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Abstract  

This paper presents a simple method to reduce performance loss due to a parallel program's massive critical sections of 
parallel numerical integration. The method is to transform a fine grain parallel loop into a coarse grain parallel loop which 
is nesting a sequential loop. The coarse grain parallel loop is by nesting a loop block to make task granularities coarser than 
that naive one. In addition to the overhead reduction, the method makes the parallel work fraction significantly larger than the 

serial fraction. As a result, nesting a serial loop within a parallel loop improves the parallel program’s performance. Compared 
to the naïve method, which does not scale performance of parallel program of numerical integration, the nesting serial loop 
method scales a parallel program up to 3.26 times fold relative to its sequential program on quad-core processor. This result 
shows that the proposed method makes parallel program much faster compared to the naïve method. 
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1. Introduction  

Parallel programming is a method to increase processor 

utilization in a parallel computer due to almost all 

computers with multicore integrates multiple individual 

processors and cache memory [1]. Ranging from small 

laptops to big servers in data centers has more than one 

processor. However, without parallel programming, 

only one processor can be utilized. The rest will be 

useless and have low resource utilization. 

Parallel programming is not so easy to do. A 

programmer may deal with some problems in this 

regard among race conditions, or it could be 

performance lost due to high overhead, high rate of a 

cache miss, or load imbalance.  

In this paper, our research concern is large overhead due 

to low parallel works to critical section ratio. We 

assume a rectangular integration method in the pi value 

estimation program. Although the program is simple, 

many other programs assume the same pattern. At least 
part of many of those programs has the same pattern. 

The pattern is a parallel R-W operation to a shared 

variable within a massively parallel loop. To avoid race 

condition due to parallel R/W operations, the naïve 

approach is to involve critical section. However, critical 

section contributes to large overhead in small 

granularity of work of parallel loop. In other words, the 

problem is the fine grain computation results in low 

performance of parallel program. 

A detailed study that analyzes the effect of task 

granularity on the performance of parallel java 

programs is shown in [2]. The study takes advantage of 

a novel profiler that measures the granularity of every 

executed task [3]. 

There is an efficient method to overcome the problem 

in parallel R/W operations, such as the method of in 

OpenMP reduction clause [4], Cilk++ hyper objects [5], 

or MPI reduce [6]. All of the methods are to reduce 

overhead by eliminating critical sections.  

The most efficient parallel method so far is lazy task 

creation [7]. Lazy task creation is a technique to 

increase task granularity. Its overhead is almost the 

same as the overhead of a function call. Cilk and 

StackThreads /MP [8] adopt the lazy task creation 

method. 

Another method to increase task granularity in the 

work-stealing method is the extended work-stealing 

stealing strategies [9] and Dynamic multiple items 

work-stealing strategy [10]  . Those methods increase 

the task granularity of stolen tasks and make processors 
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busy at works. These researchs improve the 

performance of the StackThread/MP fine grain task 

parallel library such that it outperforms the Cilk in the 

UTS benchmark and has comparable performances in 

other benchmarks. 

Controlling the granularity of parallel task is an 

interesting idea. One research of this is an algorithm to 

control task granularity [11]. However, currently we 

argue that controlling the task granularity manually is 

better than the automatic one for some reasons. 

The transformation of a single sequential loop into a 

pair of the nested sequential loop is known as loop 

blocking or tiling  [12]. These practices are originally to 

take benefit from cache hierarchy. Our research aims to 

have parallel slackness and optimal task granularity and 

may benefit from the cache hierarchy. Because the 

multicore processor incorporates multiple processors 

and multiple levels of cache memory, our method is a 

simultaneous practice to exploit both parallelism and 

locality in a multicore processor at once. 

Our approach is quite different from them, as our 
method reduces the overheads by transforming a single 

parallel loop into a parallel loop and nested sequential 

loop pair. In this research, the specific purpose of the 

loop transformation is to increase the grain size of 

parallel works. In addition, this method to increase task 

granularity is quite different from Cilk language and 

StackThreads/MP which are based on Lazy task 

creation. All of the previous research mentioned above 

are more appropriate for recursive task structures. 

While the method in this study is suitable for iterative 

task structures.  

