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Abstract

The optimization of transportation problems plays a significant role in supply chain management (SCM), where minimizing
costs and improving efficiency are mandatory. The transition from manual methods to advanced computational approaches,
such as metaheuristic algorithms, enhances decision-making and consolidates operations within SCM. Malaysia's
transportation system has been confronting crucial challenges, characterized by congested roadways, limited rail connectivity
and inefficient port operations, which interfere with the fluidity of goods and supply chain efficiency. This highlights the critical
need for optimization techniques to enhance competitiveness and efficiency in the evolving SCM landscape. The research aims
to explore the application of metaheuristic algorithms, with the Modified Distribution (MODI) method as the benchmark while
employing the NorthWest Corner Method (NWCM) to obtain an initial feasible solution, to evaluate their performance in
optimizing transportation problems. Metaheuristic algorithms, specifically Simulated Annealing (SA) and Particle Swarm
Optimization (PSO), are implemented to explore alternative near-optimal solutions and assess the performance in terms of
cost accuracy and computational efficiency. The results indicate that SA achieves a deviation of 12.92% in cost accuracy
compared to the optimal MODI method, making it suitable for scenarios where precision is critical, whereas PSO which is
296.92 seconds faster, is ideal for time-sensitive applications. Finally, this study encourages future studies to explore additional
algorithms, external factors and broader applications for enhanced real-world relevance and scalability to accentuate the
potential of metaheuristic algorithms.
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1. Introduction

Optimization of transportation  problems has
traditionally been reckoned on manual calculations and
expert judgment to determine the most efficient routes
with lowest transportation costs [1]. These methods,
though effective in the past, were labor-intensive and
depended heavily on years of experience, which can be
cumbersome and occasionally out of date. As supply
chain management (SCM) sits at the core of a business's
functional divisions, it plays a critical role in balancing
operational efficiency with customer satisfaction,
ultimately driving profitability [2]. Therefore, modern
practices and  technologies that outperform
conventional methods by 40-80% across key criteria are
necessary to be implemented in the transportation and
supply chain industry for smooth processes and
efficiency enhancement [3]. However, there is limited

research comparing the practical applicability of
metaheuristics algorithms against optimization methods
like MODI within the context of Malaysia’s SCM
challenges.

In  recent years, metaheuristic algorithms are
increasingly applied to enhance SCM optimization. [4]
and [5] highlighted Simulated Annealing (SA)'s
popularity due to its straightforward implementation
and effective convergence properties. [6] further
supported this view, illustrating that SA’s global search
capabilities make it a strong contender against other
metaheuristic techniques like Ant Colony Optimization
(ACO). Apart from that, Particle Swarm Optimization
(PSQ), inspired by social behavior, excels in solving
large-scale  transportation  problem  (TP), as
demonstrated by [7] through novel variations balancing
exploration and exploitation. These advancements
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emphasize the emerging methodologies in SCM
optimization, highlighting TP's real-world applicability
and the significance of algorithmic approaches in cost
reduction and operational efficiency.

Malaysia's transportation system faces multifaceted
challenges, including congested roadways, constrained
rail connectivity and suboptimal port operations, all of
which obstruct the flow of goods and supply chain
efficiency [8]. For instance, berth delays in Port Klang
due to congestion have not only elevated shipping costs
but also disrupt supply chain [9]. These inefficiencies
have a direct effect on Malaysian enterprises' ability to
compete on the international stage by raising logistical
costs and impeding timely delivery [10]. Moreover, the
reliance on traditional, labor-intensive transportation
management techniques further intensifies the issue,
highlighting the urgent need for advanced optimization
methods to enhance efficiency and adaptability in the
supply chain [11].

This study aims to address these challenges by
exploring both optimization and metaheuristic
techniques for solving transportation problems. It

focuses on determining the initial feasible solution
using the NorthWest Corner Method (NWCM) and
achieving the optimal solution through the Modified
Distribution (MODI) method to serve as a benchmark
for evaluating metaheuristic algorithms. Additionally,
metaheuristic algorithms, such as Simulated Annealing
(SA) and Particle Swarm Optimization (PSO), will be
applied to obtain near-optimal solutions for
transportation problems involving supply, demand and
cost matrices. The research then compares the
performance of these metaheuristic algorithms against
the benchmark optimal solutions provided by MODI
methods, with the goal of identifying approaches that
obtain results closest to the optimal outcomes.

2. Methods

2.1 Data Collection

This research utilized two distinct supply chain datasets
to investigate the optimization of costs in transportation
problem. The samples of the data from the website are
shown on Figure 1.

