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Abstract   

The classification and detection of areca nuts are essential for agriculture and food processing to ensure product quality and 

efficiency. The manual classification of areca nuts is time-consuming and prone to human error. For a more accurate and 

efficient automated approach, a deep learning-based framework was proposed to address these challenges. This study 

optimizes the Faster R-CNN by integrating Haar-like features and integral images to enhance object detection. However, 

dataset limitations, including low image quality, inconsistent lighting, cluttered backgrounds, and annotation inaccuracies, 

affect the model performance. In addition, the small dataset size and class imbalance hindered generalization. The Faster R-

CNN model was trained with and without Haar-like Features and Integral Image enhancement. Performance was evaluated 

based on training loss, accuracy, precision, recall, F1-score, and mean average precision (mAP). The effects of the dataset 

limitations on detection performance were also analyzed. The optimized model achieved better stability, with a final training 

loss of 0.2201, compared to 0.1101 in the baseline model. Accuracy improved from 62.60% to 73.60%, precision from 0.6161 

to 0.7261, recall from 0.3094 to 0.4194, F1-score from 0.2307 to 0.3407, and mAP from 0.1168 to 0.2268. Despite these 

improvements, dataset constraints remain a limiting factor. While the integration of Haar-like features and integral images 

into faster R-CNN contributes to detection accuracy, the study also reveals that high-resolution images, precise annotations, 

and dataset scale significantly amplify model performance. 
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1. Introduction  

The Faster R-CNN architecture is widely used for 

object detection tasks due to its high accuracy and 

robustness [1]-[3]. However, its performance may be 

affected when applied to complex agricultural datasets, 

particularly involving small objects with detailed 

textures, such as areca nuts [4]-[6]. To address these 

challenges, we propose enhancements to the original 

Faster R-CNN framework by integrating Haar-like 

features and integral image techniques, along with 

anchor box optimization  [2], [7]-[9]. The proposed 

method addresses performance issues in object 

detection and classification caused by limited and low-

quality datasets. Our experimental results show 

significant improvements in accuracy, precision, and 

mean average precision (mAP), indicating the 

effectiveness of the proposed modifications in 

supporting automated areca nut analysis [10]-[12]. 

This study focuses on enhancing the Faster R-CNN 

framework, a widely used object detection model, by 

integrating classical features to overcome limitations 

observed in small-object agricultural datasets [4], [7], 

[8]. One of the main challenges in this research is the 

suboptimal dataset quality, which includes low image 

resolution, inconsistent lighting, complex backgrounds, 

and imprecise bounding box annotations. These issues 

lead to low Intersection over Union (IoU) values, 

making it difficult for the model to recognize objects 
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accurately [11], [13]-[16]. Furthermore, the dataset is 

limited and imbalanced, with a significantly higher 

number of healthy areca nut images compared to 

defective or diseased nuts. This imbalance results in 

prediction bias and reduced recall performance[8], [17]- 

[19] . 

Several previous studies have successfully improved 

object detection accuracy using models such as YOLO 

and ResNet, yet these approaches still face challenges 

when handling objects with complex texture patterns, 

such as areca nuts [2], [8], [20], [21]. Therefore, this 

study focuses on the optimization of Faster R-CNN by 

integrating Haar-like Features, Integral Image, and 

Anchor Box Adjustment to enhance detection and 

classification accuracy [20]-[24]. The use of Haar-like 

features enables the model to more effectively 

recognize texture variations, while Integral Image 

accelerates feature extraction, and Anchor Box 

optimization is adjusted to dataset characteristics to 

improve detection accuracy. Through this approach, the 

study aims to overcome dataset limitations and improve 

areca nut detection performance, making the system 

more effective for automatic applications in the 

agricultural and food processing industries[10], [25]- 

[28]. 

Thus, this research not only explores Deep Learning 

methods for areca nut detection but also identifies key 

challenges in model implementation, particularly 

related to dataset quality, annotation methods, model 

architecture selection, and class imbalance in training 

data. Moving forward, dataset improvements using 

COCO-style annotation, dataset expansion with 

augmentation techniques, and the adoption of more 

optimal models could be strategic steps to further 

enhance the automated detection and classification of 

areca nuts at an industrial scale. 

