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Abstract  

Stroke is a significant health concern that can result in both death and disability, making the early identification of risk factors 

crucial. Previous studies on stroke prediction have been limited by inadequate handling of class imbalance, lack of 

comprehensive feature selection, and parameter optimization, with accuracy rates usually below 80%. This study compares 

the performance of Logistic Regression (LR) and Support Vector Machine (SVM) algorithms combined with different 

oversampling methods—SMOTE, Borderline-SMOTE, ADASYN, Random Over Sampling (ROS), and Random Under Sampling 

(RUS)—on a stroke prediction dataset. Correlation-based feature selection identified age, hypertension, and heart disease as 

significant predictors. GridSearchCV with 10-fold cross-validation was used for hyperparameter optimization, and 

performance was evaluated using precision, recall, accuracy, and ROC curves. The results showed that SVM significantly 

outperformed Logistic Regression across all sampling methods. SVM+ROS achieved the highest performance with perfect 

recall (100%), precision of 97.18%, and accuracy of 98.56% (AUC: 0.9857), whereas SVM + Borderline-SMOTE offered 

balanced performance with a recall of 94.99%, precision of 95.06%, and accuracy of 95.17% (AUC: 0.9512). LR + Borderline-

SMOTE performed the best with an accuracy of 84.98% (AUC: 0.8503), significantly better than previous studies. This 

improved accuracy shows significant clinical benefits, potentially reducing missed stroke diagnoses by identifying thousands 

of additional at-risk patients in large-scale screening programs. Healthcare providers should consider implementing SVM with 

ROS in critical care settings, where potentially missed stroke cases have severe consequences. Simultaneously, SVM with 

Borderline-SMOTE may be more appropriate for resource-constrained environments. 
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1. Introduction  

Stroke remains one of the leading causes of death and 

disability worldwide [1]. This disease occurs when 

blood vessels in the brain are blocked or ruptured, 

reducing the blood supply to the brain and causing brain 

cell death [2]. Every year, more than 15 million people 

worldwide suffer from stroke [3]. Until now, there has 

been no proper treatment for stroke. However, early 

detection provides an opportunity to delay or even 

prevent its development from worsening. 

Machine learning classification algorithms have 

demonstrated significant potential in the medical field, 

particularly in detecting various diseases, including 

stroke. This innovative approach enables the 

identification of patterns in patient data that can indicate 

certain risks. In the specific context of stroke detection, 

machine learning classification can assist medical 

personnel in identifying high-risk patients based on a 

range of factors and symptoms related to stroke, 

offering a promising outlook for the future of 

healthcare. 

Previous studies have applied various classification 

algorithms to disease detection with promising results. 

For example, research [4] developed a heart disease 

prediction model using algorithms such as Random 

Forest, Decision Tree, and Neural Network, with an 
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accuracy of up to 90%. However, the study did not 

investigate logistic regression's effectiveness in cases of 

extreme data imbalance. In addition, researchers [5] 

conducted a comparative study between SVM, Logistic 

Regression, and Decision Tree for liver disease 

prediction, showing that SVM provided the highest 

accuracy of 85% but did not perform comprehensive 

hyperparameter optimization. 

In the context of stroke prediction, several studies have 

shown mixed results. Research [6] used ensemble 

learning with the SMOTE method to address data 

imbalance. Their research performed well on Random 

Forest, which achieved 91% accuracy. However, the 

study showed that Logistic Regression only achieved 

75% accuracy without an in-depth analysis of the causes 

of the low performance. Likewise, research [7] also 

built a stroke disease prediction model using the 

SMOTE method with several classification algorithms, 

including ensemble methods such as Stacking. In their 

research, Stacking showed excellent performance by 

achieving 98% accuracy, but logistic regression also 

showed less than optimal performance with an accuracy 

of only 79%. 

The study [8] conducted further research by applying 

feature selection together with SMOTE, which 

increased accuracy for ensemble methods such as 

Random Forest (96%) but did not provide a significant 

increase for Logistic Regression, which remained at 

79%. Meanwhile, the study [9] took a different 

approach by applying Random Under Sampling (ROS) 

to overcome data imbalance. In his study, he showed an 

increase in performance for Logistic Regression, which 

reached 78% compared to the study results [6], although 

it was still lower than the ensemble technique. 

Previous studies have shown a gap in the optimization 

of LR algorithms for stroke prediction. Despite their 

superior interpretability and computational efficiency, 

these algorithms consistently outperformed ensemble 

algorithms. This lower performance was due to the 

significant data imbalance in the stroke datasets. The 

proportion of stroke cases is much smaller than that of 

non-stroke cases, making LR models biased towards the 

majority class. Although SMOTE helps balance classes, 

LR may not be able to handle the complexity of 

synthetic data or ensemble methods. In addition, LR 

Regression is a linear model with limitations in 

capturing complex and nonlinear relationships between 

variables (age, BMI, and avg_glucose_level). Stroke 

risk factors often interact in complex and non-linear 

ways, and ensemble methods such as Random Forest or 

Stacking can better capture these complex patterns. 

No comprehensive study has compared the effect of 

sampling techniques and hyperparameter optimization 

on the performance of Logistic Regression in the 

context of stroke prediction. In addition, most previous 

studies have used only one type of oversampling 

method, namely SMOTE or under-sampling, without 

directly comparing different methods in the same 

experimental framework, which has a limited 

understanding of the relative effectiveness of these 

methods in improving the performance of basic 

classification algorithms for stroke prediction. 

The novelty of this study lies in its comprehensive 

approach to optimizing base classifiers. It 

systematically compares multiple sampling techniques 

that have rarely been explored together in stroke 

prediction. Unlike previous studies that focused 

primarily on a single sampling method, this study 

directly compares five techniques—SMOTE, 

Borderline-SMOTE, ADASYN, Random Over 

Sampling, and Random Under Sampling-within the 

same experimental framework. Furthermore, this study 

addresses a critical gap in the existing literature by 

applying Correlation-based Feature Selection to 

identify the most relevant stroke predictors, combined 

with extensive hyperparameter tuning via 

GridSearchCV, an approach not applied in previous 

studies. This comprehensive approach provides a solid 

foundation for the research, reassuring the audience 

about the thoroughness of the study.  

