Disease Detection on Rice Leaves through Deep Learning with InceptionV3 Method
Abstract
The rate of growth in the agricultural sector in Indonesia puts pressure on people who work as farmers to maintain and improve the quality of agriculture. Rice, which is one of the basic needs of the community, is currently in high demand. Therefore, the need for rice continues to increase year by year with the increase in the population of Indonesia. To maintain the quality and quantity of rice, it is necessary to continuously monitor which for developing countries, there are limited tools and costs to develop technology to deal with problems of maintaining rice quality, especially diseases in rice. Rice disease is influenced by various factors, some of which are season, weather, temperature, media, availability of water sources, etc. The purpose of this research is to prevent diseases from spreading and spreading in rice by making disease detectors in rice using a deep learning approach using the InceptionV3 method. There are four classes of rice diseases diagnosed, namely bacterial blight, blast, brown spot, and tungro. The total loaded data set is 5932 images used in this study. The InceptionV3 model used can learn hidden patterns in the image thanks to CNN transfer learning method technology with an accuracy of 97.47%. The results show that InceptionV3 can be one of the choices of various existing CNN methods due to its accuracy.
Downloads
References
A. Welianto, “Mengapa Tanaman Padi Penting bagi Masyarakat Indonesia?,” Kompas.com, 2020. https://www.kompas.com/skola/read/2020/09/13/170000869/mengapa-tanaman-padi-penting-bagi-masyarakat-indonesia-?page=all.
K. T. Tampubolon, R. Razali, and H. Guchi, “Evaluasi Kesesuaian Lahan Tanaman Padi Sawah Irigasi (Oryza Sativa L.) Di Desa Bakaran Batu Kecamatan Sei Bamban Kabupaten Serdang Bedagai,” J. Agroekoteknologi Univ. Sumatera Utara, vol. 3, no. 2, 2015, doi: 10.32734/jaet.v3i2.10360.
L. Yuniartha, “Penurunan Produksi Beras Nasional Secara Berturut-Turut Mengkhawatirkan,” industri.kontan.co.id, 2020. https://industri.kontan.co.id/news/penurunan-produksi-beras-nasional-secara-berturut-turut-mengkhawatirkan?page=all.
Bapan Pusat Statistik, “Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi,” www.bps.go.id, 2022. .
Balai Besar Pengembangan Pengujian Mutu Benih Tanaman Pangan dan Hortikultura, “Program Perluasan Areal Tanam Baru (PATB) Membawa Berkah bagi Petani,” bbppmbtph.tanamanpangan.pertanian.go.id, 2021. .
M. A. Azim, M. K. Islam, M. M. Rahman, and F. Jahan, “An effective feature extraction method for rice leaf disease classification,” TELKOMNIKA (Telecommunication, Comput. Electron. Control., vol. 19, no. 2, pp. 463–470, 2021, doi: http://doi.org/10.12928/telkomnika.v19i2.16488.
L. Shanti, G. Lalitha Devi, G. Kumar, and H. Shashidhar, “Molecular Marker-Assisted Selection: A Tool for Insulating Parental Lines of Hybrid Rice Against Bacterial Leaf Blight,” Int. J. Plant Pathol., vol. 1, pp. 114–123, Mar. 2010, doi: 10.3923/ijpp.2010.114.123.
R. Masnilah, W. S. Wahyuni, S. D. N, A. Majid, H. S. Addy, and A. Wafa, “Insidensi dan Keparahan Penyakit Penting Tanaman Padi di kabupaten Jember,” Agritrop J. Ilmu-Ilmu Pertan., vol. 18, no. 1, pp. 1–12, 2020, doi: https://doi.org/10.32528/agritrop.v18i1.3103.
D. S. A. Fiko and F. Widiantini, “Uji Antagonisme Bakteri Endofit dengan Cercospora oryzae Miyake dan Bipolaris oryzae (Breda de Haan) Shoemaker,” J. Agrik., vol. 29, no. 3, pp. 131–135, 2018, doi: 10.24198/agrikultura.v29i3.22719.
J. Shim et al., “Rice tungro spherical virus resistance into photoperiod-insensitive japonica rice by marker-assisted selection.,” Breed. Sci., vol. 65, no. 4, pp. 345–351, Sep. 2015, doi: 10.1270/jsbbs.65.345.