2. Methods 

In this study, an optimized Faster R-CNN model is 

proposed for areca nut detection and classification, 

integrating Haar-like Features, Integral Image 

processing, and an optimized anchor box configuration. 

The methodology aims to address dataset limitations, 

including low-resolution images, inconsistent lighting, 

complex backgrounds, and annotation inaccuracies, 

which affect detection performance. The proposed 

approach enhanced feature extraction and object 

localization, allowing for better classification and 

bounding box regression. 

As illustrated in Figure 1, the methodology follows a 

structured pipeline. Initially, Haar-like Features are 

extracted, focusing on edge, line, and center-surround 

features, to enhance texture recognition. Next, an 

Integral Image representation is applied to accelerate 

feature computation and improve object differentiation. 

The processed image is then passed to a ResNeXt-101 

backbone, which extracts high-level feature maps. The 

Region Proposal Network (RPN) generates potential 

bounding box candidates, which are refined through 

ROI pooling and classification layers. Finally, the 

model outputs bounding box coordinates and 

classification scores, which are evaluated using train 

loss, accuracy, recall, F1-score, and mean average 

precision (mAP).  

 

Figure 1. The proposed Faster R-CNN pipeline enhanced with Haar-like feature extraction and integral image computation. The system 

flows sequentially from input preprocessing to object detection and evaluation. 

From Figure 1, it can be seen the integration of Haar-

like Features and Integral Image processing in the 

Faster R-CNN pipeline aims to enhance detection 

accuracy and classification reliability for areca nut 

detection. By improving feature extraction and object 

localization, this approach mitigates dataset limitations, 
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leading to better model generalization and performance 

evaluation. Figure 1 above presents the experimental 

setup and results, evaluating the model's effectiveness 

against conventional approaches. 

The next section is about several critical issues that 

significantly impact model performance of areca nut. 

As seen in Figure 2, the dataset suffers from low image 

resolution, inconsistent lighting conditions, and 

cluttered backgrounds, making feature extraction 

challenging. Additionally, bounding box annotations 

appear misaligned or incomplete, leading to incorrect 

object localization and reduced Intersection over Union 

(IoU) scores. The presence of black padding and rotated 

perspectives further disrupts the uniformity of the 

dataset, affecting the model's ability to learn robust 

representations. These dataset limitations contribute to 

lower recall and precision values, emphasizing the need 

for higher-quality images, better annotation precision, 

and dataset augmentation to improve the overall 

detection and classification accuracy. Here are the 

issues of areca nut dataset in this research. 

 

Figure 2. Sample images from the Areca Nut dataset, showing 

variations in angle, lighting, and background conditions. 

Table 1 Issues of Areca Nut Dataset  

Issue 
Impact on Model 

Performance 

Suggested 

Improvement 

Low Image 

Quality 

Poor feature 

extraction 

Use high-

resolution images 

Lighting 

Variations 

Model struggles with 

detection in different 

conditions 

Normalize 

lighting or use 

data augmentation 

Background 

Clutter 

Misclassification due 

to unwanted features 

Use clean, 

uniform 

backgrounds 

Labelling Errors 

(Bounding Box 

Inaccuracy) 

Reduces IoU and 

mAP scores 

Ensure precise 

annotation using 

COCO format 

Dataset Size 

(Small Number 

of Images) 

Overfitting and poor 

generalization 

Increase dataset 

size (COCO-like 

dataset) 

Class Imbalance 
Model favors majority 

class, poor recall 

Balance the 

number of 

samples per class 

From Table 1, it is evident that several dataset-related 

issues significantly affect model performance. Low 

image quality limits feature extraction, while lighting 

inconsistencies cause appearance variations that hinder 

generalization. Background clutter leads to 

misclassification, and inaccurate bounding boxes. 

Additionally, the small dataset size increases the risk of 

overfitting, and class imbalance skews predictions 

toward dominant categories. Addressing these 

limitations through improved image quality, accurate 

annotations, and balanced data distribution is essential 

to enhance detection outcomes. 