A B = D B F G H I J K L M N [s) P Q
1 Product ty SKU Price Availability Number of Revenue g Customer demographics Stock level Lead times Order quai Shipping ti Shipping c. Shipping ¢ Supplier n:Location Lead time Productior
2 haircare SKUO 69.80800554 55 802 8661.997 Non-binary 58 7 96 4 CarrierB  2.956572 Supplier 3 Mumbai 29 215
3 skincare SKU1 14.84352328 95 736 7460.9 Female 53 30 37 2 Carrier A 9.716575 Supplier 3 Mumbai 23 517
4 skincare SKU15 36.98924493 94 4689 5442.087 Non-binary 9 8 69 7 CarrierB  2.42204 Supplier 1 Bangalore 14 580
5 skincare SKU3 61.16334302 68 83 7766.836 Non-binary 23 13 58 6 CarrierC  1.729569 Supplier 5 Kolkata 24 937
6 skincare SKU16 7.54717211 74 280 6453.798 Female 2 5 78 1 CarrierB  4.191325 Supplier 1 Bangalore 3 399
7 haircare SKUS 1.699976014 87 147 2828.349 Non-binary 90 27 66 3 Carrier B 4.444099 Supplier 4 Bangalore 10 104
8 skincare SKU6 4.078332863 48 65 7823.477 Male 11 15 58 8 CarrierC  3.880763 Supplier 3 Kolkata 14 314
9 cosmetics SKU7 4295838438 59 426 8496.104 Female a3 17 11 1 CarrierB  2.348339 Supplier 4 Bangalore 22 564
10 cosmetics SKU8 68.71759675 78 150 7517.363 Female 5 10 15 7 CarrierC  3.404734 Supplier 4 Mumbai 13 769
11 skincare SKUS 64.01573294 35 980 4971.146 Unknown 14 27 83 1 Carrier A 7.166645 Supplier 2 Chennai 29 963
12 skincare SKU10 15.70779568 11 996 2330.966 Non-binary 51 13 80 2 CarrierC  8.673211 Supplier 5 Kolkata 18 830
13 skincare SKU11 90.63545998 95 960 6099.944 Female 46 23 60 1 Carrier A  4.523943 Supplier 2 Kolkata 28 362
14 haircare SKU12 71.21338908 a1 336 2873.741 Unknown 100 30 85 4 Carrier A 1.325274 Supplier 4 Kolkata 3 563
15 skincare SKU13 16.16039332 5 249 4052.738 Male 80 8 48 9 Carrier A 9.537283 Supplier 5 Bangalore 23 173
16 haircare SKU70 47.91454182 90 32 7014.888 Female 10 12 22 4 CarrierB 6.315718 Supplier 1 Bangalore 2 775
17 cosmetics SKU72 90.20442752 88 478 2633.122 Non-binary 57 29 77 9 CarrierA  6.599614 Supplier 1 Bangalore 21 152
18 haircare SKU83 68.91124621 a8z 663 2411.755 Unknown 65 24 7 8 CarrierB  4.94984 Supplier 1 Bangalore 20 443
19 cosmetics SKU17 81.46253437 82 126 2629.396 Female 45 17 85 9 CarrierC  3.585419 Supplier 1 Chennai 7 453
20 haircare SKU18 36.44362777 23 620 9364.674 Unknown 10 10 46 8 CarrierC  4.339225 Suoolier 2 Kolkata 18 374
@

A B C D E F G H I ] K L |
1 OrderID |~ Order Date| = Origin Port| ~ Carrier -1 TPT | = Service Level | - Ship ahead day count | = Ship Late Day cot * Customer = ProductID - Plant Code |~ Destination Port -
2 1447296447 26/5/2013 PORTO9 Va4 3 1 CRF 3 0 V55555_53 1700106 PLANT16 PORTO9
3 1447158015 26/5/2013 PORTO9 vda 3 1CRF 3 0 V55555_53 1700106 PLANT16 PORTOS
4 1447138899 26/5/2013 PORT02 V44 3 1CRF 3 0 V55555_53 1700106 PLANT16 PORTO9
5 1447363528 26/5/2013 PORT09 V44 3 1 CRF 3 0 V55555 53 1700106 PLANT16 PORTO9
6 1447363981 26/5/2013 PORT09 V44 3 1 CRF 3 0 V55555 53 1700106 PLANT16 PORTO2
7 1447351441 26/5/2013 PORTO9 va4 3 1 CRF 3 0 V55555 53 1700106 PLANT16 PORTO9
8 1447320236 26/5/2013 PORTO09 va4 3 1 CRF 3 0 V55555_53 1700106 PLANT16 PORTO9
9 1447158019 26/5/2013 PORTO9 Va4 3 1 CRF 3 0 V55555_53 1700106 PLANT16 PORTO9
10 1447219341 26/5/2013 PORT09 vaa_3 1CRF 3 0 V55555_53 1700106 PLANT16 PORTOZ
11 14473398416 26/5/2013 PORT02 V44 3 1CRF 3 0 V55555_53 1700106 PLANT16 PORTO9
12 1447381679 26/5/2013 PORT09 V44 3 1CRF 3 0 V55555 53 1700106 PLANT16 PORTO9
13 1447170785 26/5/2013 PORT09 V44 3 1CRF 3 0 V55555 53 1700106 PLANT16 PORTO2
14 1447155056 26/5/2013 PORT09 va4 3 1 CRF 3 0 V55555 _53 1697884 PLANT16 PORTO9
15 1447257265 26/5/2013 PORTO09 va4 3 1 CRF 3 0 V55555_53 1697884 PLANT16 PORTO9
16 1447240989 26/5/2013 PORTO9 Va4 3 1 CRF 3 0 V55555_53 1697884 PLANT16 PORTO9
17 1447257231 26/5/2013 PORT09 vaa_3 1CRF 3 0 Vv55555_53 1697884 PLANT16 PORTOZ
18 1447260653 26/5/2013 PORT02 Va4 3 1CRF 3 0 V55555_53 1697884 PLANT16 PORTO9
19 1447139375 26/5/2013 PORTO09 va4 3 1 CRF 3 0 V55555_53 1697884 PLANT16 PORTO9
20 1447308590 26/5/2013 PORTO9 Va4 3 1 CRF 3 0 V55555_53 1697884 PLANT16 PORTO9
21 1447191271 26/5/2013 PORTO9 vaa 3 1CRF 3 0 V55555_53 1697884 PLANT16 PORTOS
22 1447191284 26/5/2013 PORT02 V44 3 1CRF 3 0 V55555_53 1699336 PLANT16 PORTO9
23 1447352426 26/5/2013 PORT09 V44 3 1 CRF 3 0 V55555 53 1702652 PLANT16 PORTOZ