The study [10] used GridSearchCV and compared three 

feature selection techniques, including Information 

Gain (IG), Chi-square (Chi2), and Correlation-based 

Feature Selection (CFS), to improve the accuracy of the 

SVM and Random Forest algorithms in diagnosing 

heart disease. The results of the study showed that CFS 

was able to obtain the highest accuracy in the SVM and 

Random Forest algorithms with accuracies of 92.19% 

and 91.88%, respectively, which experienced an 

increase in accuracy of 10.88% for SVM, and Random 

Forest obtained an increase of 9.47%. GridSearchCV 

was also applied in research [11] using SVM and KNN 

algorithms in predicting stroke. In his research, he 

managed to improve the performance of both 

algorithms to achieve an accuracy of 94% for SVM and 

95% for KNN, which previously only achieved an 

accuracy of 83% and 91%. 

Based on the gap analysis, this study aims to improve 

the performance of Logistic Regression in stroke 

prediction with a more comprehensive approach. This 

study proposes a combination of techniques that have 

not been fully explored in previous studies in predicting 

stroke, namely: the application of Correlation-based 

Feature Selection to identify the most relevant features 

for stroke, a comparison of various over-sampling 

methods (SMOTE, Borderline-SMOTE, ADASYN, 

and Random Over Sampling) and under-sampling 

methods (Random Under Sampling) to overcome data 

imbalance, and the use of GridSearchCV for model 

parameter optimization. 

The selection of Logistic Regression (LR) and Support 

Vector Machine (SVM) as the main algorithms in this 

study is a strategic and reasonable choice. The logistic 

regression model is versatile, has strong interpretation, 

and has been used to describe phenomena in various 

medical and non-medical research fields [12]. The 
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study [13] that detected heart disease using LR obtained 

an accuracy of 91.65%, and in the study [14] also 

predicted heart disease using LR successfully obtained 

an accuracy of 92.30%. Both studies showed good 

performance for LR, instilling confidence in its 

potential to better predict stroke disease through proper 

processing. In addition, LR offers significant clinical 

value due to its high interpretability, allowing health 

practitioners to understand the relative contribution of 

each risk factor in predicting stroke through its 

coefficients. This interpretability is especially 

important in medical settings where transparency in 

decision making is critical. The computational 

efficiency of LR makes it suitable for real-time clinical 

applications with limited computing resources. 

In contrast, SVM excels in handling complex non-linear 

relationships between variables through its kernel 

function, capturing subtle patterns in stroke risk factors 

that linear models may miss. Furthermore, SVM's 

resilience to overfitting, especially in high-dimensional 

feature spaces resulting from encoding categorical 

variables, makes it invaluable for medical datasets with 

many risk factors. SVM also performed well in studies 

[10] and [11], achieving accuracies of around 90%, but 

in studies [6] and [9], SVM was only able to achieve 

accuracies of 81%, making it an ideal algorithm to 

compare with Logistic Regression to determine the 

most effective approach for stroke prediction. 

The main objective of this study is to improve the 

performance of Logistic Regression in stroke 

prediction, which has consistently performed poorly in 

previous studies. In addition, this study aims to compare 

optimized Logistic Regression models with Support 

Vector Machines to determine the most effective 

approach for stroke prediction under various sampling 

conditions. The researchers expect that the application 

of correlation-based feature selection, exploring various 

alternative sampling techniques, and optimizing 

hyperparameters through GridSearchCV will 

significantly improve the predictive accuracy of both 

algorithms, especially improving the performance of 

Logistic Regression beyond the 75-79% accuracy range 

reported in previous studies. 

The contents of this research paper are structured as 

follows. Section 2 discusses the method and description 

of the analysis using Logistic Regression with selection 

and hyperparameter tuning features. Section 3 contains 

the results and discussion of this research. Finally, 

Section 4 contains the conclusions of the research. 

2. Methods 

This study uses Logistic Regression (LR) and Support 

Vector Machine (SVM) classification methods for 

stroke prediction. Figure 1 outlines the research 

methodology, which begins with data acquisition from 

Kaggle, followed by data preprocessing, addressing 

class synchronization, data verification, 

hyperparameter tuning, classification using Logistic 

Regression and Support Vector Machine, and finally, 

model performance evaluation. 

 

Figure 1. Research Method  

2.1 Dataset Description 

The dataset used in this study comes from the dataset 

created by Fedesoriano in 2020, uploaded on Kaggle 

[15]. This dataset has a total of 5110 data and 12 

features. The available dataset features can be seen in 

Table 1. 

Table 1. Dataset Description 

Feature Description 

Id Unique identifier for each patient 

gender Patient gender (Male, Female, and 

Other) 

age Age of the patient 

hypertension Whether the patient has hypertension 

or not (0 if no, 1 if yes) 

heart_disease Whether the patient has heart disease 

or not (0 if no, 1 if yes) 

ever_married Whether the patient is married or not 

(Yes, No) 

work_type Patient's occupation type (children, 

Govt_job, Private, Self-employed, 

Never_worked) 

Residence_type Type of patient residence (Urban, 

Rural) 

avg_glucose_level The average value of glucose levels in 

the patient's blood 

bmi BMI value in patients 

smoking_status Smoking status of patients (formerly 

smoked, never smoked, smokes, 

Unknown) 

Stroke Stroke diagnosis status of the patient (0 

if not stroke, 1 if stroke) 

2.2 Data Preprocessing 

Before testing the model, the data must go through a 

preprocessing stage. Preprocessing is a stage that is 

useful for preparing the data to be used so that the model 

built can work optimally and effectively. In the 

preprocessing stage, data cleaning is needed to clean the 

data from missing values. In addition, in the 

preprocessing stage, the data will be cleaned from 

irrelevant or redundant data using the feature selection 

method [16]. 

Correlation-Based Feature Selection is used in this 

study to select relevant and influential features in the 

dataset. CFS (Correlation-based Feature Selection) is a 

multivariate filter feature selection that works by 

selecting features based on correlation by measuring the 

relationship between two variables; Irrelevant features 

will be ignored because they do not have a high 
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correlation value [10], [17]. After going through 

Feature Selection, Feature Encoding is performed on 

the dataset using One-Hot Encoding. It is a popular 

encoding method to utilize when processing datasets 

containing categorical variables [18]. In one-hot 

encoding, the original feature vector is expanded into a 

multidimensional matrix, with the matrix dimension 

being the number of states in this feature and each 

dimension representing a particular state; This 

processing results in only one dimension of the feature 

matrix being expressed for a particular state (usually 

'1ʹ), and all other state dimensions are zero [19]. This 

method leads to a significant increase in the number of 

features in the dataset. 

