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Abstract  

Path planning is an essential algorithm in any autonomous mobile robot, including agricultural robots. One of the 
reinforcement learning methods that can be used for mobile robot path planning is the Q-Learning algorithm. However, the 
conventional Q-learning method explores all possible robot states in order to find the most optimum path. Thus, this method 

requires extensive computational cost especially when there are considerable grids to be computed. This study modified the 
original Q-Learning algorithm by removing the impassable area, so that these areas are not considered as grids to be 
computed. This modified Q-Learning method was simulated as path finding algorithm for autonomous mobile robot operated 
at the Agribusiness and Technology Park (ATP), IPB University. Two simulations were conducted to compare the original Q-
Learning method and the modified Q-Learning method. The simulation results showed that the state reductions in the modified 
Q-Learning method can lower the computation cost to 50.71% from the computation cost of the original Q-Learning method, 
that is, an average computation time of 25.74s as compared to 50.75s, respectively. Both methods produce similar number of 
states as the robot’s optimal path, i.e. 56 states, based on the reward obtained by the robot while selecting the path. However, 

the modified Q-Learning algorithm is capable of finding the path to the destination point with a minimum learning rate 
parameter value of 0.2 when the discount factor value is 0.9. 

Keywords: agricultural robot; mobile robot; path planning; Q-Learning algorithm.

1. Introduction  

The rapid development of agricultural technology is 

moving towards the Agriculture 4.0 paradigm, where 

digitization, automation, and artificial intelligence play 
a crucial role in crop production [1]–[4]. The 

advancement in digital technology, automation, and 

artificial intelligence is transforming agricultural 

management processes, leading to increased yield and 

sustainable agricultural production. However, this shift 

from manual technology to mechanical and automated 

devices presents both challenges and opportunities, 

such as the use of agricultural robots [5]–[8]. 

Agricultural robots are utilized to achieve sustainable 

production results, reduce high labor costs, and 

minimize the risk of accidents for farm workers. 

The use of agricultural robots has been implemented in 
various tasks, including planting, harvesting, 

monitoring, spraying, and pruning. In planting, the 

robot aims to plant crops precisely for optimal growth. 

In harvesting, robots are used to carefully and 

accurately harvest crops to ensure high-quality results. 

Monitoring plants with robots can help in managing the 

growth process. In spraying, robots can perform faster 

and more efficiently than humans. Pruning can also be 
performed with precision using robots. The 

performance of agricultural robots depends on both the 

type of crops and the task being performed. For 

instance, some studies have focused on general tasks for 

robots in agriculture (such as [9], [10]), while others 

have focused on specific tasks such as harvesting [11], 

[12]. Additionally, research has also been conducted to 

find solutions for mobile robot navigation problems in 

agriculture [13], [14]. 

In the field of agricultural robots, autonomous 

navigation is a crucial aspect, as discussed in [13], [15]. 

The process of autonomous navigation involves four 
key requirements: localization, mapping, motion 

control, and path planning. Path planning involves 

finding a sequence of translational and rotational 

movements from the starting point to the destination 

while avoiding obstacles in the working space [16]. 



 Hidayat, Agus Buono, Karlisa Priandana, Sri Wahjuni  

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)  

DOI: https://doi.org/10.29207/resti.v7i3.4949 

Creative Commons Attribution 4.0 International License (CC BY 4.0) 

629 

 

 

Robotic path planning research is a significant area of 

study within robotics, particularly in the context of 

mobile robots operating in agricultural environments 

[6], [17]. In terms of topology, route planning refers to 

calculating the optimal sequence of visiting nodes, 

whereas path planning involves determining a collision-

free path between a specified start and target point, 

taking into account topology, geometry, or trajectories. 

In recent years, there has been a lot of research in the 

field of robot path planning. Many intelligent 
optimization algorithms have been proposed to provide 

the robot with the ability to optimize its path through 

multiple iterations. For example, algorithms such as the 

ant colony algorithm, genetic algorithm, particle swarm 

optimization (PSO), and others inspired by natural 

phenomena or biological groups have been used to 

improve the optimization of the robot's path. In studies 

such as [18] by Wu et al. and [19] by Wang, the 

improved ant colony algorithm was used to avoid 

obstacles and find the optimal path. Sarkar et al. in [20]  

and Hao et al. in [21] proposed improved genetic 
algorithms to solve the path planning problem by 

generating an effective path. Dewang et al. in [22], 

Fernandes et al. in [23], and Hilli et al. in [24] used PSO 

algorithms to avoid obstacles and reach the target more 

quickly than conventional PSO algorithms. In addition, 

other algorithms such as fuzzy algorithms [25]–[27], 

A* algorithms [28], improved artificial fish swarm 

algorithms [29], modified probabilistic roadmap 

algorithms [30], artificial potential field algorithms 

[31], and hybrid algorithms [32]–[34] have also been 

applied in robot path planning. Additionally, in recent 

years, reinforcement learning has been used to solve 

path planning problems, as seen in studies [35]–[38]. 

