

506

Available online at website: https://jurnal.iaii.or.id/index.php/RESTI

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 9 No. 3 (2025) 506 - 518 e-ISSN: 2580-0760

The Effect of Hyperparameters on Faster R-CNN

in Face Recognition Systems

 Jasman Pardede1*, Khairul Rijal2
1,2Department of Informatics, Faculty of Industrial Technology, Institut Teknologi Nasional, Bandung, Indonesia

1jasman@itenas.ac.id, 2rijalk64@mhs.itenas.ac.id

Abstract

Facial recognition remains a significant challenge in the advancement of computer vision technologies. This research seeks to

develop a facial recognition system utilizing the Faster R-CNN architecture, with performance enhancement achieved through

hyperparameter optimization. This research utilizes the "Face Recognition Dataset" from Kaggle, which comprises 2,564 face

images across 31 classes. The development process involves creating bounding boxes using the LabelImg application and

implementing the Grid Search method. The Grid Search is applied with predefined hyperparameter combinations (3 epochs

[10, 25, and 50] × 3 learning rates [0.001, 0.0001, and 0.00001] × 3 optimizers [SGD, Adam, and RMS], resulting in 27

models). The evaluation of the model was conducted using accuracy, precision, recall, and F1-score as performance metrics.

The experimental findings indicate that hyperparameter selection has a substantial impact on model performance. Among the

tested configurations, the combination of a learning rate of 0.00001, 50 training epochs, and the Adam optimizer achieved the

highest accuracy, resulting in an 8.33% improvement over the baseline model. The results indicate that hyperparameter

optimization enhances the ability of the model to recognize faces. Compared to conventional models, the Faster R-CNN

performs better in detecting faces more accurately. Future research could further enhance the face recognition efficiency and

accuracy by exploring other deep learning architectures and more advanced hyperparameter optimization techniques.

Keywords: face recognition; faster R-CNN; hyperparameter optimization; deep learning; grid search

How to Cite: J. Pardede and K. Rijal, “The Effect of Hyperparameters on Faster R-CNN in Face Recognition Systems”, J. RESTI (Rekayasa

Sist. Teknol. Inf.), vol. 9, no. 3, pp. 506 - 518, May 2025.

Permalink/DOI: https://doi.org/10.29207/resti.v9i3.6405

Received: February 19, 2025

Accepted: May 5, 2025

Available Online: May, 28, 2025

This is an open-access article under the CC BY 4.0 License
Published by Ikatan Ahli Informatika Indonesia

1. Introduction

Facial recognition represents one of the principal

applications in digital image analysis, employing

computational techniques to detect, identify, and verify

human faces. In the context of image processing, a face

recognition system analyzes the unique features of an

individual's face [1]. With the progression of

technological advancements, facial recognition

applications have been increasingly adopted across

diverse domains, including security, surveillance, and

human-computer interaction. Accuracy is a critical

parameter in facial recognition, as it indicates the

system’s capability to correctly identify or verify an

individual’s identity [2].

Recent advancements in machine learning and deep

learning have facilitated the development of more

sophisticated and effective techniques in facial

recognition [3]. Convolutional Neural Networks (CNN)

have become one of the most widely used architectures

due to their ability to automatically extract facial

features [4]. Despite the strong performance of CNN,

significant challenges persist—particularly in

accurately recognizing faces under varying conditions,

including low lighting, diverse facial expressions, and

atypical orientations [5].

Faster R-CNN is an architectural framework that unifies

object detection and classification within a single

model. It employs a Region Proposal Network (RPN) to

generate candidate object regions, which are

subsequently refined through classification and

bounding box regression processes [6]. While Faster R-

CNN has demonstrated high effectiveness, its

performance is highly contingent upon the appropriate

tuning of hyperparameters, including the learning rate,

number of training epochs, and the choice of optimizer

[7]. In the context of face recognition using Faster R-

CNN, hyperparameter optimization can enhance the

model's accuracy [8].

https://doi.org/10.29207/resti.v9i3.6405
https://creativecommons.org/licenses/by/4.0/
https://www.iaii.or.id/

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 507

Previous studies have used default configurations or

simple optimization methods in face recognition with

Faster R-CNN [6]. This limits the model's potential in

achieving its best performance. Furthermore, there has

been limited research exploring the impact of

hyperparameter variations on datasets with high

variability, such as changes in position, lighting, and

facial expressions.

This study proposes the application of hyperparameter

optimization through the Grid Search method to

improve the performance of the Faster R-CNN

architecture in facial recognition tasks. The "Face

Recognition Dataset" from Kaggle is utilized for this

purpose [9] It is used as test data with complex

condition variations. By selecting the optimal

hyperparameter combinations, this study aims to

contribute to improving face recognition accuracy.

2. Methods

Several face recognition studies use deep learning, as

shown in Table 1. The previous studies have made

significant contributions to the development of related

methods and approaches that have been proposed. On

[6] proposed the face detection method using Faster R-

CNN, so to improve performance, this study proposes

the impact of hyperparameter optimization on the Faster

R-CNN architecture for face recognition.