In addition, a normalization stage is carried out on data 

with continuous numeric variable types such as age, 

avg_glucose_level, and BMI. Data normalization is the 

process of scaling attribute values into smaller ranges 

with equal weights; The new scale of data attribute 

values can help classification performance because it 

can remove features with high noise and low relevance 

[20]. 

2.3. Handling Imbalance Data 

The dataset used in this study has a total of 5110 data, 

with a very unbalanced distribution: 249 data (4.87%) 

are stroke class while 4861 data (95.13%) are non-

stroke class, as shown in Figure 2. This extreme 

imbalance can cause the classification model to tend to 

be biased towards the majority class, so it must be 

overcome first to build an optimal and effective model. 

 

Figure 2. Amount of Data Distribution 

The imbalance of main approaches can address the 

imbalance in data: 

Over sampling: This method balances the data by 

increasing the number of samples of the minority class 

(in this case, stroke patients). Oversampling copies or 

creates new data similar to existing stroke cases so the 

number is close to non-stroke cases. 

Under sampling: This method takes the opposite 

approach by reducing the number of samples from the 

majority class (non-stroke) until the number is 

comparable to the minority class. 

This study prioritizes the oversampling method based 

on two primary considerations. First, research [9] 

showed that under sampling produces lower accuracy 

than oversampling in stroke prediction. Second, this 

dataset has extreme imbalance (249 stroke data vs 4861 

non-stroke data), so under sampling would result in 

only 498 total samples, which risks missing important 

information from the majority class and reducing the 

model's generalization ability. 

However, to provide a comprehensive analysis and fill 

the gap in the literature, this study also includes a 

comparison with the under-sampling method. The 

methods used in this study are: 

SMOTE (Synthetic Minority Over-sampling 

Technique): The most frequently used oversampling 

method [21]. SMOTE creates synthetic data for the 

minority class based on its nearest neighbors. SMOTE 

is included in this study as a basis for comparison with 

previous studies. 

Borderline-SMOTE: An enhanced version of SMOTE 

that focuses on creating synthetic samples along the 

border between two classes [22]. This method is more 

selective in choosing data to be oversampled, especially 

for minority samples in the vulnerable area or border 

between two classes (0 or 1), because these points are 

more susceptible to misclassification by the model. 

ADASYN (Adaptive Synthetic Sampling): This method 

like SMOTE, generates synthetic data for the minority 

class [23]. The difference is that ADASYN focuses on 

minority samples that are more difficult to classify [24]. 

The data generation process uses linear interpolation 

between minority samples and randomly selected 

minority neighbors. 

Random Over Sampling (ROS): A simple approach that 

randomly duplicates minority class samples until class 

balance is achieved [25], [26]. Despite its simplicity, 

ROS provides a valuable foundation and can perform 

well when combined with a robust classification 

algorithm.  

Random Under Sampling (RUS): An under-sampling 

method that randomly removes samples from the 

majority class until balance is achieved with the 

minority class. Despite the risk of information loss, 

RUS can provide important comparative insights to 

oversampling approaches. 

Applying these five methods to a stroke dataset allows 

for a comprehensive analysis of the relative 

effectiveness of different approaches in dealing with 

data imbalance. This is important for determining the 

optimal strategy to improve the performance of basic 

classification algorithms such as Logistic Regression 

and Support Vector Machine for stroke prediction. 

2.4 Dataset Bias Analysis 

The stroke prediction dataset used in this study exhibits 

significant data representation and balance issues that 

can significantly impact the performance of predictive 

models. Extreme class imbalance, with stroke cases 

comprising only 4.87% (249) of the dataset compared 
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to 95.13% (4861) of non-stroke cases, creates a 

fundamental challenge for developing a reliable model. 

This imbalance naturally biases the algorithm towards 

the majority class, potentially resulting in misleading 

accuracy metrics and inadequate sensitivity to stroke 

risk patterns. 

Demographic features of the dataset reveal concerning 

distributional biases. The bimodal age distribution 

peaking at ages 45-60 and 80+ years suggests potential 

sampling bias that may not correctly represent the full 

spectrum of age-related stroke risk. The occupational 

distribution heavily favors individuals in private sector 

jobs, introducing occupational bias despite relatively 

balanced urban-rural representation. 

Health-related variables exhibit additional problematic 

patterns. The BMI distribution that is predominantly 

between 25-30 suggests the underrepresentation of 

individuals with higher BMI values. Conversely, 

missing values imputed to the mean reduce variance and 

potentially obscure the relationship between extreme 

BMI values and stroke risk. Similarly, the bimodal 

distribution of glucose levels may cause the model to 

treat glucose as a binary rather than a continuous risk 

factor. The underrepresentation of hypertension and 

heart disease cases in the dataset may reduce the 

model’s sensitivity to these critical stroke risk factors. 

The various sampling techniques used to address class 

imbalance introduce their own biases. Synthetic data 

generation methods such as SMOTE create artificial 

cases through interpolation that may not accurately 

reflect the real-world presentation of stroke, especially 

for categorical features or multimodal distributions. 

Borderline-SMOTE’s focus on decision boundary cases 

may amplify noise or outliers, while ADASYN risks 

overemphasizing unusual stroke cases. Random Over 

Sampling (ROS) duplicates existing minority cases 

without introducing new information, potentially 

leading to overfitting. Conversely, Random Under 

Sampling (RUS) reduces the model’s exposure to non-

stroke variation, potentially missing important 

information about differences between stroke and non-

stroke cases. 

Models trained on such resampled data may perform 

satisfactorily on similarly sampled test data but suffer 

significant degradation when applied to real-world 

populations with natural distributions. The fundamental 

representational imbalances risk creating models that 

primarily learn patterns from dominant groups while 

performing inadequately for minority populations—

precisely those for whom accurate stroke prediction 

could be most critical. 

2.5 Data Splitting 

Data splitting is one of the important steps in the 

machine learning process that aims to ensure that the 

model built cannot only learn patterns from training 

data but also generalize to new data that has never been 

seen before. This study divides the dataset into two 

parts: training data and testing data. Training data is 

used to train the model and recognize patterns in the 

data. In contrast, testing data objectively measures the 

model's performance on entirely new data independent 

of training.  

