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Abstract  

This study proposes a prediction of the classification of the spread of dengue hemorrhagic fever (DHF) with the expansion of 
the Random Forest (RF) feature based on spatial time. The RF classification model was developed by extending the features 
based on the previous 2 to 4 years. The three best RF models were obtained with an accuracy of 97%, 93%, and 93%, 
respectively. Meanwhile, the best kriging model was obtained with an RMSE value of 0.762 for 2022, 0.996 for 2023, and 0.953 
for 2024. This model produced a prediction of the classification of dengue incidence rates (IR) with a distribution of 33% 

medium class and 67% high class for 2022. 2023, the medium class is predicted to decrease by 6% and cause an increase in 
the high class to 73%. Meanwhile, in 2024, it is predicted that there will be an increase of 10% for the medium class from 27% 
to 37% and the distribution of the high class is predicted to be around 63%. The contribution of this research is to provide 
predictive information on the classification of the spread of DHF in the Bandung area for three years with the expansion of 
features based on time. 
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1. Introduction  

Dengue Hemorrhagic Fever (DHF) is a category of 

dangerous disease that can cause death for sufferers. 

This disease is transmitted through the bite of Aedes 

Aegypti and Aedes Albopictus mosquitoes. The 

mosquito carries the dengue virus and transmits it to 

humans through bites, resulting in dengue symptoms 

[1]. The spread of dengue cases is influenced by several 

factors, including rainfall [2], temperature, altitude, 
distribution of men [3], population mobility, population 

density, level of community knowledge, wind speed 

[4], and humidity [2][5]. 

DHF spreads in tropical climates such as Indonesia. 

One of the areas with the highest incidence rate of DHF 

is Bandung City. According to [6] and [7], there have 

been recorded fluctuations in DHF cases in Bandung 

City from 2017 to 2021. In 2017, 1.786 cases were 

recorded, in 2018 there was an increase in cases 

recorded at 2.826 cases [6], in 2019 the number of cases 

doubled from the previous year, which was recorded at 
4.424 cases, then in 2020 it decreased to 2.790 cases, 

and again increased in 2021 to 3.743 cases [7]. The 

highest number of cases occurred in 2019 which was 

recorded at 4.424 cases, a drastic increase of 56.54% 

compared to the number of cases in 2018. The three 

sub-districts with the highest distribution of DHF cases 

include Arcamanik sub-district with 241 cases, Coblong 

sub-district with 263 cases, and Kiaracondong sub-

district with 308 cases. Sub-districts with the smallest 

distribution of DHF cases were Sumur Bandung Sub-

district, which recorded 49 cases, Bandung Wetan Sub-

district, 62 cases, and Cinambo Sub-district, 70 cases 

[6]. This shows that DHF is a difficult disease to handle 
with the number of cases that always fluctuates every 

year and there is no optimal solution.  

Therefore, the government hopes for a solution to 

reduce dengue cases in each sub-district. One of them 

is by displaying the distribution of cases in each sub-

district in the form of classification prediction maps for 

the next few years so that the community and 

government can provide optimal actions and solutions 

to reduce the spread of dengue cases. In the field of 

information technology, the use of machine learning 

can be implemented to predict and classify dengue 
incidence rates based on historical data from previous 

years. In addition, there are other methods that can 

predict the incidence rate of DHF in areas where the 

value is unknown by kriging interpolation. One method 

that can be used is Ordinary Kriging. The number of 
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DHF cases that always fluctuates every year makes this 

problem even more challenging to predict the 

distribution of the incidence rate of DHF disease in each 

sub-district. 

Not many studies have discussed the prediction of the 

classification of the incidence rate distribution of DHF 

based on the expansion of spatial and time-based 

features. Some studies usually only focus on predicting 

or classifying DHF, but not based on the problem of 

spreading cases in an area. Prediction and classification 
of DHF have been carried out by several researchers [8], 

[9], [10], and [11]. The study [8] applied the Random 

Forest algorithm using 10-fold cross-validation to 

predict dengue fever based on patient data from 

hospitals and laboratories. The number of trees built is 

500 trees with the number of features that are tried on 

each splitting of 5 features. This study resulted in an 

accuracy of 92.34%, recall of 94.04%, and specificity 

of 92.19%. 

Research [10] built a dengue virus diagnostic system by 

combining the Random Forest algorithm and Raman 
Spectroscopy. The data used were 100 samples 

collected from patients exposed to the dengue virus. Of 

the 100 data samples, 45 samples were labeled positive. 

This study reduces the dimensions of the data using the 

Principal Component Analysis (PCA) method and 

evaluates the Random Forest classification model with 

5-fold cross-validation. The built diagnostic system 

produces 91% accuracy, 91% recall, and 91% 

specificity. Furthermore, the study [11] applied the 

Random Forest algorithm and Artificial Neural 

Network (ANN) to predict the clinical degree of DHF. 

The data used comes from patient data and laboratory 
data. Both models were evaluated using 5-fold and 10-

fold cross-validation. This study resulted in the highest 

accuracy in the Random Forest model of 58% with 10-

fold and the ANN model of 57% with 5-fold. 

