Switzerland), vol. 20, no. 9, pp. 1–27, 2020, doi:

10.3390/s20092672.

[11] X. Yu et al., “A lab-customized autonomous humanoid apple

harvesting robot,” Comput. Electr. Eng., vol. 96, p. 107459,

Dec. 2021, doi: 10.1016/j.compeleceng.2021.107459.

[12] K. Zhang, K. Lammers, P. Chu, Z. Li, and R. Lu, “System

design and control of an apple harvesting robot,”

Mechatronics, vol. 79, Nov. 2021, doi:

10.1016/j.mechatronics.2021.102644.

[13] X. Gao et al., “Review of wheeled mobile robots’ navigation

problems and application prospects in agriculture,” IEEE

Access, vol. 6, pp. 49248–49268, 2018, doi:

10.1109/ACCESS.2018.2868848.

[14] J. Chen, H. Qiang, J. Wu, G. Xu, and Z. Wang, “Navigation

path extraction for greenhouse cucumber-picking robots using

the prediction-point Hough transform,” Comput. Electron.

Agric., vol. 180, Jan. 2021, doi:

10.1016/j.compag.2020.105911.

[15] Y. Bai, B. Zhang, N. Xu, J. Zhou, J. Shi, and Z. Diao, “Vision-

based navigation and guidance for agricultural autonomous

vehicles and robots: A review,” Comput. Electron. Agric., vol.

205, Feb. 2023, doi: 10.1016/j.compag.2022.107584.

[16] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic

approaches in robot path planning: A survey,” Rob. Auton.

Syst., vol. 86, pp. 13–28, 2016, doi:

10.1016/j.robot.2016.08.001.

[17] M. S. Abed, O. F. Lutfy, and Q. F. Al-Doori, “A Review on

Path Planning Algorithms for Mobile Robots,” Eng. Technol.

J., vol. 39, no. 05, pp. 804–820, 2021.

[18] L. Wu, X. Huang, J. Cui, C. Liu, and W. Xiao, “Modified

adaptive ant colony optimization algorithm and its application

for solving path planning of mobile robot,” Expert Syst. Appl.,

vol. 215, p. 119410, Apr. 2023, doi:

10.1016/j.eswa.2022.119410.

[19] H. Tian, “Research on Robot Path Planning Based on Improved

Ant Colony Algorithm,” Int. J. Comput. Sci. Math., vol. 13, no.

1, pp. 80–92, 2021, doi: 10.1088/1742-6596/1992/3/032050.

[20] R. Sarkar, D. Barman, and N. Chowdhury, “Domain

knowledge based genetic algorithms for mobile robot path

planning having single and multiple targets,” J. King Saud

Univ. - Comput. Inf. Sci., vol. 34, no. 7, pp. 4269–4283, 2022,

doi: 10.1016/j.jksuci.2020.10.010.

[21] K. Hao, J. Zhao, Z. Li, Y. Liu, and L. Zhao, “Dynamic path

planning of a three-dimensional underwater AUV based on an

adaptive genetic algorithm,” Ocean Eng., vol. 263, p. 112421,

Nov. 2022, doi: 10.1016/j.oceaneng.2022.112421.

[22] H. S. Dewang, P. K. Mohanty, and S. Kundu, “A Robust Path

Planning for Mobile Robot Using Smart Particle Swarm

Optimization,” Procedia Comput. Sci., vol. 133, pp. 290–297,

2018, doi: 10.1016/j.procs.2018.07.036.

[23] P. B. Fernandes, R. C. L. Oliveira, and J. V. Fonseca Neto,

“Trajectory planning of autonomous mobile robots applying a

particle swarm optimization algorithm with peaks of

diversity,” Appl. Soft Comput., vol. 116, p. 108108, Feb. 2022,

doi: 10.1016/j.asoc.2021.108108.

[24] A. Al Hilli, M. Al-Ibadi, A. M. Alfadhel, S. H. Abdulshaheed,

and A. H. Hadi, “Optimal path finding in stochastic quasi-

dynamic environments using particle swarm optimization,”

Expert Syst. Appl., vol. 186, p. 115706, Dec. 2021, doi:

10.1016/j.eswa.2021.115706.

[25] M. Samadi Gharajeh and H. B. Jond, “An intelligent approach

for autonomous mobile robots path planning based on adaptive

neuro-fuzzy inference system,” Ain Shams Eng. J., vol. 13, no.

1, p. 101491, 2022, doi: 10.1016/j.asej.2021.05.005.

[26] C. Ntakolia, S. Moustakidis, and A. Siouras, “Autonomous

path planning with obstacle avoidance for smart assistive

systems,” Expert Syst. Appl., vol. 213, p. 119049, Mar. 2023,

doi: 10.1016/j.eswa.2022.119049.

[27] R. Zhen, P. Lv, Z. Shi, and G. Chen, “A novel fuzzy multi-

factor navigational risk assessment method for ship route

optimization in costal offshore wind farm waters,” Ocean

Coast. Manag., vol. 232, p. 106428, Feb. 2023, doi:

10.1016/j.ocecoaman.2022.106428.

[28] O. O. Martins, A. A. Adekunle, O. M. Olaniyan, and B. O.