Figure 3. Instance Category Distribution of Arecanut for Detection 

  

(a) 

 

(b) 

 

(c) 

Figure 4 The (a) Pixel Length, (b) Pixel Height, (c) Pixel Area of 

Bounding Box Distribution of Arecanut Dataset for Detection 

The bar chart in Figure 3 illustrates the distribution of 

the areca nut dataset, comparing the number of samples 

categorized as good, phatora, and karigot. The results 

indicate variations in classification counts, with karigot 

having the highest frequency, followed by phatora, 

while good quality areca nuts are the least represented. 
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The histogram plots illustrate in Figure 4 is the 

bounding box distribution in the areca nut dataset for 

object detection. The first plot represents the bounding 

box length, the second shows the bounding box height, 

and the third depicts the bounding box area distribution. 

The variations in pixel values indicate size 

inconsistencies, which may impact detection accuracy 

and require anchor box optimization for better model 

performance. The dataset distribution is visualized in 

Figure 4.  

Figure 5 illustrates the distribution of aspect ratios in the 

areca nut dataset for object detection. The majority of 

bounding boxes have an aspect ratio close to 1, 

indicating near-square shapes, while a few samples 

have significantly higher values. This imbalance may 

affect the region proposal network (RPN) and suggests 

the need for optimized anchor box aspect ratios to 

improve detection accuracy. 

 

Figure 5 The Aspect Ratio Distribution of Arecanut Dataset. 

This section presents the modified Faster R-CNN code, 

incorporating Haar-like Features and Integral Image to 

enhance object detection. The modifications include 

key functions such as load_model(), which loads the 

model and applies Haar-like Features & Integral Image, 

train_one_epoch() for training the model for one epoch, 

validate() for model validation, save_checkpoint() to 

store model checkpoints, and plot_loss() to visualize the 

loss curve during training. The integration of Haar-like 

Features & Integral Image is applied during pre-

processing before inputting data into Faster R-CNN. 

Additionally, the code has been optimized for 

modularity and readability, making it easier to 

understand and implement. Here is the stage of pre-

processing using Haar-like Features and Integral Image 

in Pseudocode 1. 

Pseudocode 1: Pre-Processing using Haar-like Features and 

Integral Image 

BEGIN CONFIGURATION 

    SET DEVICE to CUDA if available, otherwise use CPU 

    SET LEARNING_RATE to 0.005 

    SET NUM_EPOCHS to 30 

    SET PRINT_EVERY to 10 

    SET CHECKPOINT_PATH to "faster_rcnn_checkpoint.pth" 

    SET BEST_MODEL_PATH to "best_faster_rcnn.pth" 

    SET LOG_FILE to "training_log.json" 

END CONFIGURATION 

DEFINE FUNCTION apply_haar_integral(img) 

    INPUT: img (input image) 

    OUTPUT: integral_img (Integral Image), objects (detected 

objects) 

    BEGIN 

        CONVERT img to grayscale and STORE as gray 

        COMPUTE Integral Image from gray and STORE as 

integral_img 

        LOAD Haar Cascade Classifier and STORE as haar_cascade 

        DETECT objects using haar_cascade on gray 

            SET sc 

In the Pre-Processing stage, images are converted to 

grayscale to simplify feature extraction, followed by the 

computation of Integral Image to accelerate Haar-like 

feature calculations. The model utilizes a Haar Cascade 

Classifier to detect relevant patterns in areca nuts, 

producing output in the form of converted images and a 

list of detected objects. This process aims to enhance 

the model’s ability to recognize patterns before being 

processed by Faster R-CNN. The process of load model 

of Faster R-CNN can be seen in Pseudocode 2. 

Pseudocode 2: Load Model Faster R-CNN 

 

BEGIN FUNCTION load_model() 

    INITIALIZE model as Faster R-CNN with ResNet-50 FPN 

backbone, pretrained on COCO dataset 

    COMPUTE num_classes as total categories in train_dataset + 

1 (for background) 

    GET number of input features for classification layer 

    REPLACE model's classification head with FastRCNNPredictor 

using num_classes 

    TRANSFER model to DEVICE 

    RETURN model 

END FUNCTION 

The Load Model Faster R-CNN stage aims to prepare 

the model architecture by modifying the classification 

layer to match the number of classes in the dataset. The 

model used is the Faster R-CNN with a ResNet-50 FPN 

backbone, pretrained on the COCO dataset. It is then 

adjusted to accommodate the specific number of areca 

nut classes, transferred to the appropriate device (GPU 

or CPU), and made ready for training. Here is  

Pseudocode 3 about the training. 