Table 1. Related Work

No Title Method Contribution
1 Deep Face

Recognition: A

Survey [2]

Deep

Learning

Deep learning methods that

can be applied to face

recognition.

2 Deep Learning

Convolutional

Neural

Network for

Face

Recognition: A

Review [10]

Convolutional
Neural

Network

Discusses face recognition

using deep learning

techniques.

3 Recent

Advances in

Deep Learning

Techniques for

Face

Recognition [5]

Deep

Learning

Provides insights into other

deep learning models

relevant to face recognition.

4 Review of

Deep Learning:

concepts,

CNN architectu

res, challenges,

application,
future directions
[11]

Deep

Learning

Comprehending the

foundational principles of

Deep Learning and

Convolutional Neural

Networks (CNNs).

5 A new face

detection

method based

on Faster

RCNN [6]

Faster RCNN This paper introduces a novel

face detection method based

on the Faster R-CNN

architecture.

2.1 Face Recognition

Facial recognition is the process of identifying or

verifying an individual by analyzing distinctive facial

features, including the spatial relationships between the

eyes, nose, and mouth; the proportions of various facial

components such as facial width and height; the

contours and protrusions that characterize the

individual’s facial structure; skin color attributes;

surface texture; and the overall facial shape, which may

be categorized as oval, square, or round [2],[12]. Facial

recognition technology is widely applied across

multiple domains, including surveillance, security, and

human-computer interaction. In a more technical

context, face recognition involves algorithms and

machine learning methods to analyze and classify facial

features [6]. Facial recognition encompasses a variety

of technologies employed in the development of face

recognition systems, including face detection, facial

landmark localization, identity recognition, and image

pre-processing. The face detection process involves

identifying the coordinates of all faces within an image,

whereas facial landmarking algorithms determine the

precise positions of facial features within the

established coordinate framework [13].

This study concentrates on the implementation of a

Faster R-CNN architecture utilizing ResNet-50 as the

Feature Pyramid Network (FPN) within a facial

recognition system. Faster R-CNN is a deep learning-

based object detection technique that enables accurate

face detection by employing a Region Proposal

Network (RPN). By leveraging ResNet-50, this model

can extract deeper and more complex facial features,

thereby improving identification accuracy.

Previous studies have shown that ResNet-50 has high

capabilities in face classification. One study used

ResNet-50 to explore facial features by utilizing a

modified dataset with OpenCV, such as random

brightness adjustments [14]. This study also discusses

the development of face recognition technology prior to

ResNet-50 by comparing methods such as Eigenfaces

and Fisherfaces. The results indicated that the model

based on ResNet-50 attained the highest accuracy of

98.75%, demonstrating its robustness across diverse

lighting conditions.

2.2 Faster R-CNN

Figure 1. Faster R-CNN Architecture [15]

Faster R-CNN is an object detection method that

integrates the RPN with Fast R-CNN to perform region

proposal generation, classification, and bounding box

regression [15]. As illustrated in Figure 1, this

architecture processes the input image through the

backbone network (ResNet-50) to produce a feature

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 508

map. The RPN then utilizes this feature map to generate

anchor boxes, which are subsequently assessed by

calculating the Intersection Over Union (IoU) with the

ground truth annotations.

Anchors with high confidence scores are subsequently

processed by Region of Interest (ROI) Pooling or ROI

Align to produce fixed-size feature representations.

These features are then classified to determine the

object type and processed by the bounding box

regressor to refine the coordinates. Equipped with

components such as the FPN, Faster R-CNN is capable

of detecting objects across multiple scales, thereby

achieving high accuracy in object detection tasks.

ResNet-50 is a deep neural network comprising 50

layers, specifically designed to address the degradation

problem in deep architectures, and is widely recognized

for its superior performance in image classification

tasks [16],[17]. The FPN enhances detection accuracy

by combining features from multiple resolution levels

to support multi-scale object detection [18].

The RPN works by applying a sliding window to the

feature map to generate anchor boxes at each location.

These anchors are assessed using the IoU in comparison

to the ground truth, with the IoU values greater than 0.7

classified as positive, values less than 0.3 classified as

negative, and intermediate values disregarded. This

evaluation employs a composite loss function

comprising an objectness loss, which detects the

presence of an object, and a bounding box regression

loss, which refines the anchor coordinates [19].

Fast R-CNN is employed to classify the region

proposals generated by the RPN and to perform

bounding box regression [20]. It utilizes the CNN to

extract features from the entire image and all region

proposals simultaneously in a single processing step.

Furthermore, Fast R-CNN incorporates the RoI pooling

layer to extract features from each region proposal,

thereby eliminating the need to re-crop the proposals

from the image. Finally, fully connected layers are

applied to the network’s output to conduct object

detection and classification on the region proposals

[20].

Figure 2. Anchor Boxes

An anchor is a reference bounding box on the feature

map, characterized by a specific scale and aspect ratio,

employed to predict the locations of objects with

varying sizes [15], as illustrated in Figure 2.