(b)

Figure 1. The sample data from (a) Fashion and beauty startup (b) Global microchip, illustrating the supply chain analysed for optimization

The mandatory dataset, focused on a Fashion and
Beauty startup, includes 24 variables and 100 samples.
The dataset provides insights into supply chain analysis
and is accessible in Kaggle platform at
https://www.kaggle.com/code/amirmotefaker/supply-

chain-analysis. In this dataset, the ‘Supplier name’
refers to source, while the ‘Location’ indicates the
destination. Stock levels and order quantities represent
supply and demand values, respectively. The variables
and descriptions are detailed in Table 1.
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To ensure the validity of the research, a supplementary
dataset was also incorporated. This dataset,
https://www.kaggle.com/datasets/anisseezzebdi/supply
-chain-logistics-problem, was provided by a global
microchip producer. It contains data on 9,215 outbound
orders requiring routing through a supply chain network
comprising 19 warehouses, 11 origin ports and one
destination port. The data is organized into seven tables,
each highlighting different components of the logistics
network. A summary of these tables is presented in
Table 2.

Table 1. Data description of fashion and beauty startup dataset

Features Descriptions Data Type
Stock Level Quantities of stock available at Numerical
each origin or hub.
Order The number of goods Numerical
Quantities requested to be shipped to
each destination.
Supplier The name of suppliers Categorical
Name associated with the
transportation process.
Location Destinations Categorical
Costs Transportation costs between Numerical

origins and destinations for
goods.

Table 2. Data description of global microchip dataset

Tables
FreightRates

Descriptions
All available couriers, the weight gaps for
each individual lane and rates associated.
The allowed links between the warehouses
and shipping ports in real world.
ProductsPerPlant ~ All supported warehouse-product
combinations.
All special cases, where warehouse is only
allowed to support specific customer

PlantPorts

VmiCustomers

WhCapacities Warehouse capacities measured in number of
orders per day.
WhCosts The cost associated in storing the products in

given warehouse measured in dollars per unit.

2.2 Data Preprocessing

The main dataset used was thoroughly examined for
data quality, with no missing values, duplicate entries
or outliers identified, ensuring its readiness for analysis.
For the supplementary global microchip dataset, while
no missing values were found, three duplicate entries
were detected and removed to maintain the data
integrity. Both datasets were examined for outliers
using the 95th percentile as a capping threshold, and
revealed no outliers.

The cleaned supplementary dataset was then updated in
the ‘FreightRates’ variable and synchronized with the
corresponding dictionary entry to ensure consistency
across the data structure.

2.3. Model Formulation

The transportation problem (TP) focuses on efficiently
moving goods from sources to destinations while
meeting supply and demand constraints and it is widely
applied in operations research [12]. Solving this
problem involves two phases: determining the initial
basic feasible solution (IBFS) and optimizing it for the

best outcome [13], which in this research the two
methods are NWCM and MODI respectively.

The optimal solution obtained from the TP is then
serves as a benchmark to evaluate the effectiveness of
metaheuristic  algorithms,  specifically ~Simulated
Annealing (SA) and Particle Swarm Optimization
(PSO). The mathematical formulation of general TP is
as shown in Equation 1 [14]:

2 X1 Cijxij Q
Subject to Equations 2 and 3.
Yrixii =K, j=123,..n @)
Yiix; =R, i=123,..m ®3)

x;jis the number of units transported from source i to
destination j, C;jis the cost per unit goods transported
from source i to destination j, R;is the total supply from
all sources i, and K; is the total demand from all
destination j

2.4 Model Development

The NorthWest Corner Method provides an initial
feasible solution for the TP, which is then optimized
using the Modified Distribution method to minimize
costs. Metaheuristic algorithms which are Simulated
Annealing and Particle Swarm Optimization are later
applied to explore alternative near-optimal solutions as
shown in Equations 4 and 5.