This process is critical to prevent overfitting, which is 

when the model focuses too much on training data, so it 

cannot perform well on new data. In addition, data 

splitting allows for a more accurate evaluation of the 

model's ability to handle real situations. Ensuring 

proper data division, the built model can be more 

reliable in predicting data outside the training sample. 

The data in this study was divided into 70% for training 

data and 30% for testing data. 

2.6 Classifier Logistic Regression 

Logistic Regression (LR) is one of the statistical 

analysis methods used to model the relationship 

between categorical dependent variables (responses) 

with one or more independent variables (predictors) in 

the form of categorical or continuous data so that it is 

possible to perform classification analysis and also 

allows to provide information about variables that have 

a significant influence [27]. 

Logistic Regression is one of the most popular 

supervised learning machine learning algorithms. LR 

can process large amounts of data at high speed because 

it requires less computing capacity, such as memory and 

processing power [28]. The Logistic Regression model 

is stated in Equation 1 [29]. 

𝐿𝑜𝑔𝑖𝑡 (𝑃) = ln (
𝑃

1−𝑃
)  (1) 

This equation is the core of Logistic Regression, which 

transforms probability (P) into logit values. This 

transformation makes it possible to model the 

relationship between predictor variables (stroke risk 

factors) and the probability of stroke using a linear 

function. The P value ranges between 0 and 1 (0% to 

100% probability), while the logit can range from -∞ to 

+∞, allowing for more flexible modeling. In the context 

of this study, Equation 2 shows how the probability of 

stroke can be predicted from a linear combination of 

risk factors. 

𝑙𝑜𝑔𝑖𝑡(𝑝) = ln (
𝑝

1−𝑝
) =  𝑛0 + 𝑛1𝑥1 + 𝑛2𝑥2 + ⋯ + 𝑛𝑛𝑥𝑛  (2) 

𝑝 is the probability of a patient having a stroke, 𝑥1, 

𝑥2 … , 𝑥𝑛 are predictor variables such as age, 

hypertension, and heart disease, 𝑛0 is a constant 

(intercept), and 𝑛1, 𝑛2, … , 𝑛𝑛 are coefficients that 

indicate how strong the influence of each risk factor is. 

The higher the coefficient value for a risk factor, the 

greater its influence on the probability of stroke. 

2.7 Classifier Support Vector Machine 

The Support Vector Machine (SVM) algorithm is a 

supervised learning method that separates data into 

different categories by maximizing the margin between 

the classes [30]. In solving classification problems 
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using datasets that cannot be separated linearly, this 

algorithm uses a kernel function (kernel trick) to map 

data into a high-dimensional feature space to obtain a 

hyperplane that separates the data into two classes [31]. 

Some kernels often used in SVM are polynomial, 

Radial Basis Function (RBF), and sigmoid, which have 

been proven to improve SVM performance. This kernel 

function uses Equations 3, 4, and 5 to produce a 

hyperplane in the classification process [32]. 

𝐾𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 = (𝑦𝑥𝑇𝑥𝑖 + 𝑟)𝑝, 𝑦 > 0   (3) 

This polynomial kernel allows SVM to handle non-

linear relationships with a degree of complexity 𝑝. In 

practice, this function helps the model identify complex 

patterns, such as how a combination of certain risk 

factors, such as age and blood pressure, 

disproportionately increases the risk of stroke. 

𝐾𝑅𝐵𝐹 = exp(−𝑦||𝑥𝑖 − 𝑥||2) , 𝑦 > 0   (4) 

The Radial Basis Function (RBF) kernel effectively 

handles very complex data. The parameter 𝑦 (gamma) 

controls how much influence one data sample has on 

another. For stroke prediction, RBF allows the model to 

identify “high-risk areas” in the feature space where 

certain combinations of risk factors are strongly 

associated with stroke occurrence. 

𝐾𝑆𝑖𝑔𝑚𝑜𝑖𝑑 = tanh ( 𝑦𝑥𝑇𝑥𝑖 + 𝑟)   (5) 

The sigmoid kernel mimics the activation function in a 

neural network. The parameter 𝑐 is a bias that shifts the 

curve. In the context of stroke prediction, this function 

can capture the threshold relationship where stroke risk 

increases sharply when a risk factor reaches a certain 

level. 

2.8 Hyperparameter Tuning 

Hyperparameter tuning is finding the best combination 

of hyperparameters in the model to be built to produce 

optimal and effective performance. In addition, 

hyperparameter tuning functions so that the model that 

is built can learn data patterns effectively so that it can 

avoid overfitting or underfitting where if the 

combination of hyperparameters is wrong, it will cause 

the model to become too complex (overfitting) or too 

simple (underfitting). 

Grid Search Cross-Validation or GridSearchCV is one 

method that is often used for hyperparameter tuning. 

GridSearchCV is a technique that helps find the 

parameters that produce the best performance for a 

particular model [33]. With GridSearchCV, various sets 

of hyperparameters will be tested individually in a grid, 

allowing for a structured and consistent assessment of 

model performance. This process ensures that the best 

combination is selected based on the model evaluation 

results to optimize the model properly to produce more 

accurate and reliable predictions. 

Previous studies have primarily ignored systematic 

hyperparameter tuning, which has the potential to 

contribute to less-than-optimal performance. This study 

applies GridSearchCV with cross-validation 10 to 

systematically optimize model parameters. The 

parameters used in this study are shown in Table 2. 

Optimization of these parameters addresses significant 

gaps in previous research and allows for a fair 

comparison between algorithms in their optimal 

configurations. 

Table 2 Parameters used in LR and SVM 

Logistic Regression Support Vector Machine 

Regularization strength (C) Kernel type 

Class weights Regularization parameter (C) 

Maximum iterations Kernel coefficient (gamma) 

Tolerance (tol) Tolerance (tol) 

While GridSearchCV offers a systematic approach to 

hyperparameter engineering, it introduces significant 

computational overhead that must be considered when 

unpacking the feasibility of model implementation. 

Without GridSearchCV, both models run in less than 2 

seconds, but with GridSearchCV and oversampling, 

Logistic Regression takes 1–2 minutes, while SVM 

takes 13–15 minutes. 