In research [9] classifying DHF disease using Support 

Vector Machine (SVM), Naïve Bayes, and Random 

Forest. This study uses secondary data from M. Syafii's 

research in 2006 which was taken from the medical 

records of patients at Dr. Hospital. Sardjito Yogyakarta 

on December 13-16, 2005. The data sample amounted 

to 213 patients with dengue fever. The features used 
were fever, spotting, bleeding, and tourniquet test. The 

performance of the SVM, Naïve Bayes, and Random 

Forest models was measured using accuracy and the 

values obtained were 44.5%, 69.8%, and 79.6%, 

respectively. Based on the comparison of the accuracy 

values of the three models, the Random Forest model 

has a much better accuracy value than the SVM and 

Naïve Bayes models in classifying DHF. 

The study [12] applied the Random Forest and Logistic 

Regression methods with elastic-net to predict the 

length of stay in DHF patients and identify the most 

important features. The data used is data on patients 

with dengue fever in hospitals taken from February 

2021 to September 2017. The total number of data 

obtained is 1148 sample data and 40 features. This study 

uses a data sharing scenario of 70% for training data and 

30% for test data. The evaluation process of the model 

uses 10-fold cross-validation and the results were 

obtained with the Area Under the Curve (AUC) value 

of 0.75 for the Logistics Regression model and 0.72 for 

the Random Forest model. 

The development of DHF disease maps has been carried 
out [4], [13], and [14] using Random Forest. The study 

[4] applied the Random Forest and K-Nearest Neighbor 

(KNN) algorithms with two scenarios. In the first 

scenario, the modeling process uses a patterned model 

based on data from the previous 2 years and produces 

the lowest Root Mean Squared Error (RMSE) value of 

29.25. In the second scenario, the modeling process 

uses a random data model and the lowest RMSE value 

is 45.48. However, this research still has shortcomings, 

the resulting RMSE value is still quite high and the map 

developed is only limited to 1 year. While the map 
development in research [13] the features used were too 

few and did not use the features that caused DHF. This 

study resulted in a very good accuracy value, but the 

accuracy value was not indicated and the map 

developed was difficult for readers to understand. 

The study [14] implemented the Random Forest 

algorithm to predict the transmission of dengue fever in 

Shenzhen City, China, and determine the most 

important factors. The process of mapping the risk of 

dengue transmission is carried out with the help of the 

Argis software. This study divides the data for model 

training by 65% and the remaining 35% is used for 
model testing. The results showed that the AUC value 

was 0.8 with the most important features being average 

rainfall, maximum temperature, and workplace density. 

While research on kriging has been carried out by [15], 

[16], and [17]. This study [15] applied the Inverse 

Distances Weighted (IDW), Ordinary Kriging (OK), 

and Universal Kriging (UK) methods to predict the 

pattern of the spread of dengue hemorrhagic fever over 

the next three years in the city of Bandung based on the 

number of dengue cases interpolated at village 

coordinates. The data used is data on dengue cases in 
152 villages in the city of Bandung from 2010 to 2015. 

Then the prediction results for the IDW method are 

obtained with an RMSE value of 18.56 for 2016, 9.53 

for 2017, and 20.91 for 2018. The RMSE value with 

Ordinary Kriging in 2016 was 18.96, 2017 was 9.67, 

and 2018 was 21.26. While the RMSE Universal 

Kriging value in the 2016 prediction is 19.08, in 2017 it 

is 9.81, and in 2018 it is 22.16. 

In research [16] the ordinary kriging method was used 

for spatial analysis of the spread of DHF mosquitoes by 

trapping Wolbachia bacteria. Wolbachia bacteria act as 

virus vectors that can inhibit the Aedes Aegypti 
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mosquito transmission process with humans. These 

bacteria were distributed in three areas and observed for 

three years in a frequency of 4 seasons. However, the 

results of this study do not explain how well the 

semivariogram model was used in the ordinary kriging 

interpolation process to map the spread of DHF and 

Wolbachia bacteria. Meanwhile [17] used ordinary 

kriging to develop DHF risk distribution maps by 

considering entomological index and breteau index. 

In studies [18], [19], and [20] discussed the application 
of the Ordinary Kriging method to predict the spread of 

DHF. In [18] a risk map for dengue transmission was 

developed using remote satellite imagery classified by 

land cover. This study used training data and test data 

as many as 50 samples in each class. In land cover 

classification, the algorithms used are cation classifier 

algorithms such as Maximum Likelihood, Mahalanobis 

Distance, and Minimum Distance. The classification 

results show an accuracy value of 90.6% with the 

Maximum Likelihood classifier. 

Subsequent studies [19] predict the transmission of 
dengue fever in urban areas and determine the 

influencing environmental factors. Prediction of dengue 

fever transmission using Ordinary Kriging with spatial 

and temporal scales. While determining the influencing 

factors using a geostatistical additive linear model by 

analyzing the correlation between variables. The results 

of this study indicate that the features of wind speed, 

wind direction, and air temperature are factors that 

influence the transmission of dengue fever. This study 

has several shortcomings, including not explaining the 

semivariogram model used in the kriging process and 

the resulting map is difficult for readers to understand 
because there are no class labels that indicate the level 

of dengue fever spread. 

Meanwhile, research [20] combines the Ordinary 

Kriging (OK) method with three spatial interpolation 

methods in predicting the spread of the Aedes Aegypti 

mosquito. The three methods are Local Polynomial 

Interpolation (LPI) which uses exponential kernel 

function, Radial Basis Function (RBF) with spline 

model, and Inverse Distance Weighted (IDW) method. 

