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Abstract  

The aim of this paper is to elaborate the performance of Simulated Annealing (SA) algorithm for solving traveling salesmen 

problems. In this paper, SA algorithm is modified by using the interaction between outer and inner loop of algorithm. This 

algorithm produces low standard deviation and fast computational time compared with benchmark algorithms from several 

research papers. Here SA uses a certain probability as indicator for finding the best and worse solution. Moreover, the strategy 

of SA as cooling to temperature ratio is still given. Thirteen benchmark cases and thirteen square grid symmetric TSP are used 

to see the performance of the SA algorithm. It is shown that the SA algorithm has promising results in finding the best solution 

of the benchmark cases and the squared grid TSP with relative error 0 - 7.06% and 0 – 3.31%, respectively. Further, the SA 

algorithm also has good performance compared with the well-known metaheuristic algorithms in references.  

Keywords: simulated annealing, traveling salesman problem, symmetric TSP, square grid TSP.  

1. Introduction 

Finding an optimal route or shortest path is quite 

challenging due to its own difficulties. The problem can 

be implemented in some fields. One of them is finding 

minimum route for a salesman who want to visit place 

of all of his clients with constraint the places are visited 

exactly once and the salesman ends his tour in place in 

which he starts the journey. The problem is well known 

as TSP (traveling salesman problem) where the problem 

can be described in weighted graph. Here, the vertex and 

edges of the graph are used to describe city and distance 

between two cities, respectively. Moreover, this problem 

is also known as Hamiltonian circuits problem. 

In recent years, many researchers developed and 

proposed methods to solve the problem. Several 

methods that has been proposed to solve the problem are 

discrete tree-seed algorithm (DTSA)[1], black hole 

algorithm (BHA) [2], discrete lion swarm optimization 

[3], a hybrid optimization algorithm based on wolf pack 

search and local search [4], heuristic shortest path 

algorithm [5],  genetic algorithm (GA) [6], particle 

swarm optimization (PSO) [6-8], ant colony 

optimization (ACO) [7], shuffled frog leaping 

algorithms (SFLA) [7], and simulated annealing (SA) 

[9-18]. From [2], BHA has a good performance 

compared with GA, ACO, dan PSO for finding the 

optimal solution and computational time in 10 

benchmark cases of TSP using 22 - 101 number of cities. 

Meanwhile in [7], ACO known has a good performance 

compared PSO, improved PSO dan SFLA algorithm for 

finding the optimal solution of six benchmark cases of 

TSP with totally 30 – 100 cities. However, comparing 

the computational time, PSO is shown slower than the 

other algorithms. 

Considering the work of Chunhua, et al. in [19], it is 

shown that STA had the best performance to find the 

optimal solution and the fastest in computational time 

for solving three benchmark cases of TSP with the 

number of cities 16, 48, and 52, compared with ACO and 

SA. Moreover, STA had low standard deviation from 

three cases in [19]. This standard deviation is used to 

show the stability and reliability of algorithm for finding 

the optimal solution [2]. In [19], each one of algorithms 

is running in 20 times parallel for solving some 

problems. 

In this paper, SA algorithm will be elaborated to solve 

the TSP. Moreover, to see the performance of the SA 

algorithm, comparison of SA and well-known 

metaheuristic algorithm such as BHA, GA, PSO, ACO 

and state transition algorithm (STA) will be given for 
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solving some benchmark cases of TSP. Here, SA will be 

modified by using combination of outer and inner loop 

in algorithm. In this case, the input of outer loop (the 

number of experiments) will depend on the result of 

inner loop (the proses for finding optimal solution). With 

the modification, it is expected that the performance of 

the SA can improve. 