An anchor is centered on the sliding window and has

specific scale and aspect ratio, as shown in Figure 2. By

default, the anchor box is configured with three scales

and three aspect ratios, yielding a total of k = 9 anchors

at each sliding position [15].

The IoU is a metric utilized to quantify the degree of

overlap between an object detection model’s predicted

bounding box and the corresponding ground truth. The

IoU is computed as the ratio of the area of intersection

between the predicted and ground truth boxes to the

area of their union. The intersection refers to the

overlapping region shared by both boxes, while the

union represents the total combined area encompassed

by them. The IoU serves as a criterion for determining

whether an anchor (candidate bounding box) should be

retained as a valid proposal, with values greater than 0.7

typically classified as positive and values less than 0.3

as negative [21]. The calculation of the IoU is expressed

in Equation 1.

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (1)

The area of overlap refers to the region of intersection

between the model’s predicted bounding box and the

ground truth bounding box. The area of union denotes

the total combined area covered by both the predicted

and ground truth bounding boxes, excluding any

double-counted overlapping regions. Interpretation of

IoU values is as follows:

IoU = 0: indicates no overlap between the prediction

and ground truth.

IoU = 1: signifies a perfect correspondence between the

predicted bounding box and the ground truth.

Generally, IoU values greater than 0.5 are regarded as

acceptable, although this threshold may vary depending

on the specific application.

Figure 3. Non-Maximum Suppression

Figure 3 illustrates the Non-Maximum Suppression

(NMS) algorithm, which preserves the detection with

the highest confidence score while removing redundant

or duplicate detections [22].

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 509

The NMS is employed in object detection to refine

prediction outputs by retaining only the most accurate

bounding box—characterized by the highest confidence

score—for each identified object.

The ROI Pooling g is used to reduce features from

region proposals to a fixed size. However, in modern

implementations, the ROI Pooling is often replaced by

ROI Align to improve precision by better preserving

spatial relationships through bilinear interpolation [23].

The bounding box regressor is a module designed to

optimize the parameters of the bounding box so that

they closely correspond to the ground truth annotations

[24].

The classifier is a model that classifies data based on

learned patterns to determine the object category [15].

2.3 Hyperparameter Optimization

Hyperparameter optimization refers to the process of

determining the most suitable values for parameters that

are predefined prior to the commencement of model

training. In the context of object detection,

hyperparameters play a crucial role in influencing both

detection accuracy and the efficiency of the training

process [25], [7]. In hyperparameter optimization,

several key components need to be considered to

improve the performance of a face recognition model

using Faster R-CNN, including:

Grid search is a technique employed to systematically

explore multiple combinations of parameters, where

each combination is evaluated to identify the one that

delivers the optimal performance [26].

An epoch refers to a complete iteration of the learning

algorithm over the entire training dataset. During each

epoch, every sample in the dataset contributes to

updating the model’s parameters [27].

The influence of the number of epochs on model

performance can be understood by examining the

training dynamics within the machine learning process.

An epoch denotes a single full cycle during which the

model is trained on the entirety of the training dataset.

Each epoch allows the model to adjust its weights and

parameters in response to the errors generated in

previous predictions. Throughout the training process,

the model learns from the data by minimizing the loss

function. Increasing the number of epochs enables the

model to progressively reduce prediction errors and

enhance its learning from the training data, which may

lead to improved accuracy. However, an excessively

high number of epochs can result in overfitting, a

condition in which the model becomes overly tailored

to the training data, thereby compromising its ability to

generalize to new, unseen data [27].

The learning rate is a hyperparameter in machine

learning algorithms that governs the magnitude of

adjustments made to the model’s weights during the

training process [28]. When utilizing a dynamic

learning rate, the model exhibited superior performance

relative to a fixed learning rate, as evidenced by higher

AUC values. This indicates that selecting an

appropriate learning rate can enhance the effectiveness

of the optimizer used during model training. Therefore,

adjusting the learning rate is a crucial step toward

achieving optimal results [28].

An optimizer is an algorithm used to update the model’s

weights in a neural network during the training process.

The goal is to minimize the loss function and improve

the model’s accuracy. Commonly employed optimizers

include Stochastic Gradient Descent (SGD), Adam, and

RMSprop [25]. Each optimizer operates through

distinct mechanisms and exhibits varying levels of

performance stability, alongside an optimal learning

rate that influences the overall outcomes [29].

The selection of optimizers significantly influences the

ultimate outcomes of the model training process. Each

optimizer may yield different performance outcomes

depending on the learning rate applied. According to the

experimental results, the SGD exhibited the highest

performance at a learning rate of 0.1, attaining a test

accuracy of 74.80% and a test loss of 72.55%. In

contrast, RMSProp and Adam showed inferior

performance when evaluated at the same learning rate.

At a learning rate of 0.01, RMSProp outperformed both

SGD and Adam, although the results were still below

expectations. Subsequently, at a learning rate of 0.001,

both RMSProp and Adam delivered improved

performance, whereas SGD remained unsuitable for

this learning rate. These findings indicate that selecting

the appropriate optimizer and tuning the learning rate

are key factors in enhancing model performance [29].