One of the currently used reinforcement learning 

algorithms in path planning is the Q-Learning 

algorithm. It is a classical reinforcement learning 

algorithm that has been applied in several studies for 

path planning [38]–[44]. These studies have shown that 

the Q-Learning algorithm is able to produce optimal 

path planning for mobile robots. The Q-Learning 

algorithm is often used for path planning on moving 

robots [39]–[41]. However, its traditional approach of 

exploring all states can lead to long computation times, 
especially when dealing with a large number of grids in 

unknown environment [39]–[42]. For example, the 

study results cited in [39] claim that their improved Q-

learning method is able to reduce computing time 

required to achieve convergence, but the resulting route 

is not as smooth as with conventional Q-learning. This 

study aims to modify the original Q-Learning algorithm 

by eliminating inaccessible areas, thereby reducing the 

number of states to be calculated. Different from the 

previous studies, it is expected that the modification 

proposed in this paper maintains the ability of the Q-

learning algorithm in finding the optimum path while 
reducing its computation time. By eliminating states, it 

is expected that smaller parameter values can be used to 

find the path from the starting point to the target point. 

Furthermore, this study also analyzes the effects of the 

learning rate and discount factor parameters to the 

success of the Q-learning algorithm in finding the 

optimum path. In this paper, the modified Q-Learning 

algorithm is tested as a pathfinding algorithm for 

autonomous robots at the Agribusiness and Technology 

Park (ATP) IPB University, and the results are 

compared with the conventional Q-Learning methods. 

2. Research Methods 

2.1 Q-Learning Algorithm 

The Q-Learning algorithm is a type of reinforcement 

learning (RL) method, first introduced by Watkins [45]. 

It uses the concepts of rewards and penalties to explore 

an unstructured environment. In this method, important 

terms include state, action, agent, reward, and penalty. 

The agent, such as a mobile robot, moves through the 

environment. The state (S) represents the position of the 

agent in the environment, and the action (A) represents 

the movement made by the agent from one state to 
another. Rewards are positive values that increase the Q 

value for each correct action taken by the agent in a 

particular state, while penalties are negative values that 

decrease the Q value for each incorrect action. 

The agent gains experience through exploration and 

exploitation. Exploration involves randomly selecting 

actions in the early stages of the learning process, 

allowing the agent to visit all state-action pairs in the 

environment without considering the current state. 

Exploitation, on the other hand, involves the use of the 

agent's acquired knowledge to select actions that 

maximize the reward from the current state. In Q-
Learning, it is not necessary to have a complete model 

of the environment, as the transition probability matrix 

for all states and actions can be learned over time. 

The Q-Learning algorithm uses a two-dimensional Q 

table to store the Q values for each state and potential 

action. The algorithm selects the action with the highest 

benefit by searching the Q table. This method has been 

proven to be effective in medium-sized applications, 

such as robot path planning and chess games. The 

equation (1) below is the Q-Learning equation by 

Watkins [46] that updates the Q value. 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡 ) + 𝛼[𝑅𝑡+1 +  𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1 , 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)]  (1) 

The 𝑆𝑡   represents a state or the position of agent (A) at 

time t. The 𝐴𝑡 represents the action taken by the agent 

in state 𝑆𝑡 . The reward 𝑅𝑡+1 is the value received after 

the agent performs action 𝐴𝑡+1 in state 𝑆𝑡 . The 𝑄(𝑆𝑡 , 𝐴𝑡) 

is the value of Q generated by action 𝐴𝑡 in state 𝑆𝑡 . The 

gamma (γ) or discount factor is a parameter that 
determines the importance of future rewards. The value 

of γ ranges from 0 to 1. If γ is close to zero, the agent 

will only consider immediate rewards. If γ is close to 
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one, the agent will consider future rewards more heavily 

and be willing to delay immediate rewards. The alpha 

(α) or learning rate is a parameter that sets the speed at 

which convergence is achieved. The value of α can 

range from 0 to 1. If α is close to one, the agent will 

make aggressive adjustments to the Q value, leading to 

fluctuating results that may not converge. On the other 

hand, if α is close to zero, adjustments will be slower 

and it will take more time to converge. The Q-Learning 

algorithm is described in procedure 1 [46]. 