These differences in execution time reflect the 

characteristics of the respective algorithms. Logistic 

Regression uses more straightforward optimization, 

while SVM solves complex optimization problems with 

more intensive kernel calculations. An extreme case 

occurs when using a polynomial kernel with 

oversampling, increasing the SVM execution time to 

232 minutes, well above the RBF and sigmoid kernels 

(13–15 minutes). Conversely, undersampling results in 

shorter computational times for both models (Logistic 

Regression <10 seconds, SVM 16–25 seconds) due to 

the reduced amount of data processed. 

This information is important for practical applications 

in clinical settings, where the balance between accuracy 

and computational efficiency is critical. Although 

GridSearchCV improves model performance, its 

computational cost must be carefully considered, 

especially for applications requiring rapid development 

or frequent retraining. 

2.9 Performance Evaluation 

After testing, the model is evaluated to calculate the 

error rate made during testing. Performance evaluation 

of the model is critical to understand how well the 

prediction model works on the test data. Confusion 

Matrix is one of the most frequently used methods to 

evaluate the performance of the classification model. 

Confusion Matrix consists of four parts, namely True 

Positive (TP), True Negative (TN), False Positive (FN), 

and False Positive (FP), as shown in Table 3. 

The value of True Positive (TP) is positive data that is 

predicted as positive data by the model. At the same 

time, True Negative (TN) is positive data predicted as 

unfavorable. The value of False Positive (FP) is harmful 

data that is predicted as positive data by the model. At 

the same time, false negative (FN) data is positive but 

is predicted to be negative. The value of False Negative 



  
Syamsul Risal et al                                Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025) 

 

 

                                                                                                            652 

 

(TN) and False Negative (FN) is the error value or 

mistake the model makes in making predictions. 

Table 3. Confusion Matrix 

A
ct

u
al

  Predicted 

 Positive Negative 

Positive TP FP 

Negative FN TN 

Other evaluation matrices, such as accuracy, precision, 

and recall, can then be calculated from the confusion 

matrix. Accuracy will measure how many predictions 

are correct among all predictions made by the model. 

Accuracy is obtained using Equation 6. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (6) 

Precision shows how many of the optimistic predictions 

are positive. Precision is stated in Equation 7. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (7) 

Recall shows how much positive data is found. Recall 

is defined in Equation 8. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (8) 

The ROC curve is a visual representation utilized to 

evaluate the classifier's performance; In the ROC curve, 

The Sensitivity or True Positive Rate (TPR), which 

represents the proportion of correct predictions 

classified as true and the False Positive Rate (FPR), 

which represents to the ratio of incorrect predictions 

classified as correct predictions [34]. The ROC curve is 

used to visually depict the model's capacity to 

accurately classify stroke risk by evaluating the ratio of 

accurate and inaccurate predictions. TPR and FPR are 

defined in Equations 9 and 10 [35]. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑃
 (10) 

Then there is an important index of ROC, namely 

AUC, which is the value of the area between the ROC 

curve and the abscissa; A better credit risk score is 

indicated by a higher value of the AUC (Area Under 

the Curve), which ranges from 0 to 1 [35]. AUC is 

stated in Equation 11. 

𝐴𝑈𝐶 =
1+𝑇𝑃𝑅−𝐹𝑃𝑅

2
 (10) 

3. Results and Discussions 

This study aims to improve the performance of Logistic 

Regression and Support Vector Machine through the 

use of Correlation-based Feature Selection (CFS), 

oversampling techniques, and GridSearchCV. Model 

performance evaluation is carried out using Confusion 

Matrix to calculate the level of error made during 

testing. The data used comes from Kaggle and data that 

has gone through the data preprocessing stage is divided 

into 70% training data and 30% test data. 

3.1 Data Preprocessing 

After the initial data set inspection, the id feature was 

removed as it did not affect the model performance. It 

handled 201 missing values in the BMI feature by 

imputing the mean value. The Correlation-Based 

Feature Selection technique produced 9 relevant 

features with the top ranking of the threshold of 0.01, as 

shown in Table 4. 

Table 4. Feature Selection Results 

Feature Correlation Coefficients 

Age 0.245257 

Hypertension 0.134914 

Heart_disease 0.131945 

Ever_married 0.127904 

Work_type 0.108340 

Residence_type 0.038971 

Avg_glucose_level 0.032316 

Bmi 0.015458 

Smoking_status 0.015458 

Stroke (output) (output) 

Through correlation-based feature selection, this study 

not only validates the primacy of age, hypertension, and 

heart disease as major predictors of stroke but also 

sheds new light on their relative importance (age: 

0.245257, hypertension: 0.134914, heart disease: 

0.131945). These quantitative rankings provide 

evidence-based prioritization for clinical risk 

assessment, offering a deeper understanding of stroke 

prediction. The study highlights the relative 

contribution of additional factors such as marital status 

(0.127904) and occupation (0.108340) and validates the 

importance of considering socioeconomic and lifestyle 

factors in stroke risk assessment. This support for a 

more holistic approach reassures clinicians about the 

validity of their current practices. 

Furthermore, this study shows that although mean 

glucose level (0.032316) and BMI (0.015458) are 

considered important in clinical practice, their 

predictive power is much lower than that of 

cardiovascular factors. These findings may help 

clinicians appropriately consider these factors in their 

risk assessment. The performance improvements 

achieved through feature selection underscore the 

importance of targeted clinical assessment. By focusing 

on the most predictive factors rather than collecting 

extensive patient data, clinicians can enhance the 

efficiency and accuracy of their risk stratification, 

empowering them to make more informed decisions in 

their practice. 

After data cleaning and feature selection, one-hot 

encoding was applied to the categorical features, 

creating binary variables for each category, as shown in 

Figure 3. At the same time, normalization was 

performed on continuous numeric features to ensure 

consistent scaling and reduce the impact of outliers, as 

shown in Figure 4. 
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Figure 3. Sample One-Hot Encoding Dataset 

 

Figure 4. Sample Normalization Dataset 

3.2 Imbalance Data 

The results of over sampling and under sampling are 

shown in Figure 5. 