Firstly, NWCM is the IBFS used as the collection of arc
flows that fulfil every demand condition without
providing more from any origin node than the supply
available [15]. The allocation process is done based on
the criteria when supply equals demand and is looped
until all quantities are fully allocated.

After getting IBFS by NWCM, MODI method will be
applied to obtain the optimal solution. In this step,
improvement index for unallocated cells is computed
and iteratively adjust allocations until no further
improvements can be made (no non-negative values
exist), indicating the optimal solution is reached [16].

Next, metaheuristic algorithms will be utilized to obtain
near-optimal solutions for the TP. According to [5], SA
algorithm can be divided into 4 steps which are
described in Figure 2(a). Whereas PSO excels in two
key areas: exploration and exploitation. In the
exploration phase, the algorithm searches the space for
promising regions, while in the exploitation phase, it
fine-tunes the search to find the global optimum [17].

The pseudocode of PSO algorithm has been
summarized in Figure 2(b).

Vi(t + 1) = W. Vi(t) + CiIp (Pi,best - Xl) +

CaIy (Pg,best - Xi) (4)
V; is the current velocity of the particle,

w is the inertia weight, c1, c2 is the positive constants
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known as acceleration coefficient, r1,r2 is the random
variables with uniform distribution between zero and
one, X; is the position of the particle at iteration ¢ is the
best position of the particle until the iteration t, and
Py pese 1s the finest position of the whole swarm until
the same iteration.

Metaheuristic Algorithm: SA

1 Initialize required parameters such as initial temp (T;), end temp (T,,;,,) and cooling
coefficient
While not converged:
do

Generate new candidate solution (y) from neighbourhood of current solution (x)

2
3
4
5 Calculate change in objective function
6 If f{y) = f(x) then

7 Accept the candidate (x=y)

8 else

9 Calculate acceptance probability p(accept)=exp(-(f(y)-f(x)) / T_k)
10  “Reduce temperature

11  Return best solution found

@

Metaheuristic Algorithm: PSO

Initialize required parameters such as w, c1, c2, Popsize, Maxiters, Maxrun
Initialize velocity and position of every particles
do

for each particle do

1
2
3
4
5 Evaluate Fitness value using the defined objective function
6 LUpdare particle’s personal best position (pBest)

7 Update particle’s global best position (gBest)

8 Update the inertia weight w

9

for every particle do

10 Update velocity with Eq. (4)
11 \\ Update position with Eq. (5)
12 while the end condition is not arrived

13 return the gBest selution

(b)

Figure 2. Pseudocode of Algorithms (a) SA [19]; (b) PSO [18],
detailing the algorithmic structure applied in optimization

2.5 Sensitivity Analysis

The sensitivity analysis evaluates the SA algorithm's
performance by varying the initial temperature using an
exponential cooling rate by Equation 6 to optimize
solution quality and convergence behavior.

Temppew, = Temp yrren: X cooling rate (6)

Tempy,,, is the updated (new) temperature after the
current iteration, Tempyren: 1S the temperature at the
current iteration.

This is grounded in the concept that SA is a stochastic
optimization technique modelled after the annealing
process in metallurgy where materials slowly cooled to
achieve a well-ordered crystalline state. By employing
thermodynamic principle, SA allows both uphill and
downhill movements, aiming to escape local optima
and find a global minimum. A high initial temperature
enables broad exploration of solution spaces, including
those with higher costs to avoid getting trapped in local
minima while gradual cooling focused on fine-tuning
the current solutions [18].

Furthermore, the model is tested on a larger dataset to
assess its scalability and ensure its efficiency in real-
world applications.

2.6 Comparative Analysis

In the comparative analysis phase, the effectiveness of
the metaheuristic methods was evaluated against the
MODI method to determine which algorithm provides
solutions closest to MODI’s optimal results.

Based on the analyses conducted, the findings indicate
that the selected metrics: convergence rate, execution
time and optimized cost demonstrated the highest
significance and relevance. These metrics serve as key
performance indicators, offering valuable insights for
researchers addressing transportation problems within
the field of SCM. The comparison focused specifically
on the performance of the SA and PSO algorithms.

3. Results and Discussions
3.1 Preliminary Analysis

The descriptive statistics of Price, Stock Levels, Order
Quantities and Costs have been tabulated in Table 3,
providing key insights into variability and operational
challenges in the supply chain. The high-cost variability
(standard deviation of 258.30) stresses the importance
of minimizing transportation costs, making costs
reduction a primary objective in this TP.