2. Research Methods 

The rectangle rule of the numerical integration program 

is chosen as a base of two benchmark programs in the 

first step. The first program is implemented with the 

naïve method, and the second is the improved version. 

We evaluate the sequential execution time TS of the 

benchmark programs and then evaluate parallel 

execution. 

2.1. Rectangular Rule of Numerical Integration 

In this paper, we propose a simple method that makes 

tasks granularity large enough to reduce the amount of 

synchronization. As a case study, we consider a parallel 
program commonly used in teaching. This program 

performs numerical integration for the estimated value 

of pi.  

As the first step of the research we evaluate the serial 

implementation of the rectangular integration for pi 

number estimation. The implementation is based on 

equation 1. In the equation, x is the midpoint of each 

rectangle i.  

𝑝𝑖 = ∑
4.0

(1+𝑥2)
∆𝑥𝑛

𝑖=0                             (1) 

From the serial implementation, we obtain serial 

execution time data TS which is used as a baseline. The 

baseline will be used to evaluate parallel work 
overheads and speedup. In further discussions, we refer 

to the TS while mentioning works. We execute a time 

command in the MSYS2 command prompt to obtain the 

serial execution time (real part). We obtain the real part, 

which is the wall time, from the time command in 

MSYS2. 

Serial algorithm listing is shown as the following: 

  

Serial Algorithm 
Input: N 
Output: pi 
BEGIN 
 NUMBER = 2000000000; 
 NUMBER i 
 NUMBER step = 1.0/N 
 NUMBER x = 0.0 
 NUMBER sum = 0.0 
 FOR i = 0 to N STEP 1 DO 
     X = (i + 0.5) * step; 
     Sum = sum + 4.0/(1 + x^2);   
 END FOR 
     pi = sum * step; 
 END 
 

The straightforward implementation of OpenMP is used 

for the naïve parallel version of the test program. The 

OpenMP implementation means that the program is 

multithreaded. In the multithreaded program, we can 

assign the number of threads executing parallel regions. 
Parallel region refers to the structured block of code 

which follows the pragma omp parallel in an OpenMP 

program. 

Equivalent parallel algorithm listing is shown as in the 

parallel Algorithm 1. 

Naïve Parallel Algorithm 1 (pi_wcs) 
Input: N 
Output: pi 
BEGIN 
 NUMBER N = 2000000000; 
 NUMBER i 
 NUMBER dx = 1.0/N 
 NUMBER x = 0.0 
 NUMBER sum = 0.0 
 PARALLEL FOR i = 0 to N STEP 1 DO PRIVATE(x) 
     X = (i + 0.5) * dx; 
     CRITICAL SECTION DO 
       Sum = sum + 4.0/(1 + x^2); 
     CRITICAL SECTION END   
 END PARALLEL FOR 
 pi = sum * dx; 
 END 
 

 

The naïve parallel algorithm, which presented as in 

parallel algorithm 1, looks very similar to that of the 

serial one. We add a few lines of OpenMP directives 

and clauses to transform the serial program to be 
parallel. Behind the scenes, the compiler translates the 

OpenMP directives and following structured blocks 

into multithreaded codes. The compiler links additional 

works from the OpenMP library to our code. We refer 



 Adnan, Intan Sari Areni, Zulkifli Tahir 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)  

DOI: https://doi.org/10.29207/resti.v6i2.3848 

Creative Commons Attribution 4.0 International License (CC BY 4.0) 

209 

 

 

to these additional works while mentioning overhead. 

As a result, the for-loop that follows #pragma omp 

parallel is shared by multiple threads and executed 

simultaneously. 

The naïve version of the parallel program for the 

rectangular rule of the pi program performs worse than 

its serial version. Work overhead, which is additional 

works in a parallel program, is significantly larger than 

the granularity of parallel works. Fine grain parallel 

works always result in significant overhead. The work 
overhead wo is quantitatively defined in equation 2. In 

equation 2, TP(1) is the parallel execution time with the 

processors equal to 1. According to equation 2, we 

calculate the work overhead by subtracting the work TS 

from the TP(1).  

