Determination of Industrial Location Using the WASPAS Method with Spatial Data as Criteria Data

Penentuan Lokasi Industri Menggunakan Metode WASPAS Dengan Data Spasial Sebagai Data Kriteria

  • Agusta Praba Ristadi Pinem Universitas Semarang
  • Siti Asmiatun Semarang University
  • Astrid Novita Putri Universitas Semarang
Keywords: waspas, location, industry, spearman rank


Today, the development of the use of spatial data is not only used for information geographic or transportation. But also can be used for site selection with integrating decision support system methods. Generated information can help in making decisions and meet the expected aspects. One method that can be used to support the decision making process is the Weighted Aggregated Sum Product Assessment (WASPAS). WASPAS is included in Multi Criteria Decision Making which can produce selected information from the data or criteria used. This study uses the WASPAS method as a determinant of strategic industrial locations by spatial data collection. In determining strategic industrial locations, WASPAS uses several different criteria and weights for each criterion. The WASPAS method can produce precise information related to the determination of strategic industrial locations. The results of the Spearman Rating trial with data on industrial locations in the city of Semarang show a strong conformity, as seen from the resulting compatibility value of 1.0. The results obtained from this study are the establishment of a system model that supports the decision to determine the location of the industry using the WASPAS method.


Download data is not yet available.

Author Biographies

Siti Asmiatun, Semarang University

Fakultas Teknologi Informasi dan Komunikasi

Astrid Novita Putri, Universitas Semarang

Fakultas Teknologi Informasi dan Komunikasi


[1] E. K. Zavadskas, D. Kalibatas, and D. Kalibatiene, “A multi-attribute assessment using WASPAS for choosing an optimal indoor environment,” Archives of Civil and Mechanical Engineering, vol. 16, no. 1, pp. 76–85, Jan. 2016, doi: 10.1016/j.acme.2015.10.002.
[2] A. Hafezalkotob, A. Hami-Dindar, N. Rabie, and A. Hafezalkotob, “A decision support system for agricultural machines and equipment selection: A case study on olive harvester machines,” Computers and Electronics in Agriculture, vol. 148, pp. 207–216, May 2018, doi: 10.1016/j.compag.2018.03.012.
[3] Z. Turskis, N. Goranin, A. Nurusheva, and S. Boranbayev, “A Fuzzy WASPAS-Based Approach to Determine Critical Information Infrastructures of EU Sustainable Development,” Sustainability, vol. 11, no. 2, p. 424, Jan. 2019, doi: 10.3390/su11020424.
[4] A. R. Mishra, P. Rani, K. R. Pardasani, and A. Mardani, “A novel hesitant fuzzy WASPAS method for assessment of green supplier problem based on exponential information measures,” Journal of Cleaner Production, vol. 238, p. 117901, Nov. 2019, doi: 10.1016/j.jclepro.2019.117901.
[5] S. Gupta, U. Soni, and G. Kumar, “Green supplier selection using multi-criterion decision making under fuzzy environment: A case study in automotive industry,” Computers & Industrial Engineering, vol. 136, pp. 663–680, Oct. 2019, doi: 10.1016/j.cie.2019.07.038.
[6] G. Stojić, Ž. Stević, J. Antuchevičienė, D. Pamučar, and M. Vasiljević, “A Novel Rough WASPAS Approach for Supplier Selection in a Company Manufacturing PVC Carpentry Products,” Information, vol. 9, no. 5, p. 121, May 2018, doi: 10.3390/info9050121.
[7] D. E. Ighravwe and S. A. Oke, “A multi-criteria decision-making framework for selecting a suitable maintenance strategy for public buildings using sustainability criteria,” Journal of Building Engineering, vol. 24, p. 100753, Jul. 2019, doi: 10.1016/j.jobe.2019.100753.
[8] K. A. Alam, R. Ahmed, F. S. Butt, S.-G. Kim, and K.-M. Ko, “An Uncertainty-aware Integrated Fuzzy AHP-WASPAS Model to Evaluate Public Cloud Computing Services,” Procedia Computer Science, vol. 130, pp. 504–509, 2018, doi: 10.1016/j.procs.2018.04.068.
[9] D. Pamucar, K. Chatterjee, and E. K. Zavadskas, “Assessment of third-party logistics provider using multi-criteria decision-making approach based on interval rough numbers,” Computers & Industrial Engineering, vol. 127, pp. 383–407, Jan. 2019, doi: 10.1016/j.cie.2018.10.023.
[10] S. Bid and G. Siddique, “Human risk assessment of Panchet Dam in India using TOPSIS and WASPAS Multi-Criteria Decision-Making (MCDM) methods,” Heliyon, vol. 5, no. 6, p. e01956, Jun. 2019, doi: 10.1016/j.heliyon.2019.e01956.
[11] R. Manurung, R. Sitanggang, and F. T. Waruwu, “Penerapan Metode Weighted Aggregated Sum Product Assessment Dalam Penentuan Penerima Beasiswa Bidik Misi,” vol. 5, no. 1, p. 6, 2018.
[12] S. Barus, V. M. Sitorus, D. Napitupulu, M. Mesran, and S. Supiyandi, “Sistem Pendukung Keputusan Pengangkatan Guru Tetap Menerapkan Metode Weight Aggregated Sum Product Assesment (WASPAS),” mib, vol. 2, no. 2, Apr. 2018, doi: 10.30865/mib.v2i2.594.
[13] E. K. Zavadskas, R. Bausys, and I. Mazonaviciute, “Safety evaluation methodology of urban public parks by multi-criteria decision making,” Landscape and Urban Planning, vol. 189, pp. 372–381, Sep. 2019, doi: 10.1016/j.landurbplan.2019.05.014.
[14] R. Nie, J. Wang, and H. Zhang, “Solving Solar-Wind Power Station Location Problem Using an Extended Weighted Aggregated Sum Product Assessment (WASPAS) Technique with Interval Neutrosophic Sets,” Symmetry, vol. 9, no. 7, p. 106, Jul. 2017, doi: 10.3390/sym9070106.
[15] M. Deveci, F. Canıtez, and I. Gökaşar, “WASPAS and TOPSIS based interval type-2 fuzzy MCDM method for a selection of a car sharing station,” Sustainable Cities and Society, vol. 41, pp. 777–791, Aug. 2018, doi: 10.1016/j.scs.2018.05.034.
[16] H. Lu, M. L. Yiu, and X. Xie, “Querying spatial data by dominators in neighborhood,” Information Systems, vol. 77, pp. 71–85, Sep. 2018, doi: 10.1016/
[17] K. Ulfa Fathul and S. Subiyanto, “PENENTUAN KAWASAN PERUNTUKAN INDUSTRI MENGGUNAKAN ANALYTICAL HIERARCHY PROCESS (AHP) DAN SISTEM INFORMASI GEOGRAFIS (Studi Kasus : Kabupaten Sragen),” Jurnal Geodesi Undip, vol. 6, p. 9, 2017.
[19] M. PU, “Pedoman Kriteria Teknis Kawasan Budi Daya.” Kementrian Pekerjaan Umum, 2007.
How to Cite
Agusta Praba Ristadi Pinem, Asmiatun, S., & Putri, A. N. (2020). Determination of Industrial Location Using the WASPAS Method with Spatial Data as Criteria Data. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(4), 691 - 696.
Artikel Rekayasa Sistem Informasi