Procedure 1. Description of The Q-Learning algorithm 

Q-Learning Algorithm 
1: Initiate 𝑄(𝑠, 𝑎), for all 𝑠 ∈ 𝒮+, 𝑎 ∈ 𝒜(𝑠) 
2: Looping for each episode: 

3: Initiate 𝑆 
4: Loop for each step in the episode: 

5:    Select 𝐴 from 𝑆 by using policy from 𝑄   

6:    Take action 𝐴, observe 𝑅, 𝑆′ 

7:    𝑄(𝑆, 𝐴)𝑄(𝑆, 𝐴) + [R +  𝑚𝑎𝑥𝑎  𝑄(𝑆′, 𝑎) –  𝑄(𝑆, 𝐴)]  

8:    𝑆  𝑆′ 

9: Until 𝑆 is target 

Initially, the Q-table is initialized with all values of 

𝑄(𝑠, 𝑎) set to zero. The variables 𝑠 and 𝑎 refer to the 

state and action, respectively, which are elements of the 

entire state space (𝒮+) and all possible actions of that 

state 𝒜(𝑠). The initial state S is then determined. In the 

looping section, the Q value is updated. 

The process of the loop starts by selecting an action (A) 

to be performed on the current state (S). The action 

selection is based on the policy derived from Q. The 

next step is to take action A and observe the resulting 

reward (R) and the next state (S'). The value of Q in the 

Q-table is then updated using Equation (1). Finally, the 

current state (S) is updated to the value of the next state 
(S'). The looping process continues until the current 

state is the target state. 

The Q-Learning process is depicted in Figure 1. At the 

starting point, the agent is in state 𝑆𝑡 , which is labeled 

as the initial state (n). The agent will then choose one of 

the available actions, A, for state 𝑆𝑡  based on the policy 

derived from Q 𝛾𝑚𝑎𝑥𝑄(𝑆𝑡+1 ,  𝑎)
𝑎

) where a is an element 

of all possible actions of that state. This action will 
transition the agent to the next state, 𝑆𝑡+1, and yield a 

reward value of 𝑅𝑡+1. This process will continue until a 

converged Q value is achieved. 

 

Figure 1. Illustration of the Q-Learning process 

2.2 Modification of Q-Learning Algorithm 

In this study, a modification to the original Q-Learning 

algorithm is done by reducing the number of possible 

states to be computed. In the original Q-learning 

algorithm, all the robot’s working area are divided into 

some grids and considered in the Q-learning 

computation. Grids that can be traversed by the robot 

have higher rewards, whereas grids that are impassable 

are given punishment (minus rewards, for example). 

Considering that the impassable grids are static, i.e. due 
to the existence of buildings or other static obstacles, it 

is therefore unnecessary to even consider these grids as 

the possible states. Thus, removing these grids reduces 

the computation cost of the algorithm while maintaining 

the ability of the algorithm to find the optimum path. 

As a case study, we conducted a simulation for an 

agricultural mobile robot operated at the Agribusiness 

and Technological Park (ATP), IPB University, Bogor, 

Indonesia. Here, the mobile robot was given a task to 

find the most optimum path to bring the agricultural 

yields from one of the greenhouses to the warehouse in 
ATP IPB. The considered area is from the front of the 

greenhouse and stretched towards the warehouse. The 

area was mapped and divided into grids with a 1𝑥1𝑚2 

scale, resulting in a total of 936 states, as shown in 

Figure 2. Here, gray grids represent buildings and static 

obstacles that the mobile robot cannot pass through and 

white grids represent areas that the mobile robot can 

traverse. As can be seen from the figure, there are 552 

gray states and 384 white states. The starting point was 

at state L915, located at one of the greenhouse doors, 

and the goal point was at state L015, located at one of 

the warehouse areas. The original Q-Learning 

algorithm considers all the grids into its computation, 

and we refer this simulation as Scenario-1.  

 

Figure 2. Original Q-Learning Method (Scenario-1): all grids in 

ATP IPB are computed as the possible robot states – white grids 

represent the traversable grids and gray grids represent the 

impassable grids 

In the next simulation, we propose a modified Q-

Learning algorithm by introducing the reduced states, 

that is, by removing the grids that cannot be traversed 
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by the mobile robot, i.e., the gray grids. The “new” 

considered grids are given new numbering/indexing as 

shown in Figure 3 and we refer this simulation as 

Scenario-2. Using the new grid indexing, the starting 

point in Scenario-2 is at L383 which is similar to L915 

in Scenario-1, and the goal point is at L001 which is 

similar to L015 in Scenario-1. 