There are two kinds of TSP namely symmetric and 

asymmetric TSP [20]. The symmetric TSP is when the 

distance between city A to city B is the same with the 

distance between city B to city A. Whereas when the 

distance is different, the problem is known as 

Asymmetric TSP. Note that, all mentioned benchmark 

cases above are belong to the symmetric TSP. The 

performance comparison will be conducted with three 

references, [2], [7], and [19]. From these references, 

there are twelve symmetric TSP benchmark cases where 

data of each case can be found in [21]. The benchmark 

cases are Ulysess16, Ulysess22, Bays29, Bayg29, Att48, 

Eil51, Berlin52, St70, Eil76, Gr96, KroA100, and 

Eil101. Therefore, the SA algorithm will be focused on 

solving the symmetric TSP using the benchmark cases 

to see its performance compared with other algorithms 

mentioned in those references. 

To see further performance of the SA algorithm, another 

simulation in solving the symmetric TSP cases is 

conducted. In this case, 𝑛 × 𝑛 cities are well-order 

generated with distance between two neighboring cities 

is equal to one. Here, the case is called by name ‘square 

grid symmetric TSP’. The simulations are conducted for 

𝑛 = 3 − 15. The values of 𝑛  are chosen to see 

performance of the algorithm in solving symmetric TSP 

cases with small to medium number of cities. Using the 

values of 𝑛, numbers of city of the simulations are varied 

from 9 to 225. 

2. Research Method 

The simulated annealing (SA) is an optimization method 

that can be used to solve TSP. The method is used to find 

shortest route from all possible routes [11]. The optimum 

solution is obtained when the energy (distance) produced 

is the minimum and the path tracking is obtained from 

the route taken. As an optimization method, the 

difference between SA and other optimization methods 

is that there is a possibility to still accept worse solution 

than the current solution to elude local optimal solution 

[10]. Generally, the SA algorithm is probabilistic meta-

heuristic method inspired by annealing of metal [11]. 

The algorithm was introduced in combinatorial problem 

to solve TSP by Kirkpatrick et al. in 1983 [9]. The idea 

to accept the worse solution in the process is the main 

idea that differentiates the algorithm with other 

optimization methods. The acceptance depends on 

probability function, 𝑝, as follows [9] 

𝑝(∆𝐸, 𝑇) = {𝑒
−∆𝐸

𝑇 ∆𝐸 > 0
1 ∆𝐸 ≤ 0

 (1) 

Where ∆𝐸 denotes the energy difference and 𝑇 

represents the temperature. 

Note that the energy difference is less or equal than zero, 

∆𝐸 ≤ 0, means that the current solution is better than 

previous solution. Whereas the difference energy greater 

than zero, ∆𝐸 > 0, means that the current solution is 

worse than previous solution. Criteria for acceptance of 

the worse solution depends on certain probability, 𝑝𝑟 <

𝑒
−∆𝐸

𝑇 , where 𝑝𝑟 is random value between 0 and 1. In this 

case, the method utilizes random numbers in the process, 

so that each experiment, may produce different results 

and it is still possible that the solution obtained will be 

trapped in the local optimum solution. Therefore, it takes 

several trials (running program) to find out the optimum 

solution. 

The cooling process of the temperature is one of factors 

that need to be considered. At the beginning, the initial 

value of the temperature is set. The greater the initial 

temperature used, the wider the range of the random 

search process [11]. The initial temperature will 

continue to decrease as the iteration goes to increase. 

Following [9] and [10], the geometric cooling schedule, 

𝑇 = 𝑇 × 𝑟, is used in here. Value of the cooling 

coefficient, 𝑟, is constant between 0 and 1 [9]. Further, 

value of the coefficient for slow cooling rate is between 

0.8 to 0.99 [10]. Therefore, in this article, the cooling 

rate is 𝑟 = 0.9.  

In the SA method, at the beginning the initial of solution, 

𝑆0, is given. The solution is randomly generated. 