While the model used by Ordinary Kriging is a 

spherical semivariogram model. This study predicts its 
distribution in 4 seasons and obtained RMSE values in 

the spring of 0.51 for IDW, 0.44 LPI, 0.47 RBF, and 0.4 

OK. In summer, the RMSE values were 0.6 for IDW, 

0.53 LPI, 0.51 RBF, and 0.48 OK. The RMSE values in 

the fall were 0.53 for IDW, 0.46 LPI, 0.48 RBF, and 

0.42 OK. In winter, IDW produces an RMSE value of 

0.55, LPI of 0.47, RBF of 0.48, and OK of 0.44. The 

results of this study indicate that OK predictions are 

superior to IDW, LPI, and RBF. 

Based on previous research reviews with the advantages 

and disadvantages that have been presented, there is no 

research that combines the random forest and ordinary 

kriging algorithms. Thus, this study proposes these two 

methods for the prediction of the classification of the 

spread of the incidence of dengue fever with the 

expansion of features based on time. Feature expansion 

is carried out based on feature data of 2 years, 3 years, 

and 4 years previously. The data used are climate data, 

population, education history, and blood type. In 

previous studies, no one has used blood type data 

features. The addition of these features is carried out by 

considering that dengue patients are caused by 
mosquito bites and their blood is sucked. Therefore, this 

study predicts the classification with the expansion of 

features based on the time using the Random Forest and 

Ordinary Kriging algorithms. The purpose of this study 

was to determine the distribution of DHF in each sub-

district in the next three years and to find the features 

that had the most influence on the spread of DHF based 

on the results of the most optimal feature expansion. So 

that the community and government can provide 

appropriate prevention and treatment efforts to reduce 

the spread of DHF in each sub-district in the city of 

Bandung. 

2. Research Methods 

The methods used are Random Forest and Ordinary 

Kriging. Random Forest algorithm was used to predict 

the classification of incidence rates in 30 sub-districts 

based on the expansion of features from the previous 2 

to 4 years. Then, the results were interpolated with 

Ordinary Kriging to predict the spread of dengue in the 

Bandung area for the next three years. The design of the 

system is shown in Figure 1. 

 

Figure 1. System Design 
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2.1 Dataset 

This study uses data on DHF cases obtained from the 

Bandung City Health Office, climate data from the 

Bandung Meteorology, Climatology and Geophysics 

Agency, population data, educational history data, and 

blood type data obtained from the Bandung City Central 

Statistics Agency. The data was collected based on 30 

sub-districts in the city of Bandung from 2017 to 2021. 

Thus, the data obtained were 150 sample data and 13 

features. Feature names are denoted by X1...X(n). Table 
1 presents the results of the feature name notation and a 

description of each feature. 

Table 1. Dataset 

Notation Description 

X1 Total Population 

X2 Proportion of Population Male 

X3 Rainfall (mm) 

X4 Temperature (℃) 

X5 Humidity (%) 

X6 Blood Type A 

X7 Blood Type B 

X8 Blood Type AB 

X9 Blood Type O 

X10 Elementary School Graduate 

X11 Middle School Graduate 

X12 High School Graduate 

X13 College Graduate 

Y  Incidence Rate (per 100.000 population) 
 

2.2 Data Preprocessing 

The dataset that has been obtained is still in the form of 

raw data, so it is necessary to use a data preprocessing 

technique. The use of preprocessing is intended so that 

the dataset used produces quality data and is ready to be 

processed to build a classification prediction model. 

The target variable used is the Incidence Rate (IR) with 

the following formula [21]: 

𝐼𝑅 =
𝐶𝑎𝑠𝑒

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
×  100.000 (1) 

Where Incidence Rate is a value that shows cases of 

DHF in a population (per 100.000 population) [21].  

Table 2. Class Labeling 

Class Label Class Range 

Low 0 IR < 55 

Medium 1 55 ≥ IR ≤ 100 

High  2 IR > 100 

Table 2 explains that an area is categorized as low if the 

area's IR is less than 55 per 100.000 population. If the 

IR number is in the range of 55 to 100 per 100.000 

population, then the area is categorized as a medium, 

and categorized as high if the IR number is more than 

100 per 100.000 population. 

This study uses the stratified k-fold cross validation 

method to divide the data into 2 parts: training data and 

test data. The purpose of using stratified k-fold cross 

validation is to reduce bias in the model [22] and avoid 

errors caused by unbalanced classes [23]. In general, the 

way this method works is to divide the dataset into 

several folds according to the value of k, where each 

fold is carried out by a training process and model 

testing [22]. In this study, the number of k used is k=10. 

The selection is based on the small amount of data used 

in this study, so it is necessary to carry out more model 

training processes so that the model built is accurate and 

can predict well. 

2.3. Random Forest 

Random Forest is one of the ensemble methods that can 
be used for the classification of large amounts of data 

by building a regression tree consisting of a collection 

of decision trees. The decision tree was chosen 

randomly from the training data, then combined using 

the Breiman bagging method. After that, majority 

voting is carried out based on the decision tree to get 

predictive results [11].  

The performance of the Random Forest model has been 

tested in predicting and classifying various types of 

datasets, even for unbalanced classes [24]. This is 

influenced by the use of random sampling and the 
principle of the ensemble technique [11]. According to 

[25] the Random Forest algorithm can naturally adjust 

to unbalanced classes by down-sampling the majority 

class and constructing each tree for the minority class 

so that the dataset becomes more balanced. 

The development of the Random Forest model can be 

carried out in three steps. First, the data is divided into 

2 parts training data and test data. The division is 2/3 of 

the data used as training data and the remaining 1/3 as 

test data used for validation of learning models on 

training data. Second, create a decision tree from a 

random data set with a bootstrap sample. The branching 
of each tree is determined by predictors chosen at 

random at the node points. Third, calculate the average 

value of all the results of the decision tree predictions. 