Bolaji, “An Improved multi-objective a-star algorithm for path

planning in a large workspace: Design, Implementation, and

Evaluation,” Sci. African, vol. 15, p. e01068, 2022, doi:

10.1016/j.sciaf.2021.e01068.

[29] L. Zhao, F. Wang, and Y. Bai, “Route planning for autonomous

vessels based on improved artificial fish swarm algorithm,”

Ships Offshore Struct., pp. 1–10, Jun. 2022, doi:

10.1080/17445302.2022.2081423.

[30] S. Kumar and A. Sikander, “A modified probabilistic roadmap

algorithm for efficient mobile robot path planning,” Eng.

Optim., pp. 1–19, Aug. 2022, doi:

10.1080/0305215X.2022.2104840.

[31] M. S. Das, S. Sanyal, and S. Mandal, “Navigation of Multiple

Robots in Formative Manner in an Unknown Environment

using Artificial Potential Field Based Path Planning

Algorithm,” Ain Shams Eng. J., vol. 13, 2022, doi:

10.1016/j.asej.2021.101675.

[32] F. Sui, X. Tang, Z. Dong, X. Gan, P. Luo, and J. Sun,

“ACO+PSO+A*: A bi-layer hybrid algorithm for multi-task

path planning of an AUV,” Comput. Ind. Eng., vol. 175, p.

 Hidayat, Agus Buono, Karlisa Priandana, Sri Wahjuni

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4949

Creative Commons Attribution 4.0 International License (CC BY 4.0)

636

108905, Jan. 2023, doi: 10.1016/j.cie.2022.108905.

[33] B. Sahu, P. Kumar Das, and R. Kumar, “A Modified Cuckoo

Search Algorithm implemented with SCA and PSO for Multi-

robot Cooperation and Path Planning,” Cogn. Syst. Res., Jan.

2023, doi: 10.1016/j.cogsys.2023.01.005.

[34] F. Gul, I. Mir, D. Alarabiat, H. M. Alabool, L. Abualigah, and

S. Mir, “Implementation of bio-inspired hybrid algorithm with

mutation operator for robotic path planning,” J. Parallel

Distrib. Comput., vol. 169, pp. 171–184, Nov. 2022, doi:

10.1016/j.jpdc.2022.06.014.

[35] G. Kulathunga, “A Reinforcement Learning based Path

Planning Approach in 3D Environment,” Procedia Comput.

Sci., vol. 212, pp. 152–160, 2021, doi:

10.1016/j.procs.2022.10.217.

[36] F. Gismondi, C. Possieri, and A. Tornambe, “A solution to the

path planning problem via algebraic geometry and

reinforcement learning,” J. Franklin Inst., vol. 359, no. 2, pp.

1732–1754, Jan. 2022, doi: 10.1016/j.jfranklin.2021.12.003.

[37] X. Zhang, S. Xia, X. Li, and T. Zhang, “Multi-objective

particle swarm optimization with multi-mode collaboration

based on reinforcement learning for path planning of

unmanned air vehicles,” Knowledge-Based Syst., vol. 250, p.

109075, Aug. 2022, doi: 10.1016/j.knosys.2022.109075.

[38] E. S. Low, P. Ong, C. Y. Low, and R. Omar, “Modified Q-

learning with distance metric and virtual target on path

planning of mobile robot,” Expert Syst. Appl., vol. 199, p.

117191, Aug. 2022, doi: 10.1016/j.eswa.2022.117191.

[39] E. S. Low, P. Ong, and K. C. Cheah, “Solving the optimal path

planning of a mobile robot using improved Q-Learning,” Rob.

Auton. Syst., vol. 115, pp. 143–161, 2019, doi:

10.1016/j.robot.2019.02.013.

[40] S. Gu, “An algorithm for path planning based on improved Q-

Learning,” in The Genetic and Evolutionary Computing, 2019,

pp. 20–29, doi: https://doi.org/10.1007/978-981-15-3308-2_3.

[41] S. Gu and G. Mao, “An improved Q-Learning algorithm for

path planning in maze environments,” in Intelligent Systems

and Applications, 2020, vol. 1251, no. 2, pp. 545–557, doi:

https://doi.org/10.1007/978-3-030-55187-2_40.

[42] M. Zhao, H. Lu, S. Yang, and F. Guo, “The experience-

memory Q-Learning algorithm for robot path planning in

unknown environment,” IEEE Access, vol. 8, pp. 47824–

47844, 2020, doi: 10.1109/ACCESS.2020.2978077.

[43] C. Yan and X. Xiang, “A Path Planning Algorithm for UAV

Based on Improved Q-Learning,” in 2nd International

Conference on Robotics and Automation Sciences (ICRAS),

2018, pp. 46–50, doi: 10.1109/ICRAS.2018.8443226.

[44] T. Zhang, X. Huo, S. Chen, B. Yang, and G. Zhang, “Hybrid

path planning of a quadrotor UAV based on Q-Learning

algorithm,” in Chinese Control Conference (CCC), 2018, vol.

2018-July, pp. 5415–5419, doi:

10.23919/ChiCC.2018.8482604.

[45] C. J. C. H. Watkins, “Technical Note Q-Learning,” Mach.

Learn., vol. 8, pp. 279–292, 1992, doi:

10.1109/ICCC49849.2020.9238991.

[46] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

introduction, Second. Cambridge, Massachusetts: MIT Press,

2018.