Following Algorithm 1 is given the modified SA 

procedures: 

Algorithm 1 

SA procedures by using inner and outer 
loop interaction 
Set the initial value T, 𝑆0 using (2), 𝐸0, 𝑆𝑜𝑝𝑡 

and 𝐸𝑜𝑝𝑡  
For 1 to n 

Update State S, Calculate Energy E using 
(3) 
Calculate Δ𝐸 = 𝐸 − 𝐸0, 𝜔 ∈ [0,1], 𝑝 using (1) 
If Δ𝐸 < 0 then  

Set S0 = 𝑆, 𝐸0 = 𝐸 
If 𝐸 < 𝐸𝑜𝑝𝑡 then 𝑆𝑜𝑝𝑡 = 𝑆0, 𝐸𝑜𝑝𝑡 = 𝐸0 

            Else go to Step 11 
Else  

If 𝑝 > 𝑝𝑟 then go to Step 5 
Else go to Step 11 

If satisfying Inner Loop Termination 
Criteria, then 

Do cooling schedule 𝑇 = 𝑇 × 𝑟 
Go to Step 3 

End For 
 

The State (S) is used to track the path taken, for example, 

there are M cities to be taken, the state is a number from 

1 to M on the condition that no number is similar. In 
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other words, the state is a random permutation of the M 

cities. In this article, the initial state is created as 

𝑆0 = {1, 2, 3, 4, 5 … , 𝑀} (2) 

The state is updated using reversion procedure. In this 

case, two random values within M (k1 and k2) are 

created and position of the state in the range are inversed 

as described in [16].  

 Energy (E) is used as an objective function. In this case, 

it is used to calculate the total distance travelled in one 

state. Note that in the TSP, the beginning and the end of 

the route is the same so the additional distance from the 

last travelled city to the first city is added.  

𝐸 =  ∑ 𝑑𝑖

𝑁−1

𝑖=1

+ 𝑑𝑁 (3) 

Where 𝑑𝑖 denotes distance between two cities in the 

state. Position of the cities is expressed in Cartesian 

coordinates so that the distance can be expresses as given 

in equation (4). 

Termination of the program can use given maximum 

iteration or it can use the specified/final temperature. In 

this article, the stopping criteria is the maximum 

iteration.  

3.  Result and Discussion 

In this paper, two simulations of symmetric TSP are 

conducted. The first simulation is symmetric TSP based 

on Data in [21] and the second is square grid symmetric 

TSP generated in certain ways. In this case 𝑛 × 𝑛 points 

are well-order generated with distance between two 

neighboring points is equal to one. Results of the SA 

algorithm are compared with best known solution (BKS) 

from references for the symmetric case and analytic 

solution for the square grid case. Further, comparison 

with some algorithms is carried out to see the SA 

algorithm performance. All simulations in this paper are 

carried out using a PC with windows 10 pro 64-bit (OS), 

Intel® Core™ i7-8550U CPU @ 1.80 GHz processor 

and 16 GB RAM memory. The SA algorithm is based on 

C++ language. All simulations are run with parameter 

𝑇 = 1000 (initial temperature), 𝑟 = 0.9, maximum 

iteration of outer loop is 100, maximum iteration of inner 

loop is 800*number of cities.  

3.1. Symmetric TSP 

In this case, all points are generated using TSPLIB data 

that can be downloaded in [21]. Optimal route of the 

cases is also available in the reference. The simulations 

are run for thirteen TSP cases such as Ulysess16, 

Ulysess22, Bays29, Bayg29, Att48, Eil51, Berlin52, 

St70, Eil76, Gr96, KroA100, Eil101, and Ch130. The 

number in the name of the case represents number of 

cities. Number of cities in the cases are 16, 22, 29, 29, 

48, 51, 52, 70, 76, 96, 100, 101, and 130, respectively. 

These cases are chosen to conduct comparison with 

some references. Results of the simulations are 

presented in Table 1.