This average value is the result of the prediction of the 

random forest model. Therefore, each individual in the 

decision tree greatly influences the final predictive 

value [24]. In mathematical terms, the majority voting 

formula is as follows [25]: 

𝑚𝑀,n(x ;Θ1, . . . , Θ𝑀 , 𝒟n)

= {
1 𝑖𝑓      

1

𝑀
∑ 𝑚n(x ;Θ𝑗 , 𝒟n) > 1/2

𝑀

𝑗=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           

 
(2) 

Where 𝒟n is the training data sample, M is the number 

of decision trees built, 𝑚n(x ;Θ𝑗 , 𝒟n) is the predicted 

value at point x, and Θ1, . . . , Θ𝑀 are independent random 

variables [25]. 

2.4 Random Forest Prediction Model 

The Random Forest model was developed by expanding 

the feature column based on the features of the previous 

few years. From the data that has been collected for 5 
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years, the features can be expanded based on the 

previous 2 years, 3 years, and 4 years. The target of the 

prediction model is the current year's target. 

Table 3. Prediction model feature expansion scenario 

Model Label Training Data Feature 

2 years before 2A 2019, 2020 

 2B 2018, 2019 

 2C 2017, 2018 

3 years before 3A 2018, 2019, 2020 

 3B 2017, 2018, 2019 

4 years before 4A 2017, 2018, 2019, 2020 

Table 3 shows the scenario of feature expansion in the 

random forest prediction model based on feature data of 

2 years, 3 years, and 4 years before. The prediction 

process is carried out from 2019 to 2021, for example 

predicting 2021 based on the feature expansion scenario 

of the previous 2 years, then the model uses feature 

column expansion in 2019, and 2020. While the target 

of the model is 2021. Examples of feature expansion 

combinations based on the previous 2 years are 

presented in Table 4. 

Table 4. Example of a combination of feature expansion based on 

the previous two years 

Number of 

Feature 

Feature Combination 

3 X2, X3, X7 

3 X1, X3, X4 

3 X1, X8, X12 

3 X5, X9, X13 

4 X1, X3, X4, X8 

4 X2, X9, X10, X11 

… … 

26 X1, X2, X3, …, X24, X25, X26 

2.5 Random Forest Model Selection 

The best random forest prediction model is selected 

based on the highest accuracy value and the most 

optimal number of feature extensions. Accuracy is the 

percentage of truth in the test data which is calculated 

based on the number of correct predictions divided by 

the total predictions [8].  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

(𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁)
 (3) 

Where TP (True Positive) is the actual class labeled 

positive is predicted to be true as a positive label. TN 

(True Negative) is the actual class labeled negative 

which is predicted to be true as a negative label. FP 
(False Positive) is the actual class labeled negative is 

predicted to be falsely labeled as positive. FN (False 

Negative) is the actual class labeled positive which is 

predicted to be wrongly labeled as negative [26]. 

Meanwhile, the feature expansion scenario is carried 

out by utilizing the Sklearn SelectKBest library which 

can improve the accuracy and performance of the 

prediction model [27]. The way this technique works is 

to select a number of k features that have the highest 

score, where the score is calculated using a univariate 

statistical analysis of each variable [28]. This study uses 

the f_classif score function. This function calculates 

criterion f using dispersion analysis based on the 

difference in the mean value of the features in finding 

dependencies on the data. The f_classif function is 

calculated using the following formula [29]: 

𝐹 =

1
𝐶 − 1

∑ 𝑁𝑖(𝑥̅ 𝜄 − 𝑥̅ )2𝐶
𝑖=1

1
𝐶 − 1

∑ ∑ (𝑥̅𝑖,𝑗 − 𝑥̅ 𝜄)
2𝑁𝑖

𝑗=1
𝐶
𝑖=1

 (4) 

Where C is the number of classes, 𝑁 is the number of 

sample data in the dataset, 𝑁𝑖 is the number of sample 

data with the label class i, 𝑥̅𝑖,𝑗 is the feature value of 

class i, 𝑥̅ 𝜄 is the value feature average in class i, and 𝑥̅  is 
the average feature value in the data set. 

2.6 Class Prediction 

At this stage, incident rate class predictions are made 

for 2022, 2023, and 2024. The prediction process uses 

the best Random Forest model that has been developed 

based on data from the previous 2 years, the previous 3 

years, and the previous 4 years. The model was selected 
based on the highest accuracy value and the most 

optimal number of features. 

2.7 Theoretical Semivariogram Model 

Theoretical semivariogram is a model that is used as 

input in the interpolation process using ordinary kriging 

to predict the incidence of dengue fever in 30 sub-

districts and other locations whose values have not been 

recorded. The semivariogram model was obtained 

based on the parameters of the distance between 2 

points, the range value, and the threshold value [30]. 

This study uses 3 semivariogram models, namely 

spherical, exponential, and gaussian models. The 
general form of the three models is obtained from [30] 

and is stated as follows. 