K. Khaerana and A. Gunawan, “PENGARUH APLIKASI PUPUK SILIKA DALAM PENGENDALIAN TUNGRO,” J. Pertan., vol. 10, no. 1 SE-Articles, pp. 1–7, Jun. 2019, doi: 10.30997/jp.v10i1.1687.
H. Greenspan, B. van Ginneken, and R. M. Summers, “Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1153–1159, 2016, doi: 10.1109/TMI.2016.2553401.
L. Deng and D. Yu, Deep Learning: Methods and Applications. now, 2014.
R. Sharma et al., “Plant Disease Diagnosis and Image Classification Using Deep Learning,” Comput. Mater. Contin., vol. 71, pp. 2125–2140, Dec. 2021, doi: 10.32604/cmc.2022.020017.
prabira K. Sethy, “Rice Leaf Disease Image Samples,” 2020. doi: 10.17632/fwcj7stb8r.1.
M. Pailus, D. H. Fudholi, and S. Hidayat, “Model Identifikasi Penyakit Pada Tumbuhan Padi Berbasiskan DenseNet,” J-SAKTI (Jurnal Sains Komput. dan Inform. Vol 6, No 2 Ed. Sept., 2022, doi: 10.30645/j-sakti.v6i2.478.
H. Prajapati, J. Shah, and V. Dabhi, “Detection and classification of rice plant diseases,” Intell. Decis. Technol., vol. 11, pp. 357–373, Jul. 2017, doi: 10.3233/IDT-170301.
E. Anggiratih, S. Siswanti, S. Octaviani, and A. Sari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning,” J. Ilm. SINUS, vol. 19, p. 75, Jan. 2021, doi: 10.30646/sinus.v19i1.526.
W. Liang, H. Zhang, G. Zhang, and H. Cao, “Rice Blast Disease Recognition Using a Deep Convolutional Neural Network,” Sci. Rep., vol. 9, no. 1, p. 2869, 2019, doi: 10.1038/s41598-019-38966-0.
V. K. Shrivastava and M. K. Pradhan, “Rice plant disease classification using color features: a machine learning paradigm,” J. Plant Pathol., vol. 103, no. 1, pp. 17–26, 2021, doi: 10.1007/s42161-020-00683-3.
P. Tejaswini, P. Singh, M. Ramchandani, Y. K. Rathore, and R. R. Janghel, “Rice Leaf Disease Classification Using Cnn,” IOP Conf. Ser. Earth Environ. Sci., vol. 1032, no. 1, p. 12017, 2022, doi: 10.1088/1755-1315/1032/1/012017.
C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” CoRR, vol. abs/1602.07261, 2016, [Online]. Available: http://arxiv.org/abs/1602.07261.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” CoRR, vol. abs/1512.00567, 2015, [Online]. Available: http://arxiv.org/abs/1512.00567.
K. Zheng et al., “Separable-spectral convolution and inception network for hyperspectral image super-resolution,” Int. J. Mach. Learn. Cybern., vol. 10, no. 10, pp. 2593–2607, 2019, doi: 10.1007/s13042-018-00911-4.
C. Lin, L. Li, W. Luo, K. C. P. Wang, and J. Guo, “Transfer Learning Based Traffic Sign Recognition Using Inception-v3 Model,” Period. Polytech. Transp. Eng., vol. 47, no. 3 SE-, pp. 242–250, Oct. 2019, doi: 10.3311/PPtr.11480.
H. Chen, Y. Yang, and S. Zhang, “Learning Robust Scene Classification Model with Data Augmentation Based on Xception,” J. Phys. Conf. Ser., vol. 1575, no. 1, p. 12009, 2020, doi: 10.1088/1742-6596/1575/1/012009.
N. S. Shadin, S. Sanjana, and N. J. Lisa, “COVID-19 Diagnosis from Chest X-ray Images Using Convolutional Neural Network(CNN) and InceptionV3,” in 2021 International Conference on Information Technology (ICIT), 2021, pp. 799–804, doi: 10.1109/ICIT52682.2021.9491752.
Copyright (c) 2023 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright in each article belongs to the author
- The author acknowledges that the RESTI Journal (System Engineering and Information Technology) is the first publisher to publish with a license Creative Commons Attribution 4.0 International License.
- Authors can enter writing separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time in the RESTI (Rekayasa Sistem dan Teknologi Informasi) journal ;