 

In the Table 1, notation BS means the best solution of 

the SA algorithm, WS is the worst solution of the SA 

algorithm, Ave is average of all solution of the SA 

algorithm, IL is maximum of number iterations of the 

inner loop, Rep means repetition of the outer loop, BI is 

the best iteration of inner loop to get the best solution, 

𝑑𝑖 = √(𝑆𝑥(𝑖) − 𝑆𝑥(𝑖 + 1))
2

+ (𝑆𝑦(𝑖) − 𝑆𝑦(𝑖 + 1))
2

 

𝑑𝑁 = √(𝑆𝑥(𝑁) − 𝑆𝑥(1))
2

+ (𝑆𝑦(𝑁) − 𝑆𝑦(1))
2
 

(4) 

Table 1. Results of the Symmetric TSP Cases 

Case BS WS Ave  IL Rep BI BT (s) 

Ulysess16 73.9876 74.4602 74.2239 12800 2 593 0.333 

Ulysess22 75.3097 76.8119 76.2203 17600 14 1334 4.349 

Bays29 9074.15 9360.715 9202.625 23200 5 622 1.239 

Bayg29 9074.15 9576.29 9259.601 23200 38 889 13.517 

Att48 33882.48 34846.67 34766.32 38400 12 38400 6.367 

Eil51 430.89 444.74 444.41 40800 52 40800 31.465 

Berlin52 7544.366 8341.865 7845.615 41600 93 41600 57.396 

St70 697.8861 727.8492 708.807 56000 31 56000 32.143 

Eil76 563.6019 594.2049 575.5559 60800 86 60800 106.068 

Gr96 539.9611 558.2102 550.0152 76800 11 76800 20.599 

KroA100 21632.56 24181.945 22956.741 80000 17 80000 32.281 

Eil101 673.4284 708.6054 688.9844 80800 34 80800 67.967 

Ch130 6356.304 6657.21 6443.351 104000 91 104000 298.951 
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and BT is the total of time (in second) for inner loop and 

outer loop to get the best solution. To see performance 

of the SA algorithm, comparison between the results 

with the best-known solution (BKS) from references are 

executed. In this case, we calculate relative error using 

equation (1) for the best solution, the worst solution, and 

average of the solution. Further, average time is 

calculated to see average time for one inner loop using 

equation (2). The performance of the algorithm is given 

in Table 2. 

It is shown in the Table 2 that results of the SA algorithm 

are acceptable. According to the relative error, the 

algorithm has good agreement with the BKS for the 

conducted cases. The algorithm gets the BKS for 

Ulysess16, Ulysess22, Bays29, and Bayg29 case. 

Whereas for the other cases it can be said that the 

algorithm is also has good comparison with the BKS. 

The best solution of the algorithm has the highest and the 

smallest relative error 7.06% and 0.0%, respectively. 

The worst solution has relative error 0.64% - 13.63%. 

Whereas average of the solutions has relative error 

0.32% - 9.54%. It is clearly shown in the table that the 

best performance is in the Ulysess16 case in which there 

are 16 points/cities. When the number of points/cities is 

bigger the performance is decreasing, and the average 

time is increasing.  

𝐵𝐸 =
𝐵𝑆 − 𝐵𝐾𝑆

𝐵𝐾𝑆
, 𝑊𝐸 =

𝑊𝑆 − 𝐵𝐾𝑆

𝐵𝐾𝑆
 ,

𝐴𝐸 =
𝐴𝑣𝑒 − 𝐵𝐾𝑆

𝐵𝐾𝑆
. 

(5) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 =
𝐵𝑇

𝑅𝑒𝑝
. 

(6) 

Comparison is also conducted with other algorithms in 

several references. The first comparison is with 

algorithms in [7]. In the reference, there are six 

algorithms such as ACO, PSO, improved PSO (IPSO), 

SFLA, order crossover with inversion mutation (OXIM) 

SFLA, and cycle crossover with inversion mutation 

(CXIM) SFLA. The algorithm was used to solve six 

symmetric TSP cases namely Oliver30, Eil51, Berlin52, 

St70, Eil76, and KroA100. All simulations in the 

reference are based on MATLAB 6.5 tool and run in PC 

with a 1.70 GHz processor and 4.00 GB RAM memory. 

All results given in the reference were gotten after the 

program was run 1000 times and the time in the 

reference was an average running time. It is shown in the 

reference that ACO and Improved PSO have better 

results according to their error.  