Pseudocode 3: Training 

FUNCTION train_one_epoch(model, train_loader, optimizer): 

    SET model to training mode 

    INITIALIZE total_train_loss = 0 

    FOR batch_idx, (imgs, targets) in train_loader: 

        APPLY Haar-like Features & Integral Image to imgs 

        CONVERT imgs and targets to DEVICE 

        COMPUTE loss from model 

        RESET and UPDATE optimizer with backpropagation 

        ADD loss to total_train_loss 

        IF batch_idx % PRINT_EVERY == 0: UPDATE progress bar 

In the model training stage, the model enters training 

mode, where each input image is processed using Haar-

like Features and Integral Image before being fed into 

the model. This process involves a forward pass to 

compute the loss and a backward pass to update the 

model weights using backpropagation. During each 

iteration, the loss value is recorded and displayed to 

monitor training progress. With the addition of Haar-

like Features, the model is expected to better recognize 

areca nut features. For the validation can be seen in 

Pseudocode 4. 

Pseudocode 4: Validation 

BEGIN FUNCTION validate(model, val_loader) 

    SET model to training mode 

    INITIALIZE total_val_loss to 0 

    INITIALIZE valid_batches to 0 

    DISABLE gradient computation 

    FOR each batch (imgs, targets) in val_loader DO: 

        CONVERT each img to NumPy array and apply Haar-like 

Features & Integral Image 

        CONVERT processed images to tensor format and move to 

DEVICE 

        CONVERT targets to DEVICE format 

        IF all target boxes are empty THEN: 

            CONTINUE to the next batch 

        COMPUTE loss_dict from model using imgs and targets 

        IF loss_dict is a dictionary AND is not empty THEN: 

            COMPUTE total loss as sum of all values in 

loss_dict 

            ADD loss value to total_val_loss 

            INCREMENT valid_batches by 1 
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The Model Validation stage is conducted to evaluate the 

model's performance on unseen data. Similar to 

training, each image is tested using Haar-like Features 

and Integral Image, but this time without updating the 

model weights. If a batch contains no object 

annotations, it is skipped to prevent errors in loss 

computation. The validation results are represented as 

the average loss, calculated based on the number of 

valid batches available. The Pseudocode 5 is showed 

about testing. 
 

Pseudocode 5: Testing 

 

BEGIN FUNCTION run_inference(model, image_path) 

    READ image from image_path 

    CONVERT image color format from BGR to RGB 

    processed_img, detected_objects = 

apply_haar_integral(image) 

    TRANSFORM processed_img into a tensor 

    ADD batch dimension and MOVE tensor to DEVICE 

    DISABLE gradient computation 

    GET predictions from model using img_tensor 

    RETURN ori 

After the model is trained, the Model Testing 

(Inference) stage is conducted to evaluate its ability to 

detect new objects. The test images are first converted 

to grayscale and processed using Haar-like Features and 

Integral Image before being transformed into tensor 

format for model processing. Inference is performed by 

feeding the images into the model, which then generates 

predicted bounding boxes and probability scores for 

each detected object. For the pseudocode of image 

detection can be seen in Pseudocode 6. 
 

Pseudocode 6: Image Detection 
FUNCTION visualize_results(image, predictions, 

detected_objects, threshold=0.5): 

    CREATE figure (8,6) and display image 

    SET ax for plotting 

    FOR (x, y, w, h) in detected_objects: 

        DRAW green rectangle (Haar detection) 

    FOR each box in predictions: 

        IF score ≥ threshold: 

            DRAW red rectangle (Faster R-CNN) 

    REMOVE axes, SET title, DISPLAY plot 

END FUNCTION 

The image detection stage aims to display the prediction 

results obtained from Faster R-CNN. The bounding 

boxes detected using Haar-like Features are shown in 

green, while those detected by Faster R-CNN are 

displayed in red. This allows for a direct comparison of 

how effectively Haar-like Features assist the model in 

detecting areca nuts. The evaluation stage can be seen 

in Pseudocode 7. 