 

Figure 3. Modified Q-Learning Method (Scenario 2): only the 

traversable grids in ATP IPB are considered as the possible robot 

states 

3.  Results and Discussions 

The Q-Learning algorithm simulations for both 

Scenario-1 (original Q-Learning algorithm) and 

Scenario-2 (modified Q-Learning algorithm) were 

conducted on a computer with an Intel Core i5-3570 

processor, a clock speed of 3.4GHz and a 4GB of RAM. 
The software used was a Jupyter Notebook with the 

Python 3.9 programming language. The learning rate 

(α) used was 0.9, and the discount factor (γ) was varied 

from 0.1 to 0.9. Additionally, a fixed value of discount 

factor (γ) (0.9) and a learning rate (α) that varied 

between 0.1 to 0.9 were also used. The two variations 

of these values were applied to both Scenario-1 and 

Scenario-2, with a total of 250000 iterations. Each test 

was conducted ten times. 

3.1 Simulation using a fixed learning rate value 

The results of the simulation test with a fixed learning 
rate (α) of 0.9 can be seen in Table 1 (for Scenario-1) 

and Table 2 (for Scenario-2). The computation time was 

measured to determine the amount of time taken from 

the start of program execution until the optimal path 

was obtained. For discount factor (γ) values of 0.0, 0.1, 

0.2, 0.3, and 0.4, the Q-Learning algorithm failed to find 

a path from the starting point to the target point because 

these settings did not converge during the iteration 

process. The optimal path is first discovered when the 

value of the γ parameter is 0.5 or greater. This indicates 

that the minimum value of the discount factor for the 

algorithm to discover a path under the condition that the 

learning rate parameter is 0.9 is 0.5. 

Table 1. The computation time with a fixed learning rate (0.9) and 

250000 iterations on Scenario-1 

No. Computation time (second) 

 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9 

1 50.45 50.42 50.41 50.59 50.67 

2 50.37 50.39 50.54 50.82 50.31 

3 50.43 50.57 50.44 50.70 50.71 

4 51.06 50.53 50.79 50.64 50.41 

5 51.37 50.51 50.32 50.63 50.79 

6 50.56 50.73 51.55 51.11 51.47 

7 50.43 50.55 50.57 50.67 50.80 

8 50.47 51.54 50.82 51.30 50.43 

9 50.42 50.58 50.48 51.30 50.48 

10 50.54 50.30 51.44 50.19 51.26 

𝒙̅  50.61 50.61 50.74 50.79 50.73 

 

Table 2. The computation time with a fixed learning rate (0.9) and 

250000 iterations on Scenario-2 

No. Computation time (second) 

 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9 

1 25.48 25.76 25.73 25.70 25.69 

2 25.72 25.67 25.73 25.72 25.73 

3 25.61 25.83 25.60 25.60 25.71 

4 25.67 25.58 25.64 25.71 25.70 

5 25.61 25.79 25.61 25.57 25.66 

6 25.73 25.71 25.74 25.66 25.74 

7 26.26 25.70 25.65 25.69 25.75 

8 25.58 25.65 25.74 25.75 25.77 

9 25.80 25.66 25.70 25.62 25.75 

10 25.79 26.19 25.82 25.63 25.73 

𝒙̅  25.72 25.76 25.70 25.67 25.72 

In Table 1, the shortest computation time to find the 

optimal path in Scenario-1 was 50.19 seconds, which 

was achieved when the discount factor was 0.8. The 

longest computation time was 51.55 seconds, which 

was achieved when the discount factor was 0.7. The 

average computation time in Scenario-1 was 50.70 

seconds. In Scenario-2, the shortest computation time to 

find the optimal path was 25.48 seconds, which was 

achieved when the discount factor was 0.5. The longest 

computation time was 26.26 seconds, also when the 

discount factor was 0.5. The average computation time 

in Scenario-2 was 25.71 seconds.  

 

Figure 4. Differences in computational time trends to find the 

optimal path using a variety of discount factor (γ) values with a 

fixed learning rate () of 0.9 and 250000 iterations in the Scenario-2 

and Scenario-1 areas 
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The differences in computation time for finding the 

optimal path using different values of the discount 

factor (γ) with a fixed learning rate (α) of 0.9 and 

250000 iterations in both scenarios can be seen in 

Figure 4. The computation time in Scenario-2 was faster 

than in Scenario-1, which aligns with previous studies, 

such as [39]–[41], which found that the more states 

there are, the longer it takes to reach convergence. 

3.2 Simulation using a fixed discount factor 

The simulation results using a fixed discount factor 
value of 0.9 are presented in Table 3 (for Scenario-1) 

and Table 4 (for Scenario-2).  