Comparisons between the SA algorithm and the other 

algorithms are carried out for the cases minus Oliver30 

case because data of the case are not available in [21]. 

Results of the comparison are presented in Table 3. Note 

that maximum number of iterations of ACO, PSO, and 

IPSO in the reference for each TSP case is 1000. The 

number of ants in ACO is 100 and the number of 

populations in PSO and IPSO is equal to number of 

cities. Further, it is stated in the reference that in case of 

large number of cities, number of ants may be increased 

in ACO and number of iterations may be increased in 

IPSO. Thus, the setting of inner loop which is equal to 

number of cities times 800 is acceptable. 

It is shown in the Table 3 that the SA algorithm has better 

results than the algorithms in [7] for the TSP cases. The 

SA algorithm has superior performance than the 

algorithms in the references. It can be seen also that 

computational time of the SA algorithm is better than the 

mentioned algorithm. But the PC specification to run the 

SA algorithm is better than the PC specification to run 

the other algorithm. Note that, value of the average time 

Table 2. Performance of the SA algorithm for the Symmetric TSP Cases 

Case BKS BS BE WE AE Average Time (s) 

Ulysess16 73.9876 [19] 73.9876 0.0000 0.0064 0.0032 0.1665 

Ulysess22 75.3097 [2] 75.3097 0.0000 0.0199 0.0121 0.3106 

Bays29 9074.15 [8] 9074.15 0.0000 0.0316 0.0142 0.2478 

Bayg29 9074.15 9074.15 0.0000 0.0553 0.0204 0.3557 

Att48 33522 33882.48 0.0108 0.0395 0.0371 0.5306 

Eil51 426 430.89 0.0115 0.0440 0.0432 0.6051 

Berlin52 7542 7544.366 0.0003 0.1061 0.0403 0.6172 

St70 675 697.8861 0.0339 0.0783 0.0501 1.0369 

Eil76 538 563.6019 0.0476 0.1045 0.0698 1.2333 

Gr96 514 [22] 539.9611 0.0505 0.0860 0.0701 1.8726 

KroA100 21282 21632.56 0.0165 0.1363 0.0787 1.8989 

Eil101 629 673.4284 0.0706 0.1266 0.0954 1.9990 

Ch130 6110 6356.304 0.0403 0.0896 0.0546 3.2852 
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of the SA algorithm is average time for one outer loop 

iteration. 

To see further performance of the SA algorithm, another 

comparison with other algorithms in [2] and [19] is 

conducted. In this case, there are five compared 

parameters such as best solution, worst solution, average 

of solution, standard deviation, and time. In [2], there are 

four algorithms such as ACO, PSO, GA, and BHA that 

are compared each other to solve ten symmetric TSP 

cases; Ulysess22, Bays29, Bayg29, Att48, Eil51, 

Berlin52, St70, Eil76, Gr96, and Eil101. All simulations 

in the reference are based on MATLAB and were 

executed on PC with Intel® Core™ 2 Duo CPU @ 2 

GHz processor and 2 GB RAM memory. Results of the 

algorithms using 100 population size, 200 iterations, and 

5 independent running are taken and compared with the 

SA algorithm and presented in Table 4. To represent the 

reference setting, the SA algorithm runs with 20000 

inner loop iterations and 5 outer loop iterations.  

In [19], performances of SA, ACO, and state transition 

algorithm (STA) are compared each other to solve 

Ulysesss16, Att48, and Berlin52 TSP. All the 

simulations in the reference are based on MATLAB and 

were run on PC with Intel® Core™ i3-2310M CPU @ 

2.10 GHz processor. Note that, in the reference [19], the 

run time is the average time used in 20 execution and the 

maximum iteration for SA is 4000. Therefore, to adopt 

the reference, iterations of inner and outer loop are set 

4000 and 20, respectively. Comparison results are given 

in Table 5. 