2.4 Model Evaluation

Evaluation metrics in the domain of object detection

algorithms denote the instruments utilized to measure

and describe the performance of a detection system.

These metrics are frequently grounded in the concept of

true positives, which pertain to prediction instances that

correctly identify an object [30]. Evaluation metrics are

used to assess how well the model performs object

detection. These metrics help measure how effectively

an algorithm can detect objects in images or videos [31].

The evaluation metrics used to measure the

performance of the model include:

Accuracy refers to the proportion of correct predictions,

determined by the alignment between the predicted

bounding box and object class with the corresponding

ground truth, as illustrated in Equation 2.

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (2)

Precision measures how much of the area that is

correctly part of the face, compared to the pixels

incorrectly labeled as a face, as shown in Equation 3.

𝑃𝑅𝐸𝐶 =
𝑇𝐶

𝑇𝐶+𝐹𝐶
 (3)

Recall measures how much of the area that is actually

part of the face is correctly predicted by the model,

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 510

compared to all the pixels that make up the face, as

shown in Equation 4.

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)

F1-Score combines both recall and precision. This

metric is useful when aiming to balance between

precision and recall, providing a single value that

accounts for both, as shown in Equation 5.

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑟𝑒𝑐𝑎𝑙𝑙
 (5)

2.5 Dataset

Figure 4. Face Recognition Dataset

Figure 4 presents sample images from the “Face

Recognition Dataset” available on Kaggle, which

comprises 2,564 facial images categorized into 31

classes [9]. This dataset includes variations in face

position, expression, and lighting to ensure that the

model can recognize faces under different conditions.

Each image is annotated with a bounding box using the

LabelImg application, which produces an XML file that

includes the coordinates of the face and the

corresponding class label.

The dataset used in this study has previously been

utilized in a research project involving facial

recognition using the ResNet-50 architecture [32]. In

that study, a CNN-based facial classification model was

trained utilizing the same dataset. The evaluation results

indicated consistently high performance on both the

training and validation sets, achieving an accuracy of

98.09% for each. However, when tested on the unseen

data (testing set), the model’s accuracy dropped

significantly to 67.76%.

These results indicate that although the model was able

to learn patterns effectively during training and

validation, it exhibited a considerable degree of

overfitting, as it failed to maintain its performance on

the testing data. This outcome serves as a motivation to

explore alternative approaches such as face detection

using Faster R-CNN to improve the model’s

generalization capability in facial recognition tasks on

the same dataset.

In the face recognition procedure employing Faster R-

CNN, the initial step involves annotating the dataset

with bounding boxes to designate the positions of faces

within the images. The application used for this

research is LabelImg, a GUI-based annotation tool.

Figure 5. LabelImg Application

SetAnnotation:

 SetFolderLocationImage

 SetFileName

 SetPathLocation

 SetSourceDatabase

 SetSizeImage:

 SetWidthImage

 SetHeightImage

 SetDepthImage

 SetSegmentedImage

 SetInfoObject:

 SetNameImageObject

 SetDescPoseImage

 SetTruncated

 SetDifficult

 SetDescBndBox:

 SetXmin

 SetYmin

 SetXmax

 SetYmax

Figure 6. Annotation results of the LabelImg application

Figure 5 illustrates the annotation process, wherein each

image in the dataset is sequentially opened, and a

bounding box is delineated around the facial region

using the selection tool within LabelImg. After the

bounding box is created, the appropriate label, such as

"Elizabeth Olsen," is assigned to each face in the image.

LabelImg saves the annotations in the Pascal VOC

format (.xml).

After all images in the dataset have been annotated,

Figure 6 shows the file generated by LabelImg, which

contains important information such as bounding box

coordinates, object labels, and image size. This file will

be used as the ground truth when training the Faster R-

CNN model, helping the neural network recognize

facial patterns based on manually marked bounding

boxes. Subsequently, the dataset was partitioned into

three subsets: 70% for training, 20% for validation, and

10% for testing.

2.6 Flowchart and System Flow

In Figure 7, the Faster R-CNN flowchart illustrates the

object detection workflow consisting of several key

stages. The process commences with the input image,

which is subsequently subjected to pre-processing steps

including normalization and resizing. Feature

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 511

extraction is performed on each image using the

backbone (ResNet-50 with FPN) to generate feature

maps at various scales. The subsequent stage involves

the RPN, which employs a sliding window mechanism

to generate anchor boxes of varying scales and aspect

ratios. Anchors are assessed based on the IoU metric;

anchors with an IoU greater than 0.7 are classified as

positive, those with an IoU less than 0.3 are classified

as negative, while anchors falling within the

intermediate range are disregarded. The NMS process

filters out redundancies, resulting in approximately

2,000 of the best proposals. The RPN uses a loss

function consisting of objectness loss (to differentiate

between objects and non-objects) and bounding box

regression loss (to refine coordinates).