𝑇𝑝(1) = 𝑇𝑆  +  𝑤𝑜                                                (2) 

Parallel work overhead is similar to the work overhead, 

but we scale the parallel execution time by the number 

of processors. 

Our research is aimed to reduce the work overhead wo. 

A method to reduce the overhead is to make task 

granularities are large enough such that the ratio B of 

computation to critical section  is significantly large. In 

the naïve implementation, this ratio is equal to 1. We 

propose this method because the most significant 

overhead is due to the time for starting and finishing the 

critical section. Making coarse the task granularity is 

usually adopted to reduce the degree of parallelism (N). 

Each iteration is a parallel task in the naïve parallel 

program (Parallel Algorithm 1). Each parallel task 
contributes to work overhead and also synchronization 

overhead. Therefore, we reduce O(N) to O(N/B) 

overhead. It means that the less parallelism is, the less 

overhead to manage parallel tasks is. This method is 

appropriate for OpenMP because the OpenMP is not a 

language to implement lazy task creation to increase 

task granularities. 

Parallel algorithm 2 shows the method to reduce the 

overhead. The parallel algorithm 2 that optimizes the 

program cost by nesting a sequential loop within a 

parallel loop. In the parallel algorithm 2 the critical 
number section is now reduced to N/B. In the algorithm, 

each thread allocates additional memory for localsum 

and ii variables from its stack as a private memory.  

2.2. Experimental Setup and Configuration 

We conducted some experiments to measure serial 

execution time and parallel execution time for some 

implementations. Based on the serial program 

execution time and parallel program execution time, we 

analyze work overhead and speed up, which shows how 

faster the parallel program is related to its serial version. 

For the parallel program, we set the number of threads 
to 1, 2, 4, and 8 (SMT mode). In addition, we scale the 

parameter task grain size B to analyze its effect on the 

work overhead wo. 

Parallel Algorithm 2 (pi_nl) 
Input: N, B 
Output: pi 
BEGIN 
NUMBER N = 2000000000; 
NUMBER pi = 0.0; 
NUMBER i; 
NUMBER dx = 1.0/N; 
NUMBER x = 0.0; 
NUMBER sum = 0.0 
 
PARALLEL FOR i = 0 TO N STEP B DO PRIVATE(x) 
    PRIVATE NUMBER ii; 
    PRIVATE NUMBER localsum = 0.0; 
    FOR ii = i TO i+B STEP 1 DO 
        IF ii < N  
            X = (ii + 0.5) * dx; 
           localsum = localsum + 4/(1+x^2); 
        ELSE BREAK //inner loop 
    END FOR  
    CRITICAL SECTION BEGIN 
        sum = sum + localsum; 
    CRITICAL SECTION END   
END PARALLEL FOR 
pi = sum * dx; 
END 
 

Table 1 shows the specifications of the hardware in this 

research. The hardware is a laptop equipped with 8th 

generation Core i7 Quad Core processor. 

Tabel 1. Hardware Specification 

Hardware Specification 

CPUs Gen 8th Core i7   

4 Cores, 2 Threads/Core 

3 GHz, HyperThreading Enabled 

RAM DDR4 16 GB 

Storage SSD 512 GB SATA 

Table 2 shows the specifications of the hardware. All 

versions of test case programs are compiled with 
compiler optimization switch -O2. This compiler option 

ensures that the compiler generates an optimized serial 

program and does so for all the parallel versions. 
 

Tabel 2. Software Specification 

Software Specification 

Operating System Windows 10 64 bits 

Home Edition 

Software distribution 

and development 

Platform 

MSYS2 For Windows 

64bits 

GCC 

OpenMP Library 

3.  Results and Discussions 

This section presents the results of our experiments. Our 

experiments measure serial programs execution time 

and also parallel programs execution times. 

The first parameter to be discussed is accuracy. Tthis 

parameter is the most important parameter before 

parallel program performance. The rapid execution time 

of a parallel program is useless if the program is not 

accurate. In this case, accuracy is the similarity between 
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the estimated values of pi between serial and parallel 

programs. The accuracy result is shown in Table 3. 

