Identifikasi Citra Beras Menggunakan Algoritma Multi-SVM Dan Neural Network Pada Segmentasi K-Means

Rice Image Identification Using Multi-SVM Algorithm And Neural Network In K-Means Segmentation

  • Ridan Nurfalah STMIK NUSA MANDIRI JAKARTA
  • Dwiza Riana STMIK Nusa Mandiri Jakarta
  • Anton STMIK Nusa Mandiri Jakarta
Keywords: k-means, GLCM, regionprop, rice image, identification

Abstract

Indonesia is a country with high rice needs because it is a staple food for more than 90% of populations. High demand requires high stock so imports are carried out in accordance with Permendagri Number 19/M-DAG/PER/3/2014 which explains rice import standards. There are many types of rice imported into Indonesia with various quality, color and import requirements such as for health or price stabilization. In terms of colors, imported white rice is the most consumed rice by Indonesians. One example is jasmine rice from Thailand. Meanwhile, in terms of imports, both for health and stabilizing the price of japonica rice (Japan) and Basmati (Pakistan) are the most imported to Indonesia. But there are still many who are not familiar with those three rices. In this research, the three types of rice were identified by comparing the Multi-SVM algorithm and Neural Network algorithm. Image acquisition is done using a flatbed scanner which produces 90 images divided into 63 training images and 27 testing images. K-Means becomes an image segmentation method and image binary converts. Feature extraction using morphological features with the regionprop method combined with the Gray Level Co-Occence Matrix (GLCM) produces 9 features that can produce 96.296% accuracy for Multi-SVM and 88.89% Neural Network

Downloads

Download data is not yet available.

References

J. Alzeer, U. Rieder, and K. Abou, “Trends in Food Science & Technology Rational and practical aspects of Halal and Tayyib in the context of food safety,” Trends Food Sci. Technol., no. October, pp. 0–1, 2017.

N. Bandumula, “Rice Production in Asia : Key to Global Food Security,” Proc. Natl. Acad. Sci. India Sect. B Biol. Sci., 2017.

N. W. Childs, “Rice Outlook U . S . Rice Export Forecasts Lowered for Both,” pp. 1–11, 2020.

Sabarella et al., “Buletin Konsumsi Pangan,” Pus. Data dan Sist. Inf. Pertan. Sekr. Jenderal Kementeri. Pertan., vol. 10, no. 1, 2019.

Badan Pusat Statistik, “Impor Beras Menurut Negara Asal Utama , 2000-2019,” 2020.

Menteri Perdagangan Republik Indonesia, “Peraturan Menteri Perdagangan Republik Indonesia Nomor 19/M-DAG/PER/3/2014.”

D. Ricardo and Gasim, “Perbandingan Akurasi Pengenalan Jenis Beras dengan Algoritma Propogasi Balik pada Beberapa Resolusi Kamera,” vol. 1, no. 10, pp. 1–8, 2019.

M. Z. Abidin, “Dampak kebijakan impor beras dan ketahanan pangan dalam perspektif kesejahteraan sosial,” pp. 213–230, 2015.

R. Mumm, J. A. H. M. N. Calingacion, and R. C. H. De Vos, “Multi-platform metabolomics analyses of a broad collection of fragrant and non-fragrant rice varieties reveals the high complexity of grain quality characteristics,” Metabolomics, vol. 12, no. 2, pp. 1–19, 2016.

G. Mahajan, A. Matloob, and R. Singh, Basmati Rice in the Indian Subcontinent : Strategies to Boost Production and Quality Traits, vol. 151. Elsevier Ltd, 2018.

N. Patel, “Rice Quality Analysis Based on Physical Attributes Using Image Processing Technique,” 2017.

P. Kongsawat, “Quality Assessment of Thai Rice Kernels Using Low Cost Digital Image Processing System,” 2018.

T. G. Devi, “Image processing based rice plant leaves diseases in Thanjavur , Tamilnadu,” Cluster Comput., vol. 3456789, 2018.

S. Mahajan, “Image acquisition techniques for assessment of legume quality,” Trends Food Sci. Technol., vol. 42, no. 2, pp. 116–133, 2015.

Z. Wang, Q. Zeng, L. Wang, K. Li, S. Xu, and Y. Yao, “Characterizing frost damages of concrete with flatbed scanner,” vol. 102, pp. 872–883, 2016.

M. Rizman, S. Mohd, S. H. Herman, and Z. Sharif, “Application of K-Means Clustering in Hot Spot Detection for Thermal Infrared Images,” pp. 107–110, 2017.

E. Bostanci, N. Kanwal, B. Bostanci, and M. S. Guzel, “A Fuzzy Brute Force Matching Method for Binary Image Features,” vol. 1, pp. 1–5.

R. Ruslan, A. A. Aznan, F. A. Azizan, N. Roslan, and N. Zulkifli, “Extraction of Morphological Features of Malaysian Rice Seed Varieties Using Extraction of Morphological Features of Malaysian Rice Seed Varieties Using Flatbed Scanner,” no. March, 2018.

J. Chen, D. Lopresti, and G. Nagy, “Conservative preprocessing of document images,” Int. J. Doc. Anal. Recognit., 2016.

A. Putera and U. Siahaan, “RC4 Technique in Visual CryptographyRGB Image Encryption,” vol. 3, no. 7, pp. 3–8, 2016.

L. Indriyani, W. Susanto, and D. Riana, “APLIKASI MATLAB PADA PENGUKURAN DIAMETER,” vol. 2, no. 1, pp. 46–52, 2017.

Published
2021-02-20
How to Cite
Nurfalah, R., Dwiza Riana, & Anton. (2021). Identifikasi Citra Beras Menggunakan Algoritma Multi-SVM Dan Neural Network Pada Segmentasi K-Means. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 55 - 62. https://doi.org/10.29207/resti.v5i1.2721
Section
Information Systems Engineering Articles