Figure 7. Flowchart of the Face Recognition System Based on the Faster R-CNN Architecture

The region proposals filtered by the NMS are processed

by RoI Pooling/RoI Align to generate features with

fixed sizes. Subsequently, these features were

forwarded to the classifier for object class

determination and to the bounding box regressor for

coordinate refinement. The final output is the object

detection, which includes both class information and

location coordinates of the detected objects.

Figure 8 presents the block diagram of the Face

Recognition System implemented with the Faster R-

CNN architecture. In the training and validation

sections, the process begins with facial image data for

training and validation as inputs. These data were

subsequently subjected to pre-processing, which

involved resizing the images to 512 pixels, normalizing

the pixel values to a range of 0 to 1, annotating the

bounding boxes, and partitioning the dataset. Following

pre-processing, hyperparameter optimization was

conducted, encompassing the selection of the learning

rate, the number of epochs, and the choice of optimizer.

Upon optimizing the hyperparameters, the model was

trained utilizing Faster R-CNN to develop the most

effective face recognition model. The performance of

the trained model was assessed using evaluation metrics

such as accuracy, precision, recall, and F1-score.

The testing section begins with facial image data for

testing as input. Similar to the training stage, the images

undergo pre-processing, which includes resizing to 512

pixels and normalizing the pixel values. The processed

data is subsequently evaluated using the Faster R-CNN

model that was trained earlier. The result of this testing

is the face detection, which includes classification and

bounding box determination on the images. Finally, the

face detection outcomes are assessed employing the

same evaluation metrics utilized during the training

phase, specifically accuracy, precision, recall, and F1-

score.

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 512

Figure 8. Block diagram of Face Recognition System Using Faster R-CNN Architecture

2.7 Training Scheme

During the model training process employing grid

search, as presented in Table 2.

Table 2. Training Scheme

Model Learning Rate Epoch Optimizer

 Model 1 0.001 10 SGD

Model 2 0.001 10 ADAM

Model 3 0.001 10 RMS

Model 4 0.001 25 SGD

Model 5 0.001 25 ADAM

Model 6 0.001 25 RMS

Model 7 0.001 50 SGD

Model 8 0.001 50 ADAM

Model 9 0.001 50 RMS

Model 10 0.0001 10 SGD

Model 11 0.0001 10 ADAM

Model 12 0.0001 10 RMS

Model 13 0.0001 25 SGD

Model 14 0.0001 25 ADAM

Model 15 0.0001 25 RMS

Model 16 0.0001 50 SGD

Model 17 0.0001 50 ADAM

Model 18 0.0001 50 RMS

Model 19 0.00001 10 SGD

Model 20 0.00001 10 ADAM

Model 21 0.00001 10 RMS

Model 22 0.00001 25 SGD

Model 23 0.00001 25 ADAM

Model 24 0.00001 25 RMS

Model 25 0.00001 50 SGD

Model 26 0.00001 50 ADAM

Model 27 0.00001 50 RMS

The initial step involves establishing the model

architecture, specifically utilizing Faster R-CNN, which

is configured to accept parameters such as the learning

rate, optimizer, and number of epochs. Subsequently,

the hyperparameter search space is defined,

encompassing learning rates [0.001, 0.0001, 0.00001],

epochs [10, 25, 50], and optimizers [SGD, ADAM,

RMS]. Grid search is implemented with various

hyperparameter combinations, resulting in a total of 27

combinations.

Each model is trained using the training dataset to build

a model that corresponds to the given hyperparameters.

Each constructed model is subsequently evaluated on

the validation image dataset to identify the

configuration that yields the highest accuracy.

3. Results and Discussions

3.1 Training Results

Based on the training outcomes of the various

developed models, the performance of each model was

assessed using multiple metrics, including Accuracy,

Precision, Recall, F1-Score, and Loss. Table 3 shows

that several models exhibited no performance at all,

with all metrics scoring 0.000, such as models 3, 5, 6,

8, 9, 10, 12, 13, 15, 18, 19, 22, and 25. This indicates

that these models failed during the learning process or

were unable to recognize patterns within the provided

data. In addition, there are models with low

performance, such as models 2 and 21, which have very

low Accuracy and F1-Score values. Several models

achieved moderate performance, with Accuracy values

ranging between 0.75 and 0.95, including models 1, 4,

11, 14, 16, 20, and 24.

There are five (5) models that demonstrated excellent

performance, namely models 7, 17, 23, 26, and 27, with

Accuracy scores above 0.95, F1-Scores close to 1.000,

and very small Loss values, below 0.05. These models

successfully identified the majority of the data

correctly, leading to a minimal number of prediction

errors. The highest-performing models were models 7,

23, and 26, each attaining perfect scores of 1.000 in

Accuracy, Precision, Recall, and F1-Score,

demonstrating their ability to flawlessly recognize all

data without any errors. Moreover, model 26 recorded

the lowest Loss value (0.023), making it the most

optimal model in this experiment.