Tabel 3. The Result of Accuracy 

Number 

of 

threads 

Pi number estimation Accuracy 

(%) Serial program Parallel program 

1 3.141592653589 3.141592653589 100 

2  3.141592653589 100 

4  3.141592653589 100 

8  3.141592653589 100 

From the results of the experiments, we make work 

overhead and speedup analysis.   

3.1. Serial programs execution time 

The serial execution time is displayed in Table 4. The 

results show that the proposed method improves the 

sequential execution time of the benchmark. 

Table 4. Sequential Execution Time 

Method Sequential execution time 

Single loop 2.581 secs 

Nested loop 2.350 secs 

3.2. Parallel execution time 

Parallel program execution time is the program's 

execution time that is compiled with OpenMP 

directives and APIs. However, it is executed with one 

single thread. The results show in Table 5. 

Table 5. Parallel Execution Time 

Number 

of threads 

pi_wcs pi_nl 

1 30.338 secs 2.567 secs 

2 50.983 secs 1.321 secs 

4 106.621 secs 0.829 secs 

8 90.343 secs 0.791 secs 

3.3. Overhead and Scalability analysis 

This section presents work overhead and scalability 

analysis. The work overhead analysis is derived from 

the parallel program execution time using a single 
thread (TP(1)) and serial program execution time TS  as 

denoted in equation 2.    

Figure 1 compares work overhead in both the proposed 

and naïve parallel programs. The proposed method 

results in the numerical integration are better than the 

naïve one. It can be seen from the lower TP(1). 

Execution of fine grain parallel works with critical 

sections in a loop contributes to the large overhead. 

Figure 2 shows overhead analysis when a single process 

single thread executes the parallel program with fine 

grain parallel works. In a parallel program with fine 

grain parallel works, there are a significant fraction of 
sequential codes and a relatively small fraction of 

parallel codes. According to Amdahl’s Law [13], such 

a parallel program has a low speedup. 

 

 
Figure 1. Overhead comparison of two methods 

 
Figure 2. Overhead Illustration of Fine Grain Parallel Works in 

Single Thread Mode 
 

Figure 3 shows overhead analysis when multiple 

threads execute a parallel program with fine grain 

parallel works. In this case, the overhead (wait time) 

due to the critical section increases as the number of 

threads increases. 

 
Figure 3. Overhead Illustration of Fine Grain Parallel Works in 

Multiple Threads Mode 

As the grain size of parallel works increases, the 

overhead due to critical section decreases. In addition, 

this method has parallel fraction increases. Figure 4 
depicts an improvement in parallel works fraction and 

lowers the overhead of the critical section. In the 

multiple threads scenario presented in Figure 5, making 

the granularity parallel works increase effectively to 

reduce overhead (wait time and critical sections). 
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Figure 4. Overhead Reduction of Coarse Grain Parallel Works in 

Single Thread Mode 

 

 

Figure 5. Overhead Reduction of Coarse Grain Parallel Works in 

Multiple Thread Mode 

 

Figure 6 shows an analysis of how the overhead 

increases as the number of threads increases. However, 

the overhead rate of the proposed method is 

significantly lower than the naïve one. 

Furthermore, we evaluate the parallel work overhead of 

the proposed method with the number of threads equal 

to one but with the grain size scaled from 1 to 106. 

Figure 7 presents work overhead analysis for the 

benchmark program with the proposed method (pi_nl). 

As the figure shows, the overhead decreases as the grain 
size increase. We can see that task granularity B of 105 

iterations diminishes the work overhead. In general, 

increasing the grain size will lead to better efficiency. 

However, the grain size should not be too large to avoid 

either load imbalance or lack of parallelism. 

 
Figure 6. Work Overhead Rate to the Number of Threads 

 

 
Figure 7. Overhead Rate to the Grain Size 

 

A scalability analysis is depicted in Figure 8 that shows 

the proposed method obtains the parallel program of 

numerical integration scales with good performance. 

Although its speedup is low when the number of threads 

equals 8, this fact is known well. The cause is not the 

program, but the program is executed in SMT mode 

[14]. As presented in [15] , SMT mode may slightly 

improve performance in non-uniform workloads. 