 

Figure 5. Amount of Data Distribution After Sampling Method 

Figure 5 shows that SMOTE, Borderline-SMOTE, and 

ROS (Random Over Sampling) produce the same 

number of samples for both classes, which is 4861, 

indicating a perfect balance between the Non-Stroke 

and Stroke classes. SMOTE creates balanced datasets 

in each class by generating synthetic samples that 

maintain statistical properties while avoiding simple 

duplication. However, it may produce unrealistic 

samples if feature correlations are complex or create 

class overlapping. 

Borderline SMOTE similarly achieves balance but 

focuses specifically on border regions between classes 

where classification is most challenging, making it 

more effective for complex boundaries despite being 

computationally expensive and potentially struggling 

with sparse minority classes. Random Over-Sampling 

(ROS) offers simplicity with minimal computational 

overhead and preserves original data points without 

modification but risks overfitting by creating exact 

duplicates without adding new information. 

ADASYN (Adaptive Synthetic Sampling) takes a 

different approach by adaptively generating more 

synthetic data for difficult-to-learn minority samples, 

resulting in slightly more stroke samples (4948) than 

non-stroke (4861), which helps with complex decision 

boundaries but may amplify noise and create regional 

imbalances. Finally, Random Under-Sampling (RUS) 

drastically reduces the dataset to only 249 samples per 

class, which significantly reduces training time and 

simplifies the decision boundary but discards 

potentially valuable majority class information and can 

lead to underfitting and increased susceptibility to 

outliers. 

The selection of the proper sampling method depends 

on the dataset's characteristics. In this study, ADASYN 

shows a slightly different approach by generating non-

exact distributions for both classes, which may be more 

adaptive to the learning difficulty in the dataset. 

Furthermore, data splitting is performed with 70% 

training data and 30% test data. 

3.3 Hyperparameter Tuning 

Hyperparameter tuning is performed using 

GridSearchCV with 10-fold cross-validation, which 

performs an exhaustive search on various parameter 

combinations to find the optimal configuration. With 

10-fold cross-validation, this process becomes more 

robust because the data will be divided into 10 parts 

(folds) that are used alternately as validation data. Table 

5 shows the best parameter results obtained by the 

Logistic Regression algorithm. 

Table 5 The Best Parameters Logistic Regression 

 
Tol C 

Class_ 

weight 

Max_i

ter 
Score 

SMOTE 1e-6 10 None 100 0.837 

Borderline-

SMOTE 
1e-4 10 Balanced 100 0.861 

ADASYN 1e-5 100 Balanced 200 0.835 

Random Over 

Sampling 
1e-4 0.1 None 100 0.776 

Random 

Under 

Sampling 

1e-4 0.1 None 100 0.756 

Table 5 shows the parameter optimization results for the 

Logistic Regression model applied to five different 

sampling methods. For the Borderline-SMOTE method, 

the model achieved the best performance with a score 

of 0.861 using a tolerance (Tol) of 1e-4, a regularization 

parameter (C) of 10, class_weight balanced, and a 

max_iter of 100, indicating that Borderline-SMOTE 

performed better than other methods in balancing the 

dataset. 

SMOTE and ADASYN also performed competitively, 

with scores of 0.837 and 0.835, respectively. SMOTE 

was optimal with a tighter tolerance (1e-6) and C=10, 
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while ADASYN required a higher C value (100) and a 

larger max_iter (200), indicating higher complexity in 

the data it generated. 

Random Over Sampling and Random Under Sampling 

performed lower, with scores of 0.776 and 0.756. Both 

methods achieve optimal results with identical 

parameters (Tol=1e-4, C=0.1, class_weight=None, 

max_iter=100). A smaller C value (0.1) indicates that 

stronger regularization is needed to prevent overfitting 

the data generated by these methods. The class_weight 

parameter has a significant effect, with “Balanced” 

giving the best results for Borderline-SMOTE and 

ADASYN. At the same time, the other methods do not 

require additional weighting, indicating that both 

methods generate data distributions that benefit from 

adjusting the class weights in the classification 

algorithm. Furthermore, Table 6 shows the best 

parameter results the Support Vector Machine obtained. 

Table 6. The Best Parameters Support Vector Machine 

 Kernel C Gamma Tol Score 

SMOTE RBF 100 1 1e-3 0.935 

Borderline-

SMOTE 
RBF 1 10 1e-3 0.954 

ADASYN RBF 100 1 1e-3 0.967 

Random Over 

Sampling 
RBF 1 10 1e-3 0.992 

Random 

Under 

Sampling 

RBF 1 Scale 1e-3 0.787 

Table 6 shows that the RBF kernel is more dominant 

than the other kernels, indicating that the data is not 

linearly separable and requires transformation to a 

higher dimension. The tolerance (Tol) value is 

consistent across all methods at 1e-3, which determines 

the stopping criterion for the optimization algorithm. 

Random Over Sampling scored the highest at 0.992, 

with parameters C=1 and gamma=10. This lower C 

value indicates that the model emphasizes wider 

margins for better generalization. A high gamma 

indicates that the model focuses on data points that are 

closer together, thus creating a more complex and 

flexible decision boundary. 

ADASYN came in second with a score of 0.967, using 

C=100 and gamma=1. A higher C value indicates that 

the model emphasizes minimizing the classification 

error, while a lower gamma creates a slightly smoother 

decision boundary. Borderline-SMOTE scored 0.954 

with C=1 and gamma=10, while conventional SMOTE 

scored 0.935 with C=100 and gamma=1. These 

differences reflect the differences in the data 

distribution characteristics produced by each method. 

Random Under Sampling showed the lowest 

performance with a score of 0.787, using C=1 and 

gamma="scale". The use of gamma="scale" indicates 

that the gamma value is automatically determined based 

on the data's number of features and variance, which 

may be suboptimal for the smaller datasets generated by 

this method. 

The 10-fold cross-validation used in GridSearchCV 

ensures that the selected parameters have good 

generalization ability and are robust to variations in the 

data, which reduces the risk of overfitting and provides 

higher confidence in the model's performance when 

applied to new data. 

From these results, the selection of oversampling 

methods and model parameters highly depends on the 

algorithm used. Logistic Regression benefits more from 

the Borderline-SMOTE method, which adjusts the 

weights of the minority class more adaptively. At the 

same time, SVM shows the best performance with 

Random Over Sampling, which maintains the original 

characteristics of the data. Therefore, in dealing with 

imbalanced datasets, it is important to consider the 

nature of the model used and tune the parameters 

optimally to achieve the best results. 