The general form of the spherical model is shown in 

equation (5) 

𝛾(ℎ) = {𝑐 [
3ℎ

2𝑎
 − 

1

2
 (
ℎ

𝑎
)
3

]  , ℎ ≤ 𝑎

𝑐                               , ℎ > 𝑎

 (5) 

Furthermore, for the exponential model, the general 

form is shown in equation (6) 

𝛾(ℎ) =  𝑐 [1 −  𝑒𝑥̅𝑝 (−
ℎ

𝑎
)] (6) 

While the general form of the Gaussian model is shown 

in equation (7) 

𝛾(ℎ) =  𝑐 [1 −  𝑒𝑥̅𝑝 (−
ℎ2

𝑎2
)] (7) 

Where 𝛾(ℎ) is the theoretical semivariogram, c is the 

sill value, while a is the range value, and h is the 

distance between 2 points [30]. 
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2.8 Semivariogram Model Selection 

The best semivariogram model was chosen by 

comparing the RMSE values in each model. The 

semivariogram model with the lowest RMSE value will 

be selected as the input model in the interpolation 

process using ordinary kriging. RMSE is an alternative 

method used to evaluate the prediction case by 

measuring the error rate of the prediction results of the 

model built [4]. 

𝑅𝑀𝑆𝐸 =  √
∑ (Yᵢ −  Ŷᵢ)²𝑛
𝑖=1

𝑛
 (8) 

Where Y is the actual value of the test data, Ŷ is the 

predicted value of the test data, and n is the number of 

test data. 

2.9 Ordinary Kriging 

Ordinary Kriging is a kriging technique based on 
stochastic interpolation [31]. This technique is most 

often used to estimate a value at the location point of an 

area based on a known variogram and use data in the 

surrounding environment to make predictions [32]. 

The incidence rate of DHF at the point Χ₀ can be 

predicted using the data values of n neighboring 

samples Χᵢ and combining them linearly with λᵢ 
weighting [15]. 

Ẑ(Χ₀) =∑λᵢ 𝛧(Χᵢ)

𝑛

𝑖=1

 (9) 

Where Ẑ(Χ₀) is the predicted value at the location point 

Χ₀, 𝛧(Χᵢ) is the IR value of DHF in each sub-district, Χ₀ 
is the predicted sub-district location, Χᵢ is the observed 

sub-district location, λᵢ is the weighted value of the 

observed sub-district location, and n is the number of 

sample data. 

Ordinary kriging is an exact interpolator which means 

that if Χ₀ is exactly equal to the observed subdistrict 

location then the predicted value is exactly equal to the 

data value at that subdistrict location [32]. 

Ẑ(Χ₀) =  𝛧(Χᵢ), 𝑖𝑓  Χ₀ = Χᵢ (10) 

While the estimated variance of ordinary kriging can be 

expressed by (𝜎²), where 𝜇 is the Lagrange parameter, 

𝛾(Χ₀ − Χ₀) is the theoretical semivariogram of the point 

estimated with it, and 𝛾(Χᵢ − Χ₀) is the theoretical 

semivariogram of the point. which is estimated by the 

sample point [32]. 

𝜎² =  𝜇 − 𝛾(Χ₀ − Χ₀)  + ∑ λᵢ 𝛾(Χᵢ − Χ₀)

𝑛

𝑖=1

 (11) 

3.  Results and Discussions 

This research uses the random forest method with a 

parameter experiment of the number of trees built as 

many as 100, 200, 300, 400, and 500 trees with the 

expansion of the previous 2 to 4 years of features. 

Meanwhile, the ordinary kriging method was 

experimented with by applying anisotropy to the major 

and minor range parameters in each semivariogram 

model. The best random forest model was chosen based 

on the highest accuracy value in the parameter 
experiment and the expansion of its features. In 

ordinary kriging, the semivariogram model with the 

lowest RMSE value was chosen as the best model to 

predict the IR distribution of DHF in the next three 

years. 

3.1 IR DHF Classification using Random Forest 

The performance of the random forest classification 

prediction model was measured using accuracy and the 

best model was selected for 2 years, 3 years, and 4 years 

based on the highest accuracy. Table 5, table 6, and 

table 7 show the accuracy value of the test results of 

each developed model. 

Table 5. Two-year model accuracy 

Model Accuracy 

Model 2A 90% 

Model 2B 76.67% 

Model 2C 96.67% 

Model 2 Combined 83.33% 

 

In Table 5, model 2C has higher accuracy than the other 

2-year models. The accuracy obtained is 96.67%. 

Meanwhile, the combined 2-year model has less 

accuracy than models 2A and 2C. The combined 2-year 

model and model 2A produced the best accuracy at a 

hyperparameter of the number of trees built of 100 trees, 

while models 2B and 2C produced the best accuracy 

with a hyperparameter of the number of trees of 200 

trees. 

Table 6. Three-year model accuracy 

Model Accuracy 

Model 3A 93.33% 

Model 3B 76.67% 

Model 3 Combined 83.33% 
 

In Table 6, model 3A is the best model with an accuracy 

of 93.33%. The model uses a hyperparameter of the 

number of trees built as many as 500 trees. Meanwhile, 

the 3-year combined model has less accuracy than 

model 3A. However, the accuracy of the 3-year 

combined model is superior to model 3B. Model 3A 

produces the best accuracy at the hyperparameter of the 

number of trees built as many as 500 trees, while model 

3B uses 400 trees, and the 3-year combined model uses 

100 trees. 

 



 Elqi Ashok, Sri Suryani Prasetiyowati, Yuliant Sibaroni 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 4 (2022)  

DOI: https://doi.org/10.29207/resti.v6i4.4268 

Creative Commons Attribution 4.0 International License (CC BY 4.0) 

618 

 

 

Table 7. Four-year model accuracy 

Model Accuracy 

Model 4A 93.33% 
 

Furthermore, in Table 7, the 4-year model only has 1 

model, namely model 4A with an accuracy of 93.33% 
with a hyperparameter of the number of trees built 

totaling 500 trees. When compared to model 3A, the 

resulting accuracy is the same. This is because the class 

studied by both models is the same, namely 2021. 