Table 3. Performance Comparison between the SA algorithm and algorithms in [7] for the TSP Cases 

Problem Algorithm Best Mean Error Average Time 

Eil51 (51 cities) 

BKS – 426 

ACO 443 516 0.0399 194 

PSO  908 1313 1.1315 9 

IPSO 464 543 0.0892 259 

SFLA 1169 1703 1.7441 1136 

OXIMSFLA 534 593 0.2535 16241 

CXIMSFLA 671 671 0.5751 5147 

SA 430.9 444.4 0.0115 0.6051 

Berlin52 (52 cities) 

BKS – 7542 
 

ACO  7549 9385 0.0009 276 

PSO  17296 22206 1.2933 15 

IPSO 7816 8723 0.0363 469 

SFLA  19865 30598 1.6339 1150 

OXIMSFLA 8362 9987 0.1087 21907 

CXIMSFLA 12266 15109 0.6264 5732 

SA 7544.4 7845.6 0.0003 0.6172 

St70 (70 cities) 

BKS – 675 

 

ACO 707 888 0.0474 1678 

PSO  2009 3411 1.9763 28 

IPSO 755 871 0.1185 1058 

SFLA 2615 3759 2.8741 1859 

OXIMSFLA 892 1004 0.3215 1771 

CXIMSFLA 1355 1734 1.0074 3042 

SA 697.9 708.8 0.0339 1.0369 

eil76 (76 cities) 

BKS – 538 

ACO 573 659 0.0651 2035 

PSO  1662 1975 2.0892 28 

IPSO 584 641 0.0855 3036 

SFLA 1904 2580 2.5390 1771 

OXIMSFLA 733 819 0.3625 99104 

CXIMSFLA 1072 1326 0.9926 28007 

SA 563.6 575.6 0.0476 1.2333 

KroA100 (100 
cities) 

BKS – 21282 

 

ACO 22388 28655 0.0520 4516 

PSO 113174 191394 4.3178 45 

IPSO 24596 28385 0.1557 9426 

SFLA 128520 175413 5.0389 3042 
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Table 3. Performance Comparison between the SA algorithm and algorithms in [7] for the TSP Cases 

Problem Algorithm Best Mean Error Average Time 

OXIMSFLA 37212 41371 0.7485 197264 

CXIMSFLA 58069 78451 1.7285 52365 

SA 21632.6 22956.7 0.0165 1.8989 

Table 4 shows performance comparison of the SA 

algorithm and the other algorithms in [2]. It is clearly 

shown in the table that results of the SA algorithm are 

better than results of the other algorithms in almost every 

case and parameter. The SA algorithm has better 

performance in finding the best solution of each case 

except for the Ulysess22 case in which the algorithm 

gets the same results with the BHA algorithm. In terms 

of computational time, it is hard to compare due to the 

PC specification but note that the column time for the 

SA algorithm is the total time for running the program 

with 200 iterations of inner loop and 5 iterations of outer 

loop. 

 

Table 4. Performance Comparison between the SA algorithm and algorithms in [2] for the TSP Cases 

Problem Algorithm Best Worst Average Std. Dev Time 

ulysses22 (22 cities) 

BKS – 75.3097 

ACO 75.3984 75.8409 75.4869 0.19789 84.27123 

PSO 75.9104 77.1857 76.2186 0.55273 61.87992 

GA 75.7744 76.4434 75.9878 1.2307 63.39216 

BHA 75.3097 75.9343 75.6844 0.34208 50.44745 

SA 75.3097 76.09488 75.5638 0.3253 1.515 

bays29 (29 cities) 

BKS – 9074.15 

ACO 9239.197 11014.45 9823.202 722.4152 88.2566 

PSO 9120.339 9498.171 9195.905 168.9717 88.82869 

GA 9751.426 10513.91 10015.23 319.8788 57.11864 

BHA 9396.475 9507.17 9463.252 60.9588 52.1048 

SA 9076.983 9299.9 9166.15 109.206 1.375 

bayg29 (29 cities) 