Table 3. The computation time with a fixed discount factor (0.9) and 

250000 iterations on Scenario-1 

No. Computation time (second) 

  = 0.5  = 0.6  = 0.7  = 0.8  = 0.9 

1 50.47 50.26 50.70 51.36 50.67 

2 50.66 50.42 50.65 51.56 50.31 

3 51.37 51.31 50.73 50.57 50.71 

4 50.82 50.82 51.37 50.83 50.41 

5 50.50 51.66 50.64 50.40 50.79 

6 50.58 51.61 50.33 50.45 51.47 

7 50.58 50.56 50.58 50.87 50.80 

8 50.94 51.21 50.51 50.22 50.43 

9 50.94 51.71 50.94 50.55 50.48 

10 50.80 50.52 51.07 50.74 51.26 

𝒙̅  50.77 51.01 50.75 50.76 50.73 

 
Table 4. The computation time with a fixed discount factor (0.9) and 

250000 iterations on Scenario-2 

No Computation time (second) 

 
 = 

0.2 

 = 

0.3 

 = 

0.4 

 = 

0.5 

 = 

0.6 

 = 

0.7 

 = 

0.8 

 = 

0.9 

1 25.89 25.61 25.83 25.68 25.84 25.65 26.22 25.69 

2 25.66 25.76 25.71 25.74 25.70 25.66 25.67 25.73 

3 26.06 26.19 25.63 26.24 25.84 25.71 25.67 25.71 

4 25.85 25.69 25.64 25.67 25.58 25.79 25.72 25.70 

5 25.99 25.49 25.60 25.55 25.64 25.77 25.73 25.66 

6 25.83 25.70 25.68 25.72 25.64 25.71 25.74 25.74 

7 26.00 25.59 25.72 25.72 25.63 25.71 25.66 25.75 

8 25.94 25.71 25.70 25.74 25.72 25.76 25.70 25.77 

9 25.88 26.17 25.85 25.65 25.69 25.75 25.74 25.75 

10 25.73 25.70 25.57 25.60 25.65 25.72 25.99 25.73 

𝒙̅ 25.88 25.76 25.69 25.73 25.70 25.72 25.78 25.72 

In Scenario-1, when the learning rate (α) values are 0.0, 

0.1, 0.2, 0.3, and 0.4, the Q-Learning algorithm cannot 

find the optimal path from the starting point to the target 

point. The optimal path starts to emerge when the 
learning rate value is 0.5. The shortest computation time 

to obtain the optimal path in Scenario-1 is 50.22 

seconds, which is achieved when the learning rate value 

is 0.8. The longest computation time, 51.71 seconds, is 

obtained when the learning rate value is 0.6. The 

average computation time in Scenario-1 is 50.80 

seconds. In Scenario-2, the optimal path is first 

discovered when the value of the α parameter is 0.2 or 

greater. This indicates that the minimum value of the 

learning rate for the algorithm to discover a path, 

provided that the discount factor parameter is 0.9, is 0.2. 

The shortest computation time to obtain the optimal 

path in Scenario-2 is 25.49 seconds, which is achieved 

when the learning rate value is 0.3. The longest 

computation time, 26.24 seconds, is obtained when the 

learning rate value is 0.5. The average computation time 

in Scenario-2 is 25.75 seconds. 

The difference in computation time to find the optimal 
path using different learning rate (α) values with a fixed 

discount factor (γ) of 0.9 and 250000 iterations in 

scenario-2 and Scenario-1 areas is shown in Figure 5. 

The computation time in Scenario-2 is faster than the 

computation time in Scenario-1, which is consistent 

with other studies [39]–[41]. 

 

Figure 5. Differences in computational time trends to find the 

optimal path using a variety of learning rate () values with 

a fixed discount factor (γ) values of 0.9 and 250000 

iterations in the Scenario-1 and Scenario-2 areas 

4.3 The path planning results and the computation time 
for the original Q-Learning algorithm and the modified 

Q-Learning algorithm 

The results of optimum path for the original Q-Learning 

algorithm (Scenario-1) are shown in Table 5. 

Meanwhile, the obtained optimum path for the modified 

Q-Learning algorithm (Scenario-2) are shown in Table 

6. These results showed that both the original and 

modified Q-Learning algorithms produce the same 

number of states as the optimum path: 56 states. 

Variations are observed in the chosen 56 states as 

shaded gray in Table 5 and Table 6, with a maximum of 

five state variations. 