3.4 Model Evaluation Performance 

This study uses the Logistic Regression and Support 

Vector Machine algorithm models to predict stroke 

disease using five sampling methods and the best 

parameters previously obtained through GridSearchCV 

with 10-fold cross-validation. Each method is evaluated 

using three main metrics: Recall, Precision, and 

Accuracy, while the ROC curve serves as a visual 

representation for performance evaluation. The 

performance of Logistic Regression (LR) is shown in 

Figures 6 and 7. 

 

Figure 6. Performance Presentation Logistic Regression 

 

Figure 7. ROC Curve of Logistic Regression 
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Figures 6 and 7 show the performance of the Logistic 

Regression model on the stroke dataset with the five 

different standard sampling methods. LR + Borderline-

SMOTE showed the strongest overall performance with 

the highest accuracy (84.98%), highest precision 

(88.58%), and Recall of 80.64%, indicating that the 

borderline approach’s focus on hard-to-tell examples 

near class boundaries appears to produce robust and 

effective results, especially in precision. The ROC 

curves confirm this assessment, showing an AUC of 

0.8503, the highest among all models, with a good 

balance between TPR (0.8064) and FPR (0.1059).  

LR + ADASYN followed closely with the highest 

Recall (81.90%), strong precision (83.85%), and solid 

accuracy (83.15%), indicating that the adaptive 

synthetic sampling approach effectively identified 

stroke cases while maintaining good overall 

classification performance. Its ROC curve shows a TPR 

of 0.8190, FPR of 0.1562, and AUC of 0.8314, making 

it the second-best performer in terms of AUC, although 

its Precision and Accuracy are slightly lower than 

Borderline-SMOTE. 

LR + SMOTE shows a competitive performance with a 

recall of 80.10%, a precision of 84.27%, and an 

accuracy of 82.41%. Its ROC curve shows a TPR of 

0.8010, an FPR of 0.1522, and an AUC of 0.8244, 

making it the third-best performer in terms of AUC. 

LR + RUS (Random Under-Sampling) shows a fairly 

good performance with a recall of 77.50%, a precision 

of 83.78%, and an accuracy of 80.00% despite the 

drastic decrease in the dataset size. This efficiency is 

reflected in the ROC metrics (TPR: 0.7750, FPR: 

0.1714, AUC: 0.8018), indicating that most of the 

information in the class is likely to be redundant. 

LR + ROS (Random Over-Sampling) showed the 

weakest performance among these techniques, with the 

lowest Recall (71.06%), precision (81.21%), and 

accuracy (77.10%). This poor performance is consistent 

with the ROC curve showing a TPR of 0.7675, the 

highest FPR of 0.1985, and the lowest AUC of 0.7718, 

which is most likely due to the overfitting of the 

minority duplicate samples. 

These results indicate that choosing the right sampling 

method can significantly affect the performance of the 

Logistic Regression model in the context of stroke 

disease classification. Logistic Regression combined 

with Borderline-SMOTE and ADASYN proved to be 

more effective in handling class cohesion than other 

methods. The choice between Borderline-SMOTE and 

ADASYN will ultimately depend on clinical priorities: 

Borderline-SMOTE excels in minimizing false 

positives, while ADASYN maximizes the identification 

of true stroke cases.  

Then, the performance of the Support Vector Machine 

(SVM) is shown in Figures 8 and 9. 

 

Figure 8. Performance Presentation Support Vector Machine 

 

Figure 9. ROC Curve of Support Vector Machine 

Figures 8 and 9 show the performance of the Logistic 

Regression model on the stroke dataset with the five 

different standard sampling methods. The SVM + ROS 

(Random Over-Sampling) model achieved perfect 

recall (100%) with high precision (97.18%) and 

excellent accuracy (98.56%). This performance is 

reflected in its ROC metric, which showed a TPR of 

1.0000, a very low FPR of 0.0285, and an impressive 

AUC of 0.9857. The combination of perfect sensitivity 

and excellent specificity makes this approach very 

important. 

SVM + Borderline-SMOTE delivered an excellent 

balanced performance with a recall of 94.99%, 

precision of 95.06%, and accuracy of 95.17%. Its ROC 

curve showed a TPR of 0.9499, a very low FPR of 

0.0476, and a high AUC of 0.9512, indicating excellent 

discrimination ability while maintaining a good balance 

between sensitivity and specificity, making it the 

second best in terms of AUC. 

SVM + SMOTE performed impressively with 97.44% 

recall, 90.20% precision, and 93.49% accuracy. The 

corresponding ROC metrics (TPR: 0.9744, FPR: 

0.1039, AUC: 0.9352) confirmed its strong 

performance, albeit with a slightly higher false positive 

rate than some alternatives. 

SVM + ADASYN showed similar strength with 

97.03% recall, 91.69% precision, and 94.09% accuracy. 

Its ROC values (TPR: 0.9703, FPR: 0.0888, AUC: 
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0.9407) position it as a highly effective approach, 

balancing high sensitivity with reasonable specificity. 

SVM + RUS (Random Under-Sampling) shows 

significantly weaker performance with 84.29% recall, 

66.29% precision, and 72.67% accuracy. This 

significant performance gap is reflected in the ROC 

metrics (TPR: 0.8429, FPR: 0.3371, AUC: 0.7529), 

indicating that the information loss due to the reduced 

random under-sampling has a significant impact on the 

classification ability of SVM. 

Among the sampling methods, Random Over-Sampling 

(ROS) with SVM gave the best results with perfect 

recall and the highest AUC (0.9857), making it the 

optimal choice for cases where detecting all stroke 

patients is crucial. However, Borderline-SMOTE with 

SVM offers a better balance between recall (94.99%) 

and precision (95.06%) with a very low FPR (0.0476), 

making it more suitable for resource-constrained 

environments. 

Although the perfect recall (100%) achieved by the 

SVM + ROS model initially seems ideal for stroke 

prediction, it requires careful consideration. Perfect 

recall means that all true stroke cases are identified, 

which is critical for life-threatening conditions where a 

missed diagnosis can have severe consequences. In a 

medical context, the perfect recall of SVM + ROS is 

invaluable for life-threatening conditions such as 

stroke. However, it must be weighed against the clinical 

implications of small numbers of false positives. 