BKS – 9074.15 

ACO 9447.493 11033.55 9882.22 675.8331 99.95724 

PSO 9329.251 11332.72 9947.026 799.4073 75.29661 

GA 9579.123 10411.2 9771.954 127.1131 56.16117 

BHA 9375.442 9375.442 9375.442 0 45.87095 

SA 9094.635 9752.892 9314.914 278.230 1.642 

att48 (48 cities) 

BKS – 33522  

ACO 35230.9 46204.24 39436.18 4874.295 133.4571 

PSO 36996.44 61421.99 47018.41 9685.894 84.73842 

GA 35312.52 50671.45 43620.64 2004.001 57.35453 

BHA 34200.86 35528.52 34473.84 589.8024 43.21174 

SA 34056.95 34056.95 34056.95 0 1.917 

eil51 (51 cities) 

BKS – 426  

ACO 454.3895 469.0531 461.0175 6.2974 59.19328 

PSO 469.1551 737.5258 574.8022 107.2371 57.25646 

GA 448.8397 462.1142 453.4773 9.4157 59.63916 

BHA 437.893 526.8977 458.9252 38.6365 44.39009 

SA 429.484 476.9822 446.996 17.4654 2.568 

berlin52 (52 cities) 

BKS – 7542  

ACO 7757.026 10541.12 8522.902 1152.2 65.07013 

PSO 9218.468 14279.43 11089.53 2067.932 68.64806 

GA 8779.756 9565.374 9288.448 1301.211 52.73534 

BHA 8188.071 9356.748 8455.83 508.9871 43.40446 

SA 7957.667 8074.314 7997.202 49.713 1.907 

st70 (70 cities) 

BKS – 675  

ACO 711.6515 855.2032 757.754 59.6079 94.56822 

PSO 1030.848 1756.123 1321.814 269.2793 55.28412 

GA 1112.308 1242.201 1158.846 52.1734 55.09585 

BHA 723.2691 1081.109 797.5745 125.2272 45.3308 

SA 702.9316 705.1066 703.802 1.066 2.312 

eil76 (76 cities) 

BKS – 538  

ACO 574.2404 665.9995 594.1442 40.2152 61.7418 

PSO 804.2667 1195.902 975.6397 152.4061 56.76708 

GA 619.2262 679.7864 652.0593 122.0972 46.69151 

BHA 566.243 925.8417 659.1021 152.1754 46.54038 

SA 564.345 595.6808 582.495 11.924 2.499 

gr96 (96 cities) 

BKS – 514  

ACO 555.7535 639.9167 580.5406 33.9301 84.38977 

PSO 1095.111 1728.824 1378.87 247.5099 56.21171 

GA 737.9671 748.3543 742.4275 4.3282 63.24444 
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Table 4. Performance Comparison between the SA algorithm and algorithms in [2] for the TSP Cases 

Problem Algorithm Best Worst Average Std. Dev Time 

BHA 546.8397 1197.876 807.2465 258.815 43.58791 

SA 539.4268 539.4268 539.4268 0 2.969 

eil101 (101 cities) 

BKS – 629  

ACO 725.0996 868.2047 763.9207 59.9684 89.63974 

PSO 1158.704 1973.819 1499.991 319.7468 62.09302 

GA 828.8806 854.4381 838.8307 9.9642 55.18821 

BHA 720.3838 1249.868 897.3813 210.1446 45.83337 

SA 687.9949 704.1819 697.707 7.930 3.166 

Performance of the SA algorithm compared with 

algorithms in [19] is shown in Table 5. It is clearly 

shown that performance the SA algorithm is in good 

comparison with the other algorithms. In terms of the 

best solution, the SA algorithm has the same result with 

STA in Ulysess16 and Berlin52 TSP and better result in 

Att48 TSP case. Further, in Ulysess16 TSP case, the SA 

algorithm is better than the other algorithms in 

remaining parameters. Neglected the STA, the SA 

algorithm has the better performance compared with 

ACO given in [19]. Note that, value of the average time 

of the SA algorithm is average time for one outer loop 

iteration. 