Table 5 and Table 6 also showed the comparison of the 

computation time between the two algorithms. The 

original Q-Learning algorithm (Scenario-1) required 

50.75s in average to find the most optimum path, 

whereas the modified Q-Learning algorithm (Scenario-

2) required only 25.74s. These results indicate that the 

modified Q-Learning algorithm reduces the 

computation time by 50.71% while maintaining the 

algorithm’s ability to find the most optimum path. 
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Table 5. Original Q-Learning algorithm: the obtained optimum path and its computation cost 

 γ Total 

states 

Sequence of states from L915 to L015 Computation 

time (s) 

0.5 0.9 56 'L915', 'L889', 'L890', 'L891', 'L892', 'L866', 'L867', 'L868', 'L842', 'L843', 'L817', 'L791', 

'L792', 'L793', 'L794', 'L768', 'L769', 'L743', 'L744', 'L745', 'L746', 'L747', 'L748', 'L722', 

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L540', 'L514', 'L513', 'L487', 'L486', 'L460', 

'L434', 'L408', 'L382', 'L381', 'L355', 'L329', 'L328', 'L302', 'L276', 'L250', 'L224', 'L198', 

'L172', 'L146', 'L120', 'L094', 'L068', 'L042', 'L016', 'L015' 

50.61 

0.6 0.9 56 'L915', 'L889', 'L890', 'L891', 'L892', 'L893', 'L867', 'L868', 'L869', 'L843', 'L844', 'L845', 

'L819', 'L793', 'L794', 'L795', 'L796', 'L797', 'L798', 'L772', 'L746', 'L747', 'L748', 'L722', 

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L565', 'L539', 'L513', 'L512', 'L486', 'L460', 

'L434', 'L408', 'L407', 'L381', 'L355', 'L354', 'L328', 'L302', 'L276', 'L250', 'L224', 'L198', 

'L172', 'L146', 'L120', 'L094', 'L068', 'L042', 'L016', 'L015' 

51.61 

0.7 0.9 56 'L915', 'L889', 'L890', 'L864', 'L865', 'L839', 'L813', 'L814', 'L788', 'L762', 'L763', 'L737', 

'L738', 'L739', 'L740', 'L741', 'L742', 'L743', 'L744', 'L745', 'L746', 'L747', 'L748', 'L722', 

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L540', 'L514', 'L488', 'L462', 'L461', 'L435', 

'L409', 'L383', 'L357', 'L331', 'L305', 'L279', 'L253', 'L252', 'L226', 'L200', 'L174', 'L148', 

'L147', 'L121', 'L095', 'L069', 'L043', 'L017', 'L016', 'L015' 

50.74 

0.8 0.9 56 'L915', 'L889', 'L890', 'L891', 'L892', 'L893', 'L867', 'L841', 'L815', 'L816', 'L817', 'L818', 

'L819', 'L793', 'L767', 'L768', 'L742', 'L743', 'L744', 'L745', 'L746', 'L747', 'L748', 'L722', 

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L540', 'L514', 'L488', 'L462', 'L436', 'L410', 

'L384', 'L358', 'L332', 'L306', 'L280', 'L254', 'L228', 'L202', 'L176', 'L175', 'L149', 'L123', 

'L097', 'L071', 'L070', 'L044', 'L043', 'L017', 'L016', 'L015' 

50.79 

0.9 0.9 56 'L915', 'L889', 'L890', 'L891', 'L892', 'L893', 'L894', 'L868', 'L869', 'L843', 'L844', 'L845', 

'L846', 'L847', 'L848', 'L849', 'L823', 'L797', 'L771', 'L772', 'L773', 'L774', 'L748', 'L722', 

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L540', 'L514', 'L488', 'L487', 'L461', 'L435', 

'L409', 'L383', 'L382', 'L356', 'L330', 'L304', 'L303', 'L277', 'L276', 'L250', 'L224', 'L198', 

'L172', 'L146', 'L120', 'L094', 'L068', 'L042', 'L016', 'L015' 

50.73 

0.9 0.8 56 'L915', 'L889', 'L863', 'L864', 'L865', 'L839', 'L813', 'L814', 'L815', 'L816', 'L817', 'L818', 

'L792', 'L766', 'L767', 'L741', 'L742', 'L743', 'L744', 'L745', 'L746', 'L747', 'L748', 'L722', 

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L565', 'L539', 'L538', 'L512', 'L511', 'L485', 

'L459', 'L433', 'L407', 'L381', 'L355', 'L329', 'L303', 'L277', 'L251', 'L225', 'L199', 'L173', 

'L147', 'L121', 'L095', 'L069', 'L068', 'L042', 'L041', 'L015' 

50.76 

0.9 0.7 56 'L915', 'L889', 'L890', 'L864', 'L865', 'L866', 'L867', 'L868', 'L842', 'L843', 'L817', 'L791', 

'L792', 'L793', 'L794', 'L795', 'L769', 'L770', 'L771', 'L745', 'L746', 'L747', 'L748', 'L722', 

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L540', 'L539', 'L513', 'L512', 'L486', 'L460', 