Table 3. Descriptive statistics for variables in the supply chain

dataset
Price Stock Order Costs

levels quantities
Mean 49.4625 47.7700 49.2200 529.2458
sandard 5 1665 313604 267844  258.3017
Deviation
Min 1.6999 0 1.0000 103.9162
Max 99.1713 100.0000 96.0000 997.4135

To further explore the relationships among these key
variables, the correlation matrix was analyzed and is
presented in Figure 3. The correlation matrix highlights
the strength and direction of relationships between
variables. The general low correlations among variables
suggest the complexity of real-world supply chains
influenced by external factors. Specifically, the positive
correlation (0.24) between costs and lead times marks
the potential for higher costs due to extended lead times,
such as increased holding expenses or expedited
shipping [19].

Based on Figure 4, the relationships between suppliers
and their respective locations can be visualized. The
plot reveals overlapping suppliers serving multiple
locations, indicating opportunities for optimizing routes
and costs. Suppliers with dense interconnections may
benefit from logistical models to reduce complexities,
making them suitable for route or cost optimization
models.
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Price

Availability <002 B!

Number of products sold Am 009
Revenue generated -ﬂM 008

Manufacturing costs EUBE} 0.13 1003 Eulbdg
Defect rates EUSES 0.04 SRR ES

Costs 0,09 EVREREA S

Price -

Availability
Number of products sold ]
Revenue generated -
Stock levels -
Lead times -

W 002 001 004 008 004 01 007 006 015 FEVIEERFETERET 009
009 FEREE 017 014 ENERTTEETY 005 007 013 004 -

Order quantities - = N =

-10

-0.8

-06

-04

-02

-00

Shipping times &
Shipping costs -
Lead time |
Manufacturing costs

Production volumes -
Manufacturing lead time -

Figure 3. Correlation matrix of variables in supply chain dataset

Supplier and Location Connections
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Figure 4. The Supplier and Location Connections

3.2 The Modified Distribution (MODI) Method

The MODI method optimizes the TP, minimizing costs
to an objective function value of 2,169,315.56, identical
to the NWCM result. Table 4 details the allocations
from suppliers to destinations, with zero denote no
allocation for that particular path.

Table 4. Allocations for each route via MODI method

Route Bangalore  Chennai  Delhi  Kolkata Mumbai
Supplier 167 205 0 0 809
Suptlier 0 904 78 206 0
Supf)lier 0 0 655 0 0
Sup?)lier 0 0 0 1062 0
Sup‘:)lier 0 0 1 0 897
Durimy 0 2 0 2 146

Supplier 1 primarily supplies Bangalore, Chennai and
Mumbai, Supplier 2 distributes across Chennai, Delhi
and Kolkata, while Supplier 3 focus solely on Delhi.

Supplier 4 exclusively supplies 1062 units to Kolkata
and Supplier 5 mainly supplies Mumbai, highlighting
distinct supply patterns critical for optimizing resource
allocation and transportation efficiency.

3.3 Simulated Annealing (SA)

The SA algorithm optimized the TP to a cost of
2,499,849.97, slightly higher than the MODI
benchmark. The allocation matrix is tabulated in Table
5.

The algorithm utilizes a starting temperature of 1000
determined through preliminary tests which aligns with
optimal convergence behaviour within acceptable
runtime limits to enable broad exploration and avoid
local minima [20], while the final temperature of one
ensures convergence through gradual cooling. A
cooling rate of 0.95 balances exploration and
exploitation, reducing the risk of premature
convergence [18]. These parameters are fixed for this
stage, with sensitivity analysis done to oversee the
temperature impact to follow in Subtopic 3.5.
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Table 5. Allocations for each route via SA method

le6

Effect of Inertia Weight on Cost

Route Bangalore  Chennai  Delhi  Kolkata Mumbai
Supplier 549.0 550.4 0 0 42.6
Sup][-JIier 141.1 41.3 0 670.5 169.1
Supf)lier 284.5 113.7 49.0 143.2 63.7
Sup?)lier 1036.2 0 0 24.8 0
Sup‘;lier 199.8 301.4 193.6 104.1 99.2
Dur151my 549.0 550.4 0 0 42.6

From Table 5, Supplier 4 is visualized to have allocated
1036.2 units exclusively to Bangalore, indicating
significant cost advantages in this route under the SA
solution. Supplier 1 prioritized Bangalore, Chennai and
Mumbai with 549.0, 550.4 and 42.6 units, respectively,
leaving other destinations unserved. Next, Supplier 2
supplied all destinations except Delhi, with notable
allocations of 670.5 units to Kolkata and 169.1 to
Mumbai. In contrast, Suppliers 3 and 5 demonstrated
flexibility by distributing resources across all
destinations, showcasing diverse supply strategies.