Table 3. Training Results

Model

Training
Accuracy Precision Recall F1-Score Loss

Model 1 0,857 0,462 0,429 0,500 0.214

Model 2 0,614 0,047 0,077 0,059 0.224

Model 3 0,000 0,000 0,000 0,000 0,000

Model 4 0,767 0,673 0,639 0,617 0.148

Model 5 0,000 0,000 0,000 0,000 0,000

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 513

Model

Training
Accuracy Precision Recall F1-Score Loss

Model 6 0,000 0,000 0,000 0,000 0,000

Model 7 0,995 0,996 0,933 0,994 0.049

Model 8 0,000 0,000 0,000 0,000 0,000

Model 9 0,000 0,000 0,000 0,000 0,000

Model 10 0,000 0,000 0,000 0,000 0,000

Model 11 0,810 0,746 0,643 0,644 0.108

Model 12 0,037 0,001 0,032 0,002 2.904

Model 13 0,000 0,000 0,000 0,000 0,000

Model 14 0,838 0,861 0,838 0,832 0.072

Model 15 0,000 0,000 0,000 0,000 0,000

Model 16 0,941 0,630 0,667 0,647 0.231

Model 17 0,983 0,982 0,980 0,981 0.047

Model 18 0,000 0,000 0,000 0,000 0,000

Model 19 0,000 0,000 0,000 0,000 0,000

Model 20 0,855 0,760 0,684 0,694 0.132

Model 21 0,519 0,275 0,278 0,227 0.137

Model 22 0,000 0,000 0,000 0,000 0,000

Model 23 0,999 1,000 0,999 0,999 0.039

Model 24 0,839 0,871 0,825 0,832 0.076

Model 25 0,000 0,000 0,000 0,000 0,000

Model 26 1,000 1,000 1,000 1,000 0.023

Model 27 0,976 0,979 0,973 0,975 0.045

Regarding the models that failed to demonstrate any

performance (all metrics equal to 0.000), several

hypotheses can be proposed to explain the cause. A

potential explanation for this outcome is the suboptimal

combination of hyperparameters—including learning

rate, number of epochs, and optimizer—which hindered

the models' ability to effectively learn from the data.

The selection of an excessively large learning rate, an

insufficient number of epochs, or an unsuitable

optimizer may have caused the models to be unable to

capture patterns from the data.

This hypothesis is supported by several previous

studies. Choi et al. (2019) highlighted the critical role

of optimizer sensitivity to hyperparameter tuning

protocols, noting that such sensitivity can substantially

affect model performance [33]. Nurdiati et al. (2022)

also reported that optimizers such as Adam, Nadam, and

AdamW performed better than other optimizers in

facial expression recognition tasks [34]. Furthermore,

Kim et al. (2022), in the AdaFace study, demonstrated

that adaptive approaches to input quality can enhance

model performance, indicating that low-quality input or

poor initial weights may result in model failure [35]. Ali

and Kumar (2022) also highlighted the significance of

selecting the appropriate architecture and activation

functions in achieving optimal performance in face

recognition systems [36].

Thus, the appropriate selection and combination of

hyperparameters, proper data preprocessing, and

optimal choice of model architecture and optimizer are

crucial in determining the success of model training in

facial recognition tasks.

This explanation reinforces that the combination of

specific parameters a small learning rate (0.00001), 50

training epochs, and the use of the Adam optimizer

significantly contributed to the optimal performance

achieved by Model 26. These findings are also

supported by several previous studies that have

demonstrated how proper parameter selection directly

influences model performance in face recognition tasks.

First, the use of the Adam optimizer has been proven

effective in various studies [37] showed that Adam

achieved up to 97.93% accuracy in a 2.5D face

recognition system based on the EfficientNet

architecture. This underscores Adam’s advantages in

autonomously adapting the learning rate and mitigating

the vanishing gradient problem, rendering it particularly

well-suited for deep learning models within this

domain.

Second, a small learning rate facilitates gradual and

stable learning, promoting more precise convergence.

According to [38], employing a small learning rate

generally results in lower loss values and more stable

training, especially when paired with optimizers such as

Adam or AdamW. This aligns with the results of Model

26, which demonstrated a very low loss value (0.023)

and perfect performance across all evaluation metrics.

Third, training the model for 50 epochs proved to be an

optimal choice in this experiment. This number of

epochs is adequate for the model to effectively capture

patterns within the data while avoiding both overfitting

and underfitting. The relevant literature has emphasized

that an insufficient number of epochs may lead to

underfitting, whereas an excessive number may cause

overfitting, thereby diminishing the model’s ability to

generalize effectively [39], [40].

Fourth, these findings are reinforced by a study

conducted by [34], which concluded that Adam

outperformed other optimizers in facial expression

recognition tasks, owing to its capacity to accelerate

convergence and ensure training stability.

Finally, the success of Model 26 can serve as a

benchmark for evaluating other models in the

experiment that showed poor or failed performance

(such as Models 3, 5, 6, etc.). The suboptimal

performance of these models is likely due to less

effective parameter configurations, such as a larger

learning rate or the use of less adaptive optimizers like

SGD without momentum.