However, the results of the 3A feature expansion are 

much less, namely 5 features, while the 4A model 

requires 10 features. Details regarding feature 

expansion are presented in Figure 2, Figure 3, and 

Figure 4. 

 
Figure 2. Two-year model accuracy based on feature expansion 

Feature expansion is carried out to see the accuracy of 

the developed model and its effect on features several 

years earlier. Testing is done by comparing the accuracy 

of each model based on the most optimal number of 

features. In Figure 2, the feature expansion is carried out 

based on the features of the previous 2 years, testing is 

carried out in the range of 3 to 26 features. The 2C 

model is the best model when compared to other 2-year 

models, with an accuracy of more than 90%. On the 5 
features, the resulting accuracy is 96.67%. However, 

the 5 selected feature sdo not represent the features of 

the previous 2 years and only contain the feature of 1 

year of education history. Based on the comparison of 

the accuracy of the four 2-year models, model 2C is the 

best model with an accuracy of 96.67% on the 

expansion of 10 features. In the expansion of 5 features, 

the resulting accuracy is the same, but the attributes 

used do not include the features of the previous 2 years, 

while in 10 features it includes the features of the 

previous 2 years containing population size, proportion 

of male population, elementary school graduates, junior 
high school graduates, high school graduates, blood 

type B, and blood type O. 

Furthermore, in Figure 3, the previous 1-year feature 

was added to the 3-year model, so that the features used 

were 39 features. The test is carried out by comparing 

the accuracy of each model from 3 to 39 features and 

selecting the model with the highest accuracy based on 

the most optimal feature expansion. Model 3A is the 

best model with an accuracy of 96.67% on 5 features. 

The selected features already represent the features of 

the previous 3 years which contain the features of a 

population, rainfall, blood type B, and graduation from 

elementary school. 

 

Figure 3. Three-year model accuracy based on feature expansion 

 
Figure 4. Four-year model accuracy based on feature expansion 

In Figure 4, the 4-year model also adds features so that 

the features used are 52. As before, the test was carried 

out by comparing the accuracy of each model from 3 to 

52 features and selecting the most optimal feature 

extension. In the expansion of 5 features, it has covered 

features for 4 years with an accuracy of 90%. Whereas 

in 10 features the accuracy produced is higher and the 

features have covered the previous 4 years. Therefore, 
the best 4-year model is in 10 features with an accuracy 

of 93.33%. The feature contains the population, the 

proportion of the male population, elementary school 

graduates, rainfall, temperature, humidity, blood type 

A, and blood type O. 

Thus, it can be concluded that feature expansion greatly 

affects the performance of the model and can improve 

accuracy. In addition, the feature expansion patterns 

that come out a lot and have the most influence on the 

spread of dengue incidence rates are population size, 

proportion of male population, elementary school 

graduation, rainfall, blood type B, and blood type O. 

The three best-selected models are used as models to 

predict the incidence rate of DHF in 2022, 2023, and 

2024. The incidence rate of DHF in 2022 is predicted 

using the 2C model, the incidence rate in 2023 is 

predicted using the 3A model, and the incidence rate in 

2024 is predicted by model 4A. 
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3.2 Theoretical Semivariogram Model 

Table 8. The results of the calculation of the theoretical 

semivariogram parameters: nugget, major range, and minor range 

Year Model Nugget Major 

Range 

Minor 

Range 

2022 Spherical 0 20739.2 11360.9 

 Exponential 0 20739.2 13143 

 Gaussian 953.8 20739.2 10868.1 

2023 Spherical 1293.6 14386.8 6626.3 

 Exponential 629.4 14386.8 4540.5 

 Gaussian 1460.8 14386.8 6824.3 

2024 Spherical 1570 10717.8 6691.7 

 Exponential 1559.6 14386.8 4840.5 

 Gaussian 1662.2 10717.8 6824.3 

 

Table 9. RMSE calculation results and theoretical semivariogram 

parameters: direction (Dir) and partial sill 

Year Model Dir Partial Sill RMSE 

2022 Spherical 143.2 5595.2 0.971 

 Exponential 147.4 5061.6 0.762 

 Gaussian 143.2 5078.8 1.075 

2023 Spherical 171.3 798.4 0.996 

 Exponential 169.8 1487.4 1.012 

 Gaussian 171.9 677.3 0.999 

2024 Spherical 171.7 487.7 0.956 

 Exponential 169.9 529.9 0.961 

 Gaussian 172.2 436.3 0.953 

Table 8 and Table 9 are the results of the calculation of 

the RMSE and the theoretical semivariogram. The 

results of these calculations are used in the process of 

predicting the incidence rate of DHF with the ordinary 

kriging method. Table 8 shows that the data are 

anisotropic, indicated by the presence of major and 
minor range parameters. The best theoretical 

semivariogram model for the incidence rate in 2022, 

2023, and 2024, respectively, is the Exponential, 

Spherical, and Gaussian model, with RMSE values of 

0.762, 0.996, and 0.953, respectively. This shows that 

the semivariogram model for predicting incidence rates 

in 2022, 2023, and 2024 tends to be different. This 

difference is influenced by the different prediction 

results of the random forest model classification. The 

pattern for the distribution of semivariogram values is 

shown in Figure 5, Figure 6, and Figure 7. 