'L434', 'L408', 'L407', 'L381', 'L355', 'L329', 'L328', 'L302', 'L276', 'L250', 'L224', 'L198', 

'L172', 'L146', 'L120', 'L094', 'L068', 'L042', 'L041', 'L015' 

50.75 

0.9 0.6 56 'L915', 'L889', 'L890', 'L891', 'L892', 'L866', 'L867', 'L841', 'L842', 'L843', 'L817', 'L818', 

'L819', 'L820', 'L794', 'L795', 'L796', 'L797', 'L771', 'L772', 'L773', 'L747', 'L748', 'L722', 

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L565', 'L539', 'L513', 'L512', 'L511', 'L485', 

'L459', 'L433', 'L407', 'L381', 'L355', 'L329', 'L303', 'L277', 'L251', 'L225', 'L199', 'L173', 

'L172', 'L146', 'L120', 'L094', 'L068', 'L042', 'L041', 'L015' 

51.01 

0.9 0.5 56 'L915', 'L889', 'L863', 'L837', 'L838', 'L839', 'L840', 'L841', 'L842', 'L816', 'L817', 'L791', 

'L792', 'L766', 'L767', 'L768', 'L769', 'L770', 'L744', 'L745', 'L746', 'L747', 'L748', 'L722', 

'L696', 'L670', 'L644', 'L618', 'L592', 'L566', 'L565', 'L539', 'L538', 'L512', 'L486', 'L460', 

'L434', 'L408', 'L382', 'L356', 'L330', 'L304', 'L278', 'L252', 'L226', 'L225', 'L199', 'L173', 

'L147', 'L146', 'L120', 'L094', 'L068', 'L042', 'L041', 'L015' 

50.77 

   𝒙̅ 50.75 

Table 6. Modified Q-Learning algorithm: the obtained optimum path and its computation cost 

 γ Total 

states 

Sequence of states from L383 to L001 Computation 

time (s) 

0.9 0.5 56 'L383', 'L375', 'L363', 'L337', 'L311', 'L285', 'L259', 'L233', 'L234', 'L235', 'L236', 'L237', 

'L238', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L136', 'L128', 

'L120', 'L112', 'L104', 'L096', 'L088', 'L080', 'L072', 'L064', 'L056', 'L048', 'L040', 'L032', 

'L024', 'L016', 'L006', 'L005', 'L004', 'L003', 'L002', 'L001' 

25.72 

0.9 0.6 56 'L383', 'L375', 'L363', 'L337', 'L311', 'L285', 'L259', 'L233', 'L234', 'L235', 'L236', 'L237', 

'L238', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L136', 'L128', 

'L120', 'L112', 'L104', 'L096', 'L088', 'L080', 'L072', 'L064', 'L056', 'L048', 'L040', 'L032', 

'L024', 'L016', 'L006', 'L005', 'L004', 'L003', 'L002', 'L001' 

25.76 

0.9 0.7 56 'L383', 'L375', 'L363', 'L337', 'L311', 'L285', 'L259', 'L233', 'L234', 'L235', 'L236', 'L237', 

'L238', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L136', 'L128', 

'L120', 'L112', 'L104', 'L096', 'L088', 'L080', 'L072', 'L064', 'L056', 'L048', 'L040', 'L032', 

'L024', 'L016', 'L006', 'L005', 'L004', 'L003', 'L002', 'L001' 

25.70 
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 γ Total 

states 

Sequence of states from L383 to L001 Computation 

time (s) 

0.9 0.8 56 'L383', 'L375', 'L363', 'L364', 'L365', 'L366', 'L367', 'L368', 'L342', 'L343', 'L317', 'L318', 

'L319', 'L320', 'L321', 'L322', 'L323', 'L297', 'L298', 'L299', 'L273', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L145', 'L135', 

'L127', 'L126', 'L118', 'L110', 'L109', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060', 

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L011', 'L001' 

25.67 

0.9 0.9 56 'L383', 'L375', 'L376', 'L377', 'L365', 'L366', 'L367', 'L368', 'L342', 'L343', 'L317', 'L291', 

'L265', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L175', 'L165', 'L155', 'L145', 'L135', 

'L134', 'L126', 'L118', 'L110', 'L102', 'L094', 'L093', 'L092', 'L084', 'L076', 'L068', 'L060', 

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L002', 'L001' 

25.72 

0.2 0.9 56 'L383', 'L375', 'L376', 'L377', 'L378', 'L379', 'L380', 'L368', 'L342', 'L316', 'L290', 'L264', 

'L238', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L185', 'L184', 'L183', 'L182', 'L172', 'L162', 

'L152', 'L142', 'L132', 'L124', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060', 

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L011', 'L001' 