Pseudocode 7: Evaluation 
BEGIN EVALUATION METRICS 

    COMPUTE precision as (true positives) / (true positives + 

false positives) 

    COMPUTE recall as (true positives) / (true positives + 

false negatives) 

    COMPUTE f1-score as 2 * (precision * recall) / (precision 

+ recall) 

     COMPUTE specificity as (true negatives) / (true negatives 

+ false positives) 

    COMPUTE mAP using the average precision across all classes 

    COMPUTE accuracy as (true positives + true negatives) / 

(total samples) 

END EVALUATION 

Finally, the model evaluation stage is conducted to 

measure the overall performance of the model using 

various metrics, including Precision, Recall, F1 Score, 

Specificity, mAP (Mean Average Precision), and 

Accuracy. Precision evaluates the proportion of correct 

detections among all positive detections, while Recall 

measures how many actual objects were successfully 

detected by the model. The F1 Score balances precision 

and recall, whereas Specificity indicates how well the 

model avoids false negative detections. mAP assesses 

the model’s detection performance across different 

probability thresholds, while Accuracy measures the 

proportion of correct predictions out of the total 

predictions made. 

3. Results and Discussions 

The following figure presents a comparative analysis of 

the training performance between the baseline Faster R-

CNN and the optimized Faster R-CNN with Haar-like 

Features & Integral Image. The graphs illustrate key 

evaluation metrics, including train loss, accuracy, 

precision, recall, F1-score, and mean average precision 

(mAP) across training epochs. 

  

Figure 6. Comparation of (a) Train Loss, (b)Accuracy of Areca Nut Detection with Faster R-CNN using Haar-like Features and Integral 

Image. 

Figure 6(a) compares the train loss of Faster R-CNN 

with and without Haar-like Features and Integral Image 

for areca nut detection. The standard Faster R-CNN 

(red) shows a faster decline in train loss, reaching 

around 0.1-0.15, while the modified model (blue) 

stabilizes at a higher loss of 0.2-0.25. This suggests that 

Haar-like features add complexity, slowing 

convergence. However, the additional features may 

improve detection accuracy, making further evaluation 

necessary to determine the best trade-off between loss 

reduction and model performance. Figure 6(b) 

compares the accuracy of Faster R-CNN with and 
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without Haar-like Features and Integral Image. The 

modified model (blue) consistently achieves higher 

accuracy, stabilizing around 0.72-0.75, while the 

standard Faster R-CNN (red) remains lower, around 

0.60-0.65. This suggests that the additional feature 

extraction improves object recognition, leading to better 

classification performance. Despite a slightly higher 

training loss, the modified model demonstrates superior 

accuracy, making it a more effective approach for areca 

nut detection. 

Figure 7(a) compares the precision of Faster R-CNN 

with and without Haar-like Features and Integral Image. 

The modified model (blue) consistently achieves higher 

precision, fluctuating between 0.75 and 0.90, while the 

standard Faster R-CNN (red) remains lower, around 

0.60-0.75 with more instability. This indicates that the 

additional feature extraction helps reduce false 

positives, making the modified model more reliable in 

detecting areca nuts accurately. Figure 7(b) compares 

the recall of Faster R-CNN with and without Haar-like 

Features and Integral Image. The modified model (blue) 

consistently achieves higher recall, ranging between 

0.35 and 0.45, while the standard Faster R-CNN (red) 

remains lower, around 0.25-0.35 with more 

fluctuations. This indicates that the additional feature 

extraction improves the model’s ability to detect more 

true positives, making it more effective in identifying 

areca nuts. 

  

Figure 7. Comparation of (a)  Precision, and (b)Recall of  Areca Nut Detection with Faster R-CNN using Haar-like Features and Integral 

Image. 