However, in this research, the benchmark program has 

a uniform workload. In contrast with the naïve method, 
the method results in large overhead such that the 

numerical integration performs poorly and does not 

scale at all. 
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Figure 8. Speed Up of Parallel Numerical Integration Programs 

Using Naïve Method and Nested Loop Method 

4.  Conclusion 

This research reduces the overhead of massive critical 

sections such that a parallel program has a better 

performance than the naïve method. The contributed of 

the method is performance improvement such that 

parallel program performs faster than the naïve parallel 

program. The method to improve the performance is to 

make the grain size of parallel works much larger than 

the number of critical section operations. This research 
shows the method proven to be useful to improve the 

performance of parallel programs such as parallel 

numerical integration using rectangular rule and other 

parallel programs with the same pattern. 

References 
 

[1]  S. Najem N and S. Sami I, "Multi-core Processor : Conceppts 

And Implementations," International Journal of Computer 

Science and Information Technology, pp. 01-10, 2018.  

[2]  A. Rosà, E. Rosales and W. Binder, "Analysis and 

Optimization of Task Granularity on the Java Virtual 

Machine," ACM Transaction on Programming Languages and 

Systems, vol. 41, no. 5, p. 47, 2019.  

[3]  A. Rosà, E. Rosales and W. Binder, "Analyzing and 

Optimizing Task Granularity on the JVM," in Association for 

Computing Machinery, New York, 2018.  

[4]  J. M. Bull, "Measuring synchronisation and scheduling 

overheads in OpenMP," in Proceedings of First European 

Workshop on OpenMP, 1999.  

[5]  M. Frigo, P. Halpern, C. E. Leiserson, Lewin-Berlin and 

Stephen, "Reducers and other Cilk++ hyperobjects," in 

Proceedings of the twenty-first annual symposium on 

Parallelism in algorithms and architectures, 2009.  

[6]  K. Hasanov and A. Lastovetsky, "Hierarchical redesign of 

classic MPI reduction algorithms," The Journal of 

Supercomputing, vol. 73, no. 2, pp. 713-725, 2017.  

[7]  E. Mohr, D. Kranz and R. Halstead, "Lazy task creation: a 

technique for increasing the granularity of parallel programs," 

IEEE Transactions on Parallel and Distributed Systems, vol. 

2, no. 3, pp. 264-280, 1991.  

[8]  K. Taura, K. Tabata and A. Yonezawa, "StackThreads/MP: 

Integrating Futures into Calling Standards," ACM SIGPLAN 

Notice, vol. 34, no. 8, pp. 60-71, 1999.  

[9]  Adnan and M. Sato, "Efficient Work-Stealing Strategies for 

Fine-Grain Task Parallelism," in 2011 IEEE International 

Symposium on Parallel and Distributed Processing Workshops 

and Phd Forum, Anchorage, 2011.  

[10]  Adnan and M. Sato, "Dynamic Multiple Work Stealing 

Strategy for Flexible Load Balancing," IEICE Transactions on 

Information and Systems, vol. E95.D, no. 6, pp. 1565-1576, 

2012.  

[11]  A. Fonseca and B. Cabral, "Controlling the granularity of 

automatic parallel programs," Journal of Computational 

Science, vol. 17, no. 3, pp. 620-629, 2016.  

[12]  J. M. Cardoso, J. G. F. Coutinho and P. C. Diniz, "Chapter 5 - 

Source code transformations and optimizations," in Embedded 

Computing for High Performance, Boston, Morgan Kaufmann, 

2017, pp. 137-183. 

[13]  J. L. "Gustafson, ""Amdahl's Law"," in "Encyclopedia of 

Parallel Computing", "Springer US", 2011, pp. "53--60". 

[14]  C. Jung, D. Lim, J. Lee and S. Han, "Adaptive Execution 

Techniques for SMT Multiprocessor Architectures," in 

Proceedings of the tenth ACM SIGPLAN symposium on 

Principles and practice of parallel programming, Chicago.  

[15]  Adnan, D. K. Oktahidayat and A. Achmad, "Performance 

Improvement with Non-Uniform Loads on SMT Processors," 

in 5th International Conference on Computing Engineering 

and Design (ICCED), 2019.  

 

 

   

 