3.4 Particle Swarm Optimization (PSO)

The PSO algorithm optimized the transportation
problem to a cost of 2,797,315.63, with iterative
progress summarized in Table 6 and detailed resource
allocations tabulated in Table 7.

Table 6. Iterations with corresponding best costs of PSO algorithm

Iterations Best Costs Iterations Best Costs
Iteration 1 4,967,682.70 Iteration 33 2,249,104.72
Iteration 2 4,967,682.70 Iteration 34 2,249,104.72
Iteration 3 4,967,682.70 Iteration 35 2,169,315.56
: : Iteration 36 2,169,315.56
Iteration 8 4,967,682.70 : :
Iteration 9 4,877,656.14 Iteration 99 2,169,315.56
Iteration 10 4,838,386.91 Iteration 100 2,169,315.56

Table 7. Allocations for each route via PSO method

Route Bangalore  Chennai  Delhi  Kolkata Mumbai
Supplier 0 0 0 452.6 347.9
Sup})lier 24.4 239.3 0 1018.2 36.6
Supf)lier 92.1 0 0 0 231.4
Sup?)lier 95.6 0 0 701.4 0
Supélier 166.3 482.2 0 529.3 0
Dun?my 0 0 0 452.6 347.9

PSO relies on three key parameters, inertia weight (w),
cognitive constant (c1) and social constant (c2) to
balance exploration and exploitation. Optimal values
for these parameters, such as w=0.7, c1=2.0 and ¢2=2.0
ensure effective convergence towards the best solution
while maintaining swarm diversity. The default values
have been supported by the plot showing a constant rate
from 0.6 to 0.8 illustrating the effect of inertia weight
on average optimized costs in Figure 5.

40

38

36

34

Average Optimized Cost

32

30

02 04 06 08 10
Inertia Weight {w)

Figure 5. Line plot for effect of inertia weight on costs

With the PSO parameters set to their optimal default
values, the algorithm was run for 100 iterations and the
average of the best costs was calculated to ensure
reliability. A sample of iterations and their
corresponding best costs is shown in Table 6.

The absence of allocations to Delhi highlights potential
inefficiencies due to urban constraints [21], while
significant allocations to Kolkata and diverse allocation
strategies across suppliers emphasize cost-driven
decisions.

Trajectory

-0.25

-0.50

-1.00
-1.00 -0.75

-0.50 -0.25 0.00 025 050 075 100

Trajectory

zaxis

(b)
Figure 6. Particle Trajectory Plot (a) 2D plot; (b) 3D plot
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The particle trajectory plot in Figure 6 illustrates how
particles converge towards optimal solutions over time
[22]. The observed convergence after Iteration 35
demonstrates the algorithm's  high efficiency
performance. A noticeable cluster of particles near the
centre suggests that the swarm is converging towards
the optimal solution showing exploitation as the
particles refine their search to locate the best possible
solution [18].

3.5 Sensitivity Analysis

For optimization problems, sensitivity analysis is
particularly valuable for identifying the stability of
optimal solutions and ensuring the model's
effectiveness amid real-world uncertainties [23].

In this research, while the preliminary configuration of
the SA algorithm established a reasonable basis for
convergence by fixing the initial temperature and
stopping criterion, sensitivity analysis systematically
assessed the stability and effectiveness of the cooling
strategy. Specifically, the analysis involved observing
temperature reduction across iterations under a fixed
exponential cooling rate [20], thereby enabling a more
comprehensive  evaluation of the algorithm’s
convergence behavior and solution quality over the
course of the optimization process, rather than relying
solely on predefined starting and ending conditions.

Parameter tuning in this context was carried out by
adjusting the temperature schedule within the SA
algorithm. The initial temperature was set at 1000 and
reduced iteratively using a constant cooling rate of 0.95,
as formulated in Equation 7 for the first temperature
update. The use of an exponential cooling schedule
provided a more controlled and gradual reduction in
temperature, which allowed for broader exploration in
the early phases and more focused exploitation in the
later stages of the search process [18]. This refined
temperature control led to a lower final cost value,
indicating improved convergence performance.

Temp,,e,, = 1000 X 0.95 @)

Iterations with the corresponding best costs for the SA
algorithm with tuned parameters are summarized in
Table 8. This data highlights the algorithm’s iterative
improvements in cost optimization, with final result of
2,449,518.79 representing a 2.01% improvement
compared to the previous result (2,499,849.97)
demonstrating its effectiveness in refining solutions
over successive iterations.

Table 8. Iterations with corresponding best costs of SA tuned

parameter

Iterations Temperature Best Costs

Iteration 1 950.0 2,652,926.05

Iteration 2 902.5 2,647,306.66

Iteration 3 857.4 2,647,306.66
Iteration 98 6.9 2,451,101.77
Iteration 99 6.2 2,449,518.79
Iteration 100 5.9 2,449,518.79

Throughout the study, parameter tuning was conducted
exclusively for the SA algorithm, given its sensitivity to
the temperature schedule, which directly influences its
exploration and exploitation balance. Conversely, PSO
was not subjected to parameter tuning, since this
algorithm relies on particle interactions and memory of
previous positions, its convergence behavior is more
influenced by the global and local best solutions than by
the direct control of temperature [24]. Hence, to assess
PSQO's performance and convergence behavior, the
particle trajectory plot was performed and analyzed.
Additionally, the scalability and efficiency of the
optimization model were tested using a larger dataset of
9,215 entries, compared to the original 100 entries. The
results are summarized in Table 9.