 

Figure 5. The distribution pattern of the exponential semivariogram 

incidence rate of dengue fever in 2022 

 
Figure 6. The distribution pattern of the spherical semivariogram 

incidence rate of dengue fever in 2023 

 
Figure 7. The distribution pattern of the gaussian semivariogram 

incidence rate of dengue fever in 2024 

In Figure 5, it can be seen that the pattern of data 

distribution tends to the Southwest–Northeast with a 

value of 147.5. While Figure 6 and Figure 7 have a 

value of 171, 4, and 172,3 respectively, the data 

distribution pattern tends to be in the West-East 

direction. In addition, the incidence rate semivariogram 

values in Figure 6 and Figure 7 are closer to the average 

than in Figure 5 which tends to be stretched. 

3.3 Prediction of IR DHF using Ordinary Kriging 

The predicted pattern of the spread of the incidence rate 
of DHF is displayed in the form of a color map in Figure 

8, Figure 9, and Figure 10. The color shows the interval 

of incident rate values in the area. There is a color 

gradation starting with dark blue which indicates the 

low incidence rate value, then followed by light blue, 

yellow, orange, pink, and dark red for the highest 

incidence rate value. Based on the lowest RMSE results 

in table 9, for the prediction of the incidence rate spread 

in 2022 the semivariogram model used is Exponential, 

while in 2023 using the Spherical semivariogram 

model, and in 2024 using the Gaussian semivariogram 

model. 

On the contour maps of Figures 8 and 9, the area of 

Cimahi City and the western part of Bandung City is 

colored light blue to dark blue, so that the incidence rate 

is in the range of 71 to 149 per 100.000 population. On 

the other hand, the areas of West Bandung Regency, 

Bandung Regency, and the northern and eastern parts of 

Bandung City are yellow to dark red which means the 
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incidence rate is in the range of 138 to 316 per 100.000 

population. 

 

Figure 8. Prediction of the spread of dengue incidence rate in 2022 

 

Figure 9. Prediction of the spread of dengue incidence rate in 2023 

 

Figure 10. Prediction of the spread of dengue incidence rate in 2024 

While in Figure 10, the area of Cimahi City and the 

western part of Bandung City are light blue and yellow, 

so the incidence rate is in the range of 83 to 151 per 

100.000 population. Then, in the areas of West 

Bandung Regency, Bandung Regency, and the northern 
and eastern parts of Bandung City, the colors are yellow 

to dark red, which means that the incidence rate is in the 

range of 129 to 297 per 100.000 population. The results 

of the prediction of the incidence of dengue fever in 

sub-districts that have not been recorded are presented 

in table 10.  

Table 10. Prediction results of dengue incidence rates in 2022, 2023, 

and 2024 in districts that have not been recorded 

Region Insiden Rate 

Regency/City Subdistrict 2022 2023 2024 

Subang Regency Cisalak 247 143 157 

Subang Regency Ciater 226 147 189 

Bandung Regency Cilengkrang 229 150 160 

Bandung Regency Cileunyi 215 158 171 

Bandung Regency Cimenyan 191 163 154 

Bandung Regency Rancaekek 203 164 184 

Bandung Regency Bojongsoang 173 181 169 

Bandung Regency Dayeuhkolot 144 135 145 

Bandung Regency Margahayu 114 112 127 

Bandung Regency Margaasih 113 107 125 

Bandung Regency Kutawaringin 120 87 110 

Bandung Regency Cihampelas 133 108 130 

Bandung Regency Batujajar 99 104 128 

Bandung Regency Padalarang 126 103 132 

Cimahi City Cimahi Utara 120 134 142 

Cimahi City Cimahi Tengah 110 122 135 

Cimahi City Cimahi Selatan 86 115 127 

West Bandung 

Regency 

Ngamprah 144 100 139 

West Bandung 

Regency 

Cisarua 175 137 172 

West Bandung 

Regency 

Parongpong 195 147 152 

West Bandung 

Regency 

Lembang 228 165 172 

West Bandung 

Regency 

Cikalong Wetan 158 137 156 

Sumedang Regency Sukasari 222 150 142 

Purwakarta Regency Bojong  229 151 154 

Based on table 10, the sub-districts in Subang Regency, 
Bandung Regency, West Bandung Regency, Sumedang 

Regency, and Purwakarta Regency predict the 

incidence rate in 2022 is higher when compared to 2023 

and 2024. Thus, experiencing a downward trend in 

2023, but an increase in 2024. Meanwhile, the predicted 

incidence rate in the sub-districts of Cimahi City tends 

to experience an upward trend from 2022 to 2024. 

3.4 Discussion 

Based on the results of the study, a prediction map for 

the classification of the distribution of the incidence rate 

of DHF in each sub-district in Bandung City was made 
using Random Forest and Ordinary Kriging with their 

respective advantages and disadvantages. Figure 11, 

figure 12, and figure 13 show maps created with 

Ordinary Kriging based on the best semivariogram 

model. Figure 11 is made with the Exponential model, 

Figure 12 is made with the Spherical model, and Figure 

13 is made with the Gaussian model. While Figure 14, 

Figure 15, and Figure 16 show a map created with 

Random Forest based on the feature expansion in the 

best prediction model. 
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Figure 11. Prediction map for the classification of dengue incidence 

rates in 2022 with Ordinary Kriging 

 

Figure 12. Prediction map for the classification of dengue incidence 

rates in 2023 with Ordinary Kriging 

 

Figure 13. Prediction map for the classification of dengue incidence 

rates in 2024 with Ordinary Kriging 

Figure 11 shows the predicted distribution of the 

incidence rate of dengue fever in 2022 at 33% for the 

medium category and 67% for the high category. 

