Tingkat Prediksi Pendaftar Ujian Kompetensi Laboratorium Menggunakan Metode Least Square

  • Gunadi Bin Senitio Jufriadif Na'am
  • Julius Santony UPI YPTK Padang
  • Jufriadif Na’am UPI YPTK Padang
Keywords: Laboratory facilities, predictions, least square, registrants, competency exams

Abstract

Services for laboratory competency test participants must be increased for each period. With the number of participants fluctuating, the laboratory must prepare and predict how many facilities will be used to support these activities, such as laboratory rooms, exam questions, and other equipment. To overcome this problem, a method is needed to predict the number of participants in the coming period. In this study, the Least Square method is used to predict participants in the next period. This method managed to get the number of predictions in the coming period with a prediction error rate of 9.99% using the Mean Absolute Percentage Error (MAPE). The empirical results show that this research is very helpful for the laboratory in preparing laboratory competence examination facilities

References

[1] Smagin V I., 2017. Prediction Of States Of Discrete Systems With Unknown Input Of The Model Using Compensation. Russian Physics Journal, 59(9), pp.1507-1514. DOI: 10.1007/s11182-017-0937-6.
[2] Mulyani D., 2015. Prediction of New Student Numbers Using Least Square Method. International Journal of Advanced Research in Artificial Intelligence, 4(5), pp.30-35. DOI: 10.14569/issn.2165-4069.
[3] Fengmei Y., Meng L., Anqiang H. and Jian L., 2014. Forcasting Time Series With Genetic Programming Based On Least Square. Journal of Systems Science and Complexity, pp.117-129. DOI: 10.1007/s11424-014-3295-2.
[4] Wanto A. and Windarto A P., 2017. Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation. Jurnal Sinkron, pp.37-49. ISSN: 2541-2019.
[5] Guntur M., Santony J. and Yuhandri, 2018. Prediksi Harga Emas dengan Menggunakan Metode Naïve Bayes dalam Investasi untuk Meminimalisasi Resiko. Jurnal Resti, pp. 354-360. ISSN: 2580-0760.
[6] Hariri F R., 2016. Metode Least Square Untuk Prediksi Penjualan Sari Kedelai ROSI. Jurnal SIMETRIS, 7(2). ISSN: 2252-4983.
[7] Zhang Z., Yuan S., Xu Z. and Fang L., 2013. A Prediction Method about Central Heating Parameters Based on Method of Least Square. International Conference on Measurement, Information and Control, pp.1163-1166. DOI: 10.1109/MIC.2013.6758165.
[8] Chi H., 2015. A Discussions on the Least-Square Method in the Course of Error Theory and Data Processing. International Conference on Computational Intelligence and Communication Networks A, pp.486-489. DOI : 10.1109/CICN.2015.100.
[9] Ge L., Ye S Y., Shan S T., Zhu S H., Wan H. and Fan S. 2015., The Model of PK/PD for Danhong Injection Analyzed by Least Square Method. International Conference on Information Technology in Medicine and Education, pp.292-296. DOI: 10.1109/ITME.2015.47.
[10] Suwita L., 2018. Metode Least Square Dalam Mengukur Trend Penjualan Pada Home Industry Bengkel Sendal Thostee Bukittinggi. Jurnal Menara Ilmu, pp.54-60. ISSN: 1693-2617.
[11] A Restu R., 2017. Penerapan Metode Least Square Untuk Prediksi Hasil Sadap Karet. Jurnal PROGRESIF, pp.1569-1576. ISSN: 0216-3284.
[12] Manurung B U P., 2015. Implementasi Least Square Dalam Untuk Prediksi Penjualan Sepeda Motor (Studi Kasus: PT.Graha Auto Pratama). Jurnal Riset Komputer, pp.21-24. ISSN: 2407-389X.
[13] Simbolon T M., 2016. Perancangan Aplikasi Forecasting Pertumbuhan Penduduk Pada Kecamatan Tebing Tinggi Dengan Menggunakan Metode Least Square. Jurnal Riset Komputer, pp.78-83. ISSN: 2407-389X.
Published
2018-11-22
Section
Technology Information Article