Table 9. Result of the alternate larger dataset

Algorithm Simulated Particle Swarm
Annealing Optimization
Optimized Costs 5,783.13 7,134.08
Execution Time 1,053.40 490.66

(seconds)

SA achieved a significantly lower optimized cost of
5,783.13 but required approximately 17 minutes to
execute, demonstrating higher computational demand.
With that, SA is validated to have optimized
transportation costs by 28%. In contrast, PSO was
faster, taking around 8 minutes but resulted in a higher
cost of 7,134.08. This evaluation validates the model's
effectiveness and applicability for handling larger
datasets.

3.6 Comparative Analysis

This research evaluates the performance of SA and PSO
based on convergence rate, solution quality and
execution time. The convergence rate refers to how
quickly the algorithm approaches an optimal or near-
optimal solution over iterations. SA exhibits a steady
and smooth cost reduction due to its gradual cooling
schedule [18]. In contrary, PSO shows a sharp cost
decrease between Iterations 10-30 as particles explore
the solution space, followed by stabilization around
Iteration 35. Rapid early-stage  convergence
demonstrates its efficiency in identifying optimal
regions. The convergence plots are shown in Figure 7.

Next, the quality of the solution is assessed by
comparing the minimized costs achieved by each
algorithm. Table 10 summarizes the optimized costs
and deviations from the MODI benchmark. From the
table below, SA achieved a 12.92% optimized cost
higher while PSO obtained a result 28.95% higher than
the MODI benchmark. This result indicates that SA
effectively approximates the benchmark but may settle
at a near-optimal local minimum due to its probabilistic
nature whereas the deviation highlights that PSO is less
effective in addressing transportation problems
requiring precise cost minimization.
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only 29.34 seconds, outperforming both MODI and SA
by being 296.92 seconds faster than MODI. The
significantly shorter runtime demonstrates PSO's
computational efficiency due to its parallel search
capabilities and straightforward update equations,
despite its limitations in achieving precise cost
optimization.

Table 11. Execution time among all three algorithms

Execution Time  Difference from
(seconds) MODI

Algorithm

T T T T T T
0 20 40 60 80 100
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@
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Figure 7. Convergence plot (a) SA algorithm; (b) PSO algorithm,
demonstrating algorithms’ efficiency in identifying optimal regions

Table 10. Optimized costs among all three algorithms

Deviation from

MODI

Simulated Annealing
(SA)

Particle Swarm
Optimization (PSO)

326.26 0
70.66 -255.60 seconds

29.34 -296.92 seconds

Algorithm Optimized Costs MODI
MODI 2,169,315.56 0%
Simulated Annealing 2,449,518.79 +12.92%
(SA)
Particle Swarm 2,797,315.63 +28.95%

Optimization (PSO)

The last metric considered is the execution time which
emphasize speed without compromising solution
quality. Table 11 summarizes the execution times and
their differences from the MODI benchmark. From the
result shown, SA completed in 70.66 seconds, making
it 255.6 seconds faster than MODI while PSO required

3.7 Overall Comparison

The overall comparison summarized the convergence
rate, optimized costs and execution times of MODI, SA
and PSO to evaluate their performance
comprehensively. This analysis provides a balanced
understanding of each algorithm's strengths and
limitations, helping to identify the best choice for
specific requirements. Table 12 provides a concise
overview of each algorithm's performance.

The MODI, as a deterministic method, offers the most
accurate solution with an optimized cost of
2,169,315.56 and an execution time of 326.26 seconds,
without relying on iterative approximations, thus
serving as the benchmark. SA produces a solution with
a cost of 2,449,518.79, which is 12.92% higher than
MODTI’s optimal solution but it completes in 70.66
seconds, 255.6 seconds faster than MODI. While SA’s
cost accuracy is slightly lower than MODI, this trade-
off might be acceptable for mid-scale businesses where
computational resources are limited. The algorithm
maintains consistent progression until the stopping
criteria are met, offering a balance between solution
quality and computational efficiency. In contrast, PSO
obtains a cost of 2,797,315.63, a deviation of 28.95%
from MODI’s solution, but it is the fastest, requiring
only 29.34 seconds which is 296.92 seconds faster than
MODI. Apart from that, PSO achieves a stable result by
Iteration 35, showing its rapid convergence.