  

Figure 8 (a). Comparation of (a) F1-Score, and (b)MaP of Areca Nut Detection with Faster R-CNN using Haar-like Features and Integral 

Image. 

Figure 8(a) presents a comparative analysis of F1 Score 

between the standard Faster R-CNN (red) and the 

proposed modification incorporating Haar-like Features 

and Integral Image (blue). The enhanced model 

consistently achieves a higher and more stable F1 

Score, ranging from 0.30 to 0.40, while the baseline 

model fluctuates between 0.20 and 0.30. This 

performance gap reflects the effectiveness of the 

proposed feature extraction mechanism in balancing 

precision and recall. Furthermore, the smoother curve 

of the modified model suggests better generalization 

capability and reduced overfitting tendencies, likely due 

to the additional spatial-contextual encoding provided 

by Haar-like filters. These findings confirm that the 

integration of traditional vision-based features with 

deep learning enhances robustness in small, imbalanced 

datasets like the areca nut set. Figure 8(b) compares the 

mean Average Precision (mAP) of Faster R-CNN with 

and without Haar-like Features and Integral Image. The 

modified model (blue) consistently achieves a higher 

mAP, stabilizing around 0.20-0.25, while the standard 

Faster R-CNN (red) remains lower, around 0.10-0.13 

with more fluctuations. This indicates that the 

additional feature extraction improves overall detection 

performance, making the modified model more 

effective in accurately identifying areca nuts. 

The results in Table 2, demonstrate a significant 

improvement in the performance of the Faster R-CNN 

model after integrating Haar-like Features and Integral 

Image, particularly in accuracy, precision, recall, F1-

score, and mean average precision (mAP). The 
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optimized model achieved a 12% increase in accuracy 

(from 0.64 to 0.76), a 15% improvement in precision 

(from 0.70 to 0.85), and an increase in recall from 0.32 

to 0.45, leading to a higher F1-score (from 0.26 to 0.38). 

Additionally, the mAP showed a significant boost from 

0.13 to 0.25, indicating better object localization and 

classification capabilities. These improvements confirm 

that the proposed enhancements successfully improve 

the feature extraction process and detection efficiency. 

Despite these gains, the training loss increased from 

0.70 to 0.75, suggesting that the modified model 

requires more computational resources and training 

iterations to converge effectively. This higher loss 

could also be attributed to the increased complexity 

introduced by Haar-like Features and Integral Image, 

which may add more noise to the feature maps if not 

properly optimized. 

Table 2. The Result of Areca Nut Detection and Classification Using 

Faster R-CNN  

Metric Faster R-CNN 
Faster R-CNN + 

 Haar-like & Integral 

Train Loss 0.70 0.75 

Accuracy 0.64 0.76 

Precision 0.70 0.85 

Recall 0.32 0.45 

F1 Score 0.26 0.38 

mAP 0.13 0.25 

While the proposed method demonstrates 

improvements in accuracy and robustness, certain 

dataset-related constraints remain. Factors such as low 

image resolution, varying lighting conditions, and 

occasional annotation inconsistencies may have 

contributed to minor detection errors and a slightly 

reduced recall. Moreover, class imbalance, particularly 

the underrepresentation of specific areca nut conditions, 

could limit the model’s generalizability. Nonetheless, 

the method’s ability to maintain strong performance 

despite these challenges underscores its robustness and 

potential for deployment in real-world agricultural 

settings. 

Additionally, class imbalance, where certain areca nut 

conditions are underrepresented, may have affected the 

model’s ability to generalize, causing a disparity 

between precision and recall. To further enhance 

performance, dataset improvements should be 

prioritized. Higher-resolution images, better annotation 

strategies using COCO-style datasets, and increased 

sample diversity can help the model learn more robust 

features. Additionally, optimizing anchor box 

configurations and applying more targeted data 

augmentation can help mitigate class imbalance issues. 

By addressing these dataset challenges, future iterations 

of the model could achieve even greater detection 

accuracy and stability in real-world applications. 