Meanwhile, Figure 12 shows the distribution of the 

incidence rate of DHF in 2023 which is predicted to be 

around 27% for the medium category. This indicates a 

decrease in the incidence rate of 6% in the medium 

category and causes an increase in the high category to 

73%. Then in Figure 13, the incidence rate distribution 

in 2024 for the medium category is predicted to 

experience an upward trend of 10% from 27% to 37%. 

Meanwhile, for the distribution of incidence rates in the 

high category, there is a downward trend which is 

predicted to be at 63%. 

 

Figure 14. Prediction map of dengue incidence rate classification in 

2022 with Random Forest 

Figure 14 shows a map of the predicted distribution of 

dengue incidence rates in 2022 with Random Forest. Of 

the 30 sub-districts, 3 of them are categorized as a 

medium class, the remaining 27 sub-districts are 
categorized as high class. Three sub-districts with the 

medium class category are the Andir sub-district, 

Bandung Kulon sub-district, and Babakan Ciparay sub-

district. Thus, the prediction of the incidence rate 

distribution of DHF in 2022 is 10% for the medium 

class and 90% for the high class. This shows that the 

distribution of DHF is higher in the Northwest-

Southeast to the eastern part of Bandung City. 

 

Figure 15. Prediction map of dengue incidence rate classification in 

2023 with Random Forest 

Based on Figure 14, Figure 15, and Figure 16 show a 

map of the distribution of incidence rates predicted by 

Random Forest. The three maps show the results of the 

incidence rate prediction with a distribution pattern that 

tends to be the same. The prediction results for the 

moderate category incidence rate are at 10% and 70 for 

the distribution of the high category incident rate in 

2022, 2023, and 2024. However, when comparing the 

prediction maps of random forests in 2022 with 2023 
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and 2024, there are differences in the pattern of regional 

distribution. In 2022 the incidence rate in Andir District 

is predicted to be 79 which belongs to the medium 

category, then in 2023 and 2024 it is predicted that 

around 124 are included in the high category. This 

causes an increase in the incidence rate of DHF in Andir 

District by 49%. Meanwhile, in Batununggal District, 

the incidence rate decreased by 64%, which is predicted 

to be in the moderate category in 2023 and 2024. 

 

Figure 16. Prediction map of dengue incidence rate classification in 

2024 with Random Forest 

When comparing the results of the prediction map for 

the classification of random forest and ordinary kriging, 

the distribution of the incident rate is moderate in the 
western and southwest areas of Bandung City and the 

distribution of the high incidence rate occurs in the 

eastern area of Bandung City. In addition, for the 

medium and high categories, ordinary kriging has a 

lower distribution pattern than random forest. However, 

the advantages of ordinary kriging can be used to 

predict the incidence of DHF rates in areas whose 

values have not been recorded. 

The prediction results of random forest classification 

and ordinary kriging are good enough to display in the 

form of a map. The random forest classification 
prediction model developed in this study has better 

performance than studies [8], [9], [10], and [11]. This is 

because the random forest model developed in this 

study applies feature expansion based on several 

previous years and obtained an accuracy value of 97% 

in model testing. While the model evaluation results in 

[8], [9], [10], and [11] have an accuracy value of less 

than 97%. Thus, feature expansion greatly affects the 

performance of the random forest model and can 

increase accuracy. In addition, the map produced by this 

research is better than research [4], [13], and [15]. This 

study combines random forest and ordinary kriging 
methods to produce a prediction map for the 

distribution of dengue incidence rates for the next three 

years. Whereas studies [4] and [13] using the random 

forest method produced prediction maps for one year 

only. While research [15] developed a map for the next 

few years using the kriging method, but the resulting 

map is not based on classification, so it does not know 

which areas have a DHF incidence rate in the low, 

medium, and high categories. This study produces a 

map that predicts the classification of the distribution of 

dengue incidence rates in the low, medium, and high 

categories. 

4.  Conclusion 

Based on the research results, it can be concluded that 

the expansion of attributes based on time in the process 
of developing a classification prediction model with 

random forest affects the accuracy produced. The best 

classification prediction model for DHF with the 

random forest is based on the previous 2 years, 3 years, 

and 4 years with the resulting accuracy of 97%, 93%, 

and 93%, respectively. The model produced a 

prediction of the classification of the incidence rate of 

DHF with a moderate class distribution of 10% and a 

high-class distribution of 90% for 2022, 2023, and 

2024. Furthermore, Ordinary Kriging predicted the 

distribution of incident rates in other locations and 30 
sub-districts with RMSE values of 0.762 for 2022, 

0.996 for 2023, and 0.953 for 2024. Meanwhile, the 

most influential features on the spread of dengue 

disease obtained by expanding features based on time 

are population, the proportion of the male population, 

rainfall, blood type B, blood type O, and elementary 

school graduation. Overall, this research can be used as 

a reference to reduce the spread of DHF. So that related 

parties can provide optimal solutions by utilizing the 

most influential causal factors based on the results of 

this study to reduce the incidence rate of DHF in each 

sub-district in Bandung City. For further research, 
prediction of the spread of DHF can be done by adding 

datasets, especially per village and other factors that 

cause DHF, and using other methods as a comparison 

in prediction and classification to get better accuracy 

results. 
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