Table 12. Overall comparison among all three algorithms

Results  Convergence Rate Optimized Costs Execution Time
Optimized Costs Deviation Runtime Difference
from MODI (seconds) from MODI
MODI  Deterministic method 2,169,315.56 0 326.26 0
(Does not rely on iterative
approximations)
SA Maintain consistent progression 2,449,518.79 +12.92% 70.66 -255.60 seconds
until the stopping criteria are met
PSO Achieved stable result by 2,797,315.63 +28.95% 29.34 -296.92 seconds

Iteration 35

Hence, in summary, SA method will be utilised when
accuracy is prioritized while use PSO when speed is
more critical and slight deviations from optimality are
acceptable.

3.8 Research Validation

The validity of the findings in this research is supported
by both existing literature and participation in research
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competitions. The findings obtained in this research are
aligned and well-supported by the research ‘An
intelligence-based hybrid PSO-SA for mobile robot
path planning in warehouse’ by [25] and ‘Modified
Particle Swarm Optimization Algorithm with Simulated
Annealing Behavior and Its Numerical Verification’ by
[28] published in Elsevier.

In this research, SA demonstrates its capability to
produce solutions with cost accuracy closely matching
that of the benchmarked MODI method, deviating by
12.92% which is consistent with the characteristics
outlined in the Elsevier research, where SA is praised
for its good solution quality [26]. Conversely, PSO
demonstrates exceptional computational efficiency
which is the fastest among 3 algorithms and with 296.92
seconds faster than MODI. The remarkable speed of
PSO aligns with findings from [25], where it is
recognized for its fast convergence and suitability for
high-dimensional optimization problems.

Beyond that, this research, titled ‘Benchmarking
Metaheuristic ~ Algorithms  Against  Optimization
Techniques for Transportation Problem in Supply
Chain Management’ was further validated through
participation in the Research and Teaching Innovation
Competition 2024 (RTIC 2024), organized by
Universiti Malaysia Terengganu (UMT) and the
International Creative & Innovative Idea Competition
2025 (ICIIC 2025), organized by MNNF Network. The
research awarded two Gold Medals in these prestigious
competitions, demonstrating its significant contribution
to the field.

4, Conclusions

This study evaluates the effectiveness of different
approaches in solving transportation problems,
focusing on accuracy and efficiency, using the MODI
method as a benchmark. The study revealed that SA
outperforms PSO in terms of cost accuracy, but PSO has
a faster execution time. The findings suggest that SA is
more suitable when accuracy is prioritized, whereas
PSO is preferred for speed, offering practical guidelines
for selecting appropriate methods based on specific
problem requirements. All objectives were successfully
fulfilled through the results presented in Section 3.

This research contributes a comparative analysis of SA
and PSO, enhancing theoretical understanding by
showcasing SA's reliability in precision and PSO’s
adaptability in dynamic scenarios. Practically, it
provides actionable insights for SMEs, helping them to
choose between SA and PSO based on cost accuracy or
computational speed and introduces the MODI method
as a benchmark for evaluating emerging optimization
approaches. In contrast to existing comparative studies,
the localized emphasis on Malaysian SCM challenges
addresses transportation routes and costs optimization
via the utilization of real-world global microchip
dataset, demonstrated the possibility of a 28% reduction
in transportation costs, has emphasized the research’s

unique contribution. Furthermore, a comprehensive
sensitivity analysis including SA temperature tuning,
ensures validity and scalability, while testing on that
global microchip dataset comprising over 9,000 entries
demonstrates the methods' practical applicability to
complex, large-scale transportation problems. This
study bridges the gaps in benchmarking optimization
and metaheuristic algorithms in SCM, providing
actionable insights for businesses to balance cost
efficiency and computational speed.

For limitations, this research is limited by the lack of
access to real-world data, particularly sensitive business
information related to routes and costs which restricted
the use of comprehensive, real-time logistics data.
Additionally, the study is based on fixed supply,
demand and cost matrices, which may not reflect the
dynamic and uncertain nature of real-world
transportation problems. Future research could address
these limitations by incorporating variability and
uncertainty into the models. Furthermore, while many
studies focus on individual optimization methods, there
is limited research on comparing different approaches
and evaluating the practicality of metaheuristic
algorithms.

On top of that, several recommendations have been
suggested, including future research should integrate
real-world constraints such as traffic conditions,
regulatory constraints and fuel price fluctuations into
the models to improve their relevance. Beyond
optimization capabilities, future research could also
evaluate more fields for the reliability and practicality
of implementing metaheuristic algorithms in
transportation problem. In other respects, actionable
recommendations for businesses include SMEs could
implement metaheuristic algorithms to optimize
transportation routes and reduce fuel costs, promote
collaboration  with local businesses to share
transportation resources and provide employee training
on the use of these optimization tools to enhance
operational efficiency and drive cost-saving initiatives.

To put it in laconically, this research has provided a
comprehensive analysis of the comparison between SA
and PSO metaheuristic algorithm with the benchmark
towards MODI method in solving transportation
problems.
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