25.88 

0.3 0.9 56 'L383', 'L375', 'L363', 'L337', 'L311', 'L285', 'L259', 'L260', 'L234', 'L235', 'L236', 'L237', 

'L238', 'L239', 'L240', 'L241', 'L242', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L185', 'L184', 'L174', 'L173', 'L172', 'L162', 

'L152', 'L142', 'L132', 'L124', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060', 

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L011', 'L001' 

25.76 

0.4 0.9 56 'L383', 'L375', 'L376', 'L377', 'L378', 'L379', 'L367', 'L368', 'L342', 'L343', 'L344', 'L345', 

'L346', 'L347', 'L321', 'L295', 'L269', 'L243', 'L244', 'L245', 'L246', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L185', 'L184', 'L183', 'L182', 'L172', 'L162', 

'L152', 'L142', 'L132', 'L124', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060', 

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L002', 'L001' 

25.69 

0.5 0.9 56 'L383', 'L375', 'L376', 'L377', 'L378', 'L379', 'L380', 'L368', 'L342', 'L343', 'L344', 'L345', 

'L346', 'L347', 'L348', 'L322', 'L323', 'L297', 'L298', 'L272', 'L246', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L136', 'L135', 

'L127', 'L126', 'L125', 'L117', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060', 

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L011', 'L001' 

25.73 

0.6 0.9 56 'L383', 'L375', 'L363', 'L364', 'L365', 'L366', 'L367', 'L368', 'L342', 'L343', 'L317', 'L318', 

'L292', 'L266', 'L267', 'L268', 'L269', 'L270', 'L271', 'L272', 'L273', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L185', 'L184', 'L174', 'L173', 'L172', 'L162', 

'L152', 'L142', 'L132', 'L124', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060', 

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L002', 'L001' 

25.70 

0.7 0.9 56 'L383', 'L375', 'L363', 'L364', 'L365', 'L366', 'L367', 'L368', 'L342', 'L343', 'L317', 'L318', 

'L292', 'L266', 'L267', 'L268', 'L269', 'L270', 'L271', 'L272', 'L273', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L185', 'L184', 'L174', 'L173', 'L172', 'L162', 

'L152', 'L142', 'L132', 'L124', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060', 

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L002', 'L001' 

25.72 

0.8 0.9 56 'L383', 'L375', 'L376', 'L377', 'L378', 'L379', 'L380', 'L368', 'L342', 'L343', 'L344', 'L345', 

'L346', 'L347', 'L348', 'L322', 'L323', 'L297', 'L298', 'L272', 'L246', 'L247', 'L248', 'L222', 

'L216', 'L210', 'L204', 'L198', 'L192', 'L186', 'L176', 'L166', 'L156', 'L146', 'L136', 'L135', 

'L127', 'L126', 'L125', 'L117', 'L116', 'L108', 'L100', 'L092', 'L084', 'L076', 'L068', 'L060', 

'L052', 'L044', 'L036', 'L028', 'L020', 'L012', 'L011', 'L001' 

25.78 

   𝒙̅ 25.74 

4.  Conclusion 

This study proposes a modified version of Q-Learning 

algorithm by removing the impassable grids from the 

Q-Learning computation. Justification of the modified 

Q-Learning algorithm was done by some simulations, 
where both the original and the modified Q-Learning 

algorithm were used to find the most optimum path for 

an autonomous agricultural robot in Agribusiness and 

Technology Park (ATP), IPB University, Bogor, 

Indonesia. In this case, the agricultural robot was given 

a task to find the most optimum path in order to bring 

some agricultural yields from one of the greenhouses to 

the warehouse in ATP IPB. Simulation results showed 

that both the original and modified Q-Learning 

algorithms produced the same number of states as the 

optimum path for the robot, i.e., 56 states. However, the 

modified Q-Learning algorithm is capable of finding 

the path to the destination point with a minimum 

learning rate parameter value of 0.2 when the discount 

factor value is 0.9. This demonstrates that providing a 

small learning rate parameter value in the modified Q-
Learning algorithm can still result in the discovery of 

the optimal path. Furthermore, the results showed that 

the original Q-Learning algorithm required an average 

of 50.75s to find the optimal path, whereas the modified 

Q-Learning algorithm required an average of 25.74s. In 

other words, the proposed modified Q-Learning 

algorithm reduced the computation cost to 50.71% from 

the original Q-Learning algorithm, while maintaining 

the ability of the algorithm in finding the most optimum 

path. Further study will focus on the improvement of 

modified Q-Learning algorithm so that the algorithm 
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can produce some different routes as the robot’s 

optimum paths. This is important to avoid collisions 

between robots, especially when there are multiple 

agricultural robots that need to perform the same task at 

a given time. 
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