 

Table 5. Performance Comparison between the SA algorithm and algorithms in [19] for the TSP Cases 

Problem Algorithm Best Worst Average Std. Dev Average Time 

ulysess16 (16 cities) 

BKS – 73.9876 

ACO 74.6287 78.7728 76.0864 1.1062 11.3038 

STA  73.9876 74.5939 74.0779 0.1626 1.2223 

SA 73.9876 73.9998 73.9937 0.0061 0.2593 

att48 (48 cities) 

BKS – 33522 
 

ACO 37015 39801 38449 862.4546 102.4784 

STA  33724 36205 34872 668.7553 3.0462 

SA 33710.99 36568.22 34946.77 777.57 0.2442 

berlin52 (52 cities) 

BKS – 7542 
 

ACO 8240.4 9151.3 8777.6 267.1124 118.0948 

STA  7544.4 8630.5 8247.2 273.4509 3.3438 

SA 7544.4 8918.8 7706.5 360.1 0.2369 

In the SA algorithm, random value is used, therefore its 

result is influenced by the value. Depends on the value, 

the algorithm may get better result in faster 

computational time or it is possible to get worse solution 

since SA algorithm has possibility to accept worse 

solution leading to get local optimum. Repetitions of the 

program execution are to see the convergence of the 

results. The lower standard deviation shows that the 

related algorithm is more stable and reliable in finding 

the optimal/best solution [2].  

3.2. Square Grid Symmetric TSP 

In the square grid symmetric TSP, 𝑛 × 𝑛 cities are well-

order generated with distance between two neighboring 

cities is equal to one. In this case, simulations are 

conducted for 𝑛 = 3 − 15. The values of 𝑛 are chosen 

to see performance of the algorithm in solving 

symmetric TSP cases with small to medium number of 

cities. Using the values of 𝑛, numbers of city of the 

simulations are varied from 9 to 225. Results of the 

simulations are presented in Table 6 and Table 7. The 

best solution of the case for 𝑛 = 7 can be seen in Figure 

1.

 
Figure 1. Solution of Square Grid Symmetric TSP for 𝑛 = 7 

Table 6. Results of the Square Grid TSP Cases 

n Number  

of City 

BS WS Ave IL Rep BI BT 

3 9 9.4142   7200 0 154  

4 16 16   12800 0 445  

5 25 25.4142   20000 0 1353  

6 36 36 36.8284 36.7249 28800 8 12353 2.841 
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It is shown in Table 7 that performance of the SA 

algorithm are acceptable. The algorithm has no error in 

finding the optimal solution for cases with number of 

cities are 9, 16, 25, 49, 84, and 81. For the remaining 

cases, the error is getting larger when the number of the 

cities are getting bigger.  The error are 0.% - 3.31% 

which mean the performance of the SA algorithm is 

good. 

4.  Conclusion 

Elaboration of simulated annealing algorithm using 

inner and outer loop has been carried out. Several 

simulations have been conducted to see performance of 

the algorithm. The simulations are carried out for 13 

symmetric TSP cases taken from [21]. The algorithm 

shows promising performance with relative error; the 

best solution 0 - 7.06%, the worst solution 0.64% - 

13.63%, and average of the solutions 0.32% - 9.54%. 

The algorithm also has good performance compared 

with the well-known metaheuristic algorithms. The SA 

algorithm has better performance in finding the best 

solution compared with the other algorithms in [2], [7], 

and [19]. Moreover, the SA algorithm has small enough 

standard deviation value 0 – 777.57 with average value 

124.118. In the square grid TSP, the SA algorithm also 

has good performance with relative error 0 – 3.31%. The 

SA algorithm can find the best solution of the cases. 

However, in some cases the SA could not find the best 

solution. Here, existence of the random value influences 

result of the algorithm. For future work, adding local 

search algorithm is expected to increase the performance 

of SA. Moreover, decreasing the computational time of 

SA algorithm by parallel algorithm can be considered for 

the future work.  
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