Despite its relatively high precision (97.18%), the 

model will produce some false positives that may lead 

to unnecessary diagnostic procedures, specialist 

consultations, and preventive interventions for patients 

who are not actually at risk. 

These false-positive stroke risk predictions can cause 

significant anxiety and stress for patients and their 

families, potentially leading to decreased quality of life 

and increased healthcare utilization for anxiety-related 

problems. Even with a low FPR of 0.0285, when 

applied to a large population, this can result in a large 

number of false positives, potentially overwhelming 

specialized stroke care resources. The economic impact 

of false-positive investigations must be weighed against 

the benefits of capturing every case of true stroke risk, 

especially in resource-constrained healthcare settings. 

Furthermore, stroke prevention often involves other 

interventions with their risk profiles, and administering 

these treatments to false-positive cases exposes patients 

to unnecessary risk. The choice between perfect recall 

and a more balanced performance metric ultimately 

depends on the specific clinical context, resource 

availability, and the relative costs of false negatives 

versus false positives in a given healthcare setting. 

These results show that the Support Vector Machine 

model outperforms Logistic Regression. The superior 

performance of SVM can be attributed to its ability to 

handle non-linear relationships and create more 

complex decision boundaries, which is very beneficial 

for the stroke disease classification task. The significant 

performance improvement with Random Over 

Sampling for the Support Vector Machine is 

particularly noteworthy, as this method showed the 

weakest performance with Logistic Regression, 

underscoring the importance of considering sampling 

methods and classification algorithms as an integrated 

system when developing predictive models for 

imbalanced datasets. 

3.5 Comparison Logistic Regression with Previous 

Studies 

The comparison between the current study and previous 

studies on stroke prediction using Logistic Regression 

(LR) with various sampling methods is shown in Table 

7. The results show significant improvement in the 

current study, which can be attributed to several factors, 

including parameter optimization using GridSearchCV 

and the practical application of the Feature Selection 

(FS) technique. 

Table 7. Result Comparison With Previous Studies 

Machine Learning Models Accuracy References 

LR + SMOTE 75% [6] 

LR + SMOTE 79% [7] 

LR + SMOTE 79% [8] 

LR + RUS 78% [9] 

LR + FS + GridSearchCV + 

SMOTE 
82.42% This research 

LR + FS + GridSearchCV  + 

Borderline-SMOTE 
84.98% This research 

LR + FS + GridSearchCV  + 

ADASYN 
83.15% This research 

LR +  FS + GridSearchCV + ROS 77.10% This research 

LR + FS + GridSearchCV + RUS  80.00% This research 

The current study used correlation-based feature 

selection, as shown in Table 3, which identified the 

most relevant features for stroke prediction. Age 

emerged as the most significant predictor with a 

correlation coefficient of 0.24527, followed by 

hypertension (0.13914) and heart disease (0.13194). 

Other important features included marital status, 

occupation, residence type, mean glucose level, BMI, 

and smoking status. 

By focusing on these highly correlated features, 

Logistic Regression achieved superior performance 

compared to previous studies. The combination of LR 

+ Borderline-SMOTE achieved the highest accuracy of 

84.98%, substantially improving over the reported best 

result of 79%. Similarly, LR + ADASYN (83.15%), LR 

+ SMOTE (82.42%), and LR + RUS (80.00%) all 

outperformed previous implementations by a 

significant margin. 

The feature selection process significantly improved 

model performance by reducing dimensionality and 

focusing on the most predictive variables. This 

approach minimizes noise and potential overfitting 

from less relevant features. The correlation-based 

selection method provides a clear ranking of the 

importance of features, allowing the model to 
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concentrate on the relationships that most strongly 

indicate stroke risk. 

The accuracy improvement can be attributed to several 

factors: (1) the application of Feature Selection 

techniques that select the most relevant and influential 

features with stroke, (2) the application of advanced 

sampling techniques such as Borderline-SMOTE and 

ADASYN, and (3) thorough parameter optimization 

through GridSearchCV with 10-fold cross-validation. 

These results demonstrate the importance of choosing 

the proper sampling method, optimizing parameters, 

and applying effective feature selection techniques 

when dealing with medical datasets. The current study 

shows that a comprehensive approach that addresses 

data imbalance, parameter tuning, and feature relevance 

can significantly improve the accuracy of stroke 

prediction models. 

4. Conclusions 

This study revealed a breakthrough in stroke prediction 

accuracy by showing that the borderline-smote method, 

combined with logistics regression, could achieve an 

unprecedented accuracy of 84.98% with an AUC value 

of 0.8503. This is far beyond the previous study, which 

only reached an accuracy of 79%. The Support Vector 

Machine method, which is combined with the Random 

Over Sampling technique, also gives extraordinary 

results, with a perfect recall value of 100% and accuracy 

of 95.56% with an AUC value of 0.9857, which is 

almost perfect. These results underline the important 

role of selecting features and adjusting parameters in 

developing predictive models. 

While the results of this study are promising, the 

model's applicability to a broader and more diverse 

population is currently limited due to potential biases in 

the training data set. The data may not fully represent 

the global population's demographic, genetic, and 

environmental variations, which could affect the 

model's accuracy and reliability. Therefore, before the 

stroke prediction model can be widely applied in 

clinical practice, it must undergo rigorous external 

validation on independent data sets from various 

populations and clinical environments. This validation 

process ensures the model's reliability and applicability 

in diverse healthcare scenarios. 

The stroke prediction model presented in this study has 

the potential to serve as a powerful tool for making 

clinical decisions in diverse healthcare environments. 

However, its successful implementation is contingent 

on its seamless integration with local clinical 

knowledge and considering unique population factors. 

This study lays a robust methodological foundation for 

developing an improved stroke prediction model. 

However, it is crucial to conduct further research and 

validation in more diverse populations before its 

widespread application. 

Future research must focus on external validation by 

engaging health professionals and using clinical 

datasets from various regions or hospitals with diverse 

ethnicities, age groups, and socioeconomic conditions. 

Researchers should also explore the integration of 

additional clinical variables, such as medical history, 

family stroke history, and lifestyle factors, to enhance 

prediction accuracy. Furthermore, future research 

should investigate the potential benefits of merging 

various sampling techniques (hybrid sampling 

methods). For instance, testing a combination of Smote 

with Tomek Links or Smote with Edited Nearest 

Neighbors could yield improved results. 
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