The detection results in Figure 7 show improved object 

localization and feature recognition using Faster R-

CNN with Haar-like Features and Integral Image, but 

also highlight dataset limitations. The model achieves 

better predictions but still struggles with misaligned 

detections and false positives, likely due to low-

resolution images, inconsistent lighting, complex 

backgrounds, and annotation errors. From the 

performance evaluation table 2, the optimized model 

improved accuracy (76% vs. 64%), precision (85% vs. 

70%), recall (45% vs. 32%), and mAP (0.25 vs. 0.13), 

confirming the benefits of Haar-like Features and 

Integral Image in enhancing texture detection. 

However, increased training loss (0.75 vs. 0.70) 

suggests added computational complexity. 

Additionally, class imbalance contributed to lower 

recall in detecting defects. Despite these challenges, the 

proposed enhancements significantly improve fine-

grained feature detection in areca nuts. Future 

improvements should focus on better dataset quality, 

precise annotations, and class balancing, along with 

further anchor box and model optimization to reduce 

false detections and enhance performance. Table 3 

presents a comparative summary between the proposed 

Faster R-CNN approach and several state-of-the-art 

(SOTA) object detection models, focusing on aspects 

such as dataset suitability, architectural design, 

optimization strategy, application target, and detection 

speed.  

 

 

 

Figure 7. Arecanut Detection Result of Faster R-CNN with  Haar-

like & Integral 

As summarized in Table 3, while SOTA models such as 

YOLOv7 and DETR offer superior detection speed and 

performance under large-scale and diverse datasets, the 

proposed Faster R-CNN model demonstrates 
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significant strength in handling small, local datasets. 

The integration of Haar-like features and manual anchor 

box optimization contributes to a more robust 

performance in constrained agricultural settings, such 

as areca nut detection. Although the FPS is relatively 

lower, the model prioritizes accuracy and contextual 

suitability, making it practical for field-level 

deployments where computing resources are limited but 

precision is critical 

Table 3.Comparative Summary between Proposed Method and 

State-of-the-Art Object Detection Models 

Aspect 
Faster R-CNN (This 

Work) 

SOTA Models 

(YOLOv7, ViT[4], 

[5], [6], [29]) 

Dataset 

Suitability 

Effective for small and 

locally constrained 

datasets 

Require large and 

diverse datasets 

Architectural 

Innovation 

Haar-like feature 

integration and integral 

image 

CNN or 

Transformer-based 

architectures 

Anchor 

Optimization 

Manually tuned based 

on dataset distribution 

Default or auto-

tuned anchor boxes 

Target 

Applications 

Suitable for 

agriculture-specific 

and local contexts 

General-purpose 

multi-class object 

detection 

Detection 

Speed (FPS) 

Moderate (10–12 FPS 

on GPU) 

High (30–70 FPS), 

requires higher 

compute resources 

4. Conclusions 

Overall, the results demonstrate that the optimized 

Faster R-CNN model significantly outperforms the 

baseline, with a 12% improvement across key metrics, 

accuracy, precision, recall, F1-score, and mean average 

precision (mAP). The integration of Haar-like Features 

and Integral Image proves effective in enhancing 

feature extraction and classification accuracy, 

contributing to a more robust and accurate object 

detection system. Although the proposed enhancements 

introduce slightly higher training loss due to added 

complexity, this trade-off is well-justified by the 

substantial gains in detection performance. While the 

model shows strong generalization capabilities, some 

dataset-related constraints remain. Factors such as low 

image resolution, inconsistent lighting, complex 

backgrounds, and occasional annotation inaccuracies 

may influence detection consistency. In particular, class 

imbalance and the limited representation of certain 

areca nut conditions may affect recall performance. 

Nonetheless, the model’s ability to achieve significant 

improvements despite these challenges underscores its 

resilience and practical potential. To further advance 

this work, future efforts should focus on improving 

dataset quality through high-resolution image 

acquisition, precise annotations, and consistent 

formatting (e.g., COCO-style). Enhancing class 

balance, optimizing anchor box configurations, and 

exploring advanced augmentation techniques may also 

contribute to increased model robustness and 

generalization. With these refinements, the proposed 

approach holds strong potential as a reliable solution for 

automated areca nut detection and classification, 

offering meaningful benefits in agricultural and 

industrial contexts. 
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