3.2 Training Model Performance

Figure 9 presents a comparison of the best-performing

models based on the parameters utilized, indicating that

a learning rate (lr) of 0.00001 yielded the most optimal

results in comparison to 0.001 or 0.0001. Models with

a larger learning rate, such as 0.001 (Model 7), achieved

high accuracy (0.995), but the resulting loss was higher

than that of models with smaller learning rates.

Meanwhile, a learning rate of 0.00001 (Model 23 and

Model 26) demonstrated the best performance, with

Model 26 even achieving perfect accuracy (1.000),

although there was an initial indication of overfitting.

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 514

Figure 9. Performance comparison of training models

From the number of epochs, Model 23 with 25 epochs

was sufficient to achieve an accuracy of 0.999 with a

smaller loss (0.039). In contrast, Model 26 with 50

epochs achieved perfect results, although it was initially

suspected of overfitting. However, upon evaluation

using the testing dataset, Model 26 achieved the highest

performance across all evaluation metrics relative to the

other models, indicating its strong generalization

capability to previously unseen data.

The choice of optimizer also affects the model's

performance. ADAM proved to be the best choice, as

seen in Model 23 and Model 26, which achieved

optimal results with low loss. The use of the SGD

optimizer (Model 7) was still quite good but less

optimal compared to ADAM, while RMSProp (Model

27) showed a performance with an accuracy of 0.976,

indicating that this optimizer was less effective in this

case.

Although Model 23 was initially considered the best

choice based on training results, testing evaluation

showed that Model 26 is the most optimal model, as it

has a small learning rate (0.00001), a relatively high

number of epochs (50), and the ADAM optimizer,

which helped the model learn better without losing

generalization. The small learning rate facilitated

gradual weight updates, thereby preventing

overshooting of the optimal solution, while the

increased number of epochs allowed the model to learn

more complex patterns effectively. The lower loss

(0.023) compared to other models also indicates that

Model 26 is more stable and has better optimization.

3.3 Testing Model Performance

Figure 10 presents a comparison between Model 7

(baseline) and Model 26 (best-performing),

demonstrating that Model 26 outperforms the baseline

across all evaluation metrics, including accuracy,

precision, recall, and F1-score. The primary distinction

between the two models lies in their respective choices

of learning rate and optimizer, which substantially

influence the stability and effectiveness of the training

process.

Model 7 employs a learning rate of 0.001 in conjunction

with the SGD optimizer. This relatively large learning

rate causes the weight updates to be made with larger

steps, which risks the model skipping the optimal point

and struggling with convergence. Additionally, the use

of SGD as the optimizer has the drawback of high

gradient oscillations, particularly if not combined with

the proper momentum. This can cause the model to

struggle in finding the optimal loss minimum, resulting

in suboptimal performance.

Figure 10. Performance comparison of testing models

In contrast, Model 26 utilizes a significantly lower

learning rate of 0.00001 combined with the ADAM

optimizer. The smaller learning rate allows for a

smoother and more stable learning process, avoiding

the risk of overshooting during the optimization

process. The use of ADAM as the optimizer also offers

advantages, as it combines the best features of

Momentum SGD and RMSProp, making it more

adaptive in adjusting learning based on the gradients

obtained. ADAM has a mechanism that accelerates

convergence without experiencing high oscillations like

SGD, making it a better choice for deep learning models

like Faster R-CNN.

Although both models were trained for the same

number of epochs (50), the notable performance

disparity is primarily attributed to differences in the

chosen learning rate and optimizer. As illustrated in

Figure 10, Model 26 attains higher values across all

evaluation metrics—accuracy, precision, recall, and F1-

score—compared to Model 7, indicating superior

performance in face recognition with a more balanced

trade-off between precision and recall. Consequently,

Model 26 demonstrates greater effectiveness in

detecting faces while minimizing classification errors.

3.4 Model Evaluation

Table 4 presents the Classification Report, which

outlines the performance evaluation of the facial

recognition model across various individuals. The

metrics used include precision, recall, F1-score, and

support for each class (i.e., individual name). As

previously noted, these results correspond to Model 26,

which achieved a perfect accuracy score of 1.000 on the

training dataset. Nevertheless, despite the model’s

outstanding performance during training, variations in

testing performance are observed, as reflected in the

differing values of precision, recall, and F1-score across

individual classes.

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 515

Images with good performance, such as those of

Dwayne Johnson, Ellen Degeneres, and Lisa Kudrow,

show precision, recall, and F1-Score values of 1.00,

meaning the model recognizes them extremely well

without errors. This high performance may be due to

distinct facial features, such as unique facial structures

that are easily distinguishable from other individuals.

Additionally, the consistent image quality, with good

lighting and high resolution, enables the model to

capture facial features accurately.

Table 4. The Performance Evaluation Report

Name Precision Recall F1-

Score

Support

Akshay Kumar 0.62 0.71 0.67 7

Alexandra

Daddario

0.83 0.94 0.88 16

Alia Bhatt 0.82 0.78 0.80 18

Amitabh

Bachchan

1.00 0.93 0.96 14

Andy Samberg 0.82 0.88 0.85 16

Anushka

Sharma

0.88 0.93 0.90 15

Billie Eilish 1.00 0.95 0.97 19

Brad Pitt 0.84 0.84 0.84 19

Camila Cabello 0.95 0.83 0.88 23

Charlize Theron 0.93 0.68 0.79 19

Claire Holt 0.76 0.95 0.84 20

Courtney Cox 0.93 0.93 0.93 14

Dwayne

Johnson

1.00 1.00 1.00 12

Elizabeth Olsen 0.91 1.00 0.95 21

Ellen Degeneres 1.00 1.00 1.00 15

Henry Cavill 0.90 0.95 0.92 19

Hrithik Roshan 0.90 0.90 0.90 20

Hugh Jackman 0.83 0.87 0.85 23

Jessica Alba 0.94 0.89 0.91 18

Kashyap 0.67 1.00 0.80 4

Lisa Kudrow 1.00 1.00 1.00 9

Margot Robbie 0.92 0.79 0.85 14

Marmik 1.00 0.80 0.89 5

Natalie Portman 0.86 1.00 0.93 19

Priyanka

Chopra

0.91 0.88 0.89 24

Robert Downey

Jr

0.95 0.91 0.93 22

Roger Federer 0.94 0.94 0.94 18

Tom Cruise 0.71 0.77 0.74 13

Vijay

Deverakonda

0.96 0.89 0.92 27

Virat Kohli 0.88 0.78 0.82 9

Zac Efron 1.00 1.00 1.00 21

Accuracy 0.90 513

Macro Avg 0.89 0.89 0.89 513

Weighted Avg 0.90 0.90 0.90 513

On the other hand, images with lower performance,

such as those of Akshay Kumar, Kashyap, and Charlize

Theron, demonstrates lower precision, recall, and F1-

score values compared to other individuals. A primary

factor contributing to this diminished performance is

the limited number of images in the dataset, with

Akshay Kumar represented by only 7 images and

Kashyap by 5, which restricts the model’s capacity to

effectively learn facial patterns. Additionally, other

factors such as significant pose variation, uneven

lighting, or low-quality images can further complicate

accurate identification.

From this analysis, the model performs very well on

individuals with distinct facial features, good image

quality, and sufficient data. However, individuals with

lower-quality images, significant pose variation, or

limited data experience a drop in accuracy. This

indicates that while Model 26 shows high performance,

there are still factors within the dataset that could be

improved to enhance its overall performance.

Improving dataset diversity, image quality, and

ensuring a sufficient number of samples for each

individual could help the model generalize better across

various conditions.

Figure 11. Confusion matrix

The evaluation results indicate that the model achieves

an accuracy of 0.90, signifying that 90% of its

predictions correspond to the correct labels.

Additionally, the macro average and weighted average

scores are 0.89 and 0.90, respectively, demonstrating

that the model performs relatively consistently across

all classes. To ensure dataset balance, a sample

distribution analysis was conducted. The dataset

consists of 31 classes, with the number of samples per

class ranging from 4 to 27 images. This analysis

revealed that the dataset is imbalanced, with some

classes having fewer samples than others. Therefore, a

weighted loss method was employed to ensure that

classes with fewer samples are proportionally

considered during model training. Additionally, the

model was evaluated using the IoU. The best model

showed an average IoU of 0.902, while models with

lower performance had an IoU around 0.861.

The confusion matrix presented in Figure 11 illustrates

the performance of Model 26 in face recognition across

31 distinct classes. Each row corresponds to the true

labels, while each column corresponds to the labels

predicted by the model. The values along the main

diagonal represent the number of correct predictions

(true positives), with higher values indicating superior

performance in accurately identifying the faces. For

example, for the class Elizabeth Olsen, the model

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 516

successfully identified her face 21 times, indicating

good performance for that particular class.

However, there are some misclassifications indicated

by the numbers outside the main diagonal. For example,

for the class Akshay Kumar, although there were 5

correct predictions, the model also misclassified his

face into other classes multiple times. These

misclassifications can occur due to similarities in faces

between individuals or insufficient training data, which

limits the model's ability to distinguish facial features

accurately.

In terms of visualization, the darker the color of the

boxes on the main diagonal, the higher the number of

correct predictions in that category. Conversely, lighter

colors outside the main diagonal indicate small

mispredictions. Overall, the model performs quite well

as most predictions are on the main diagonal, but there

are still a few errors that need to be addressed.

Figure 12 presents the testing outcomes of the best-

performing model, Model 26, in detecting and

classifying the faces of multiple individuals. Each

sample in the image displays a person's face with the

model's prediction and the original label. Out of the six

test images, Model 26 correctly predicted the faces, and

the generated bounding boxes accurately identified the

faces corresponding to the original labels. This

indicates that Model 26 exhibits strong performance in

face recognition, consistent with the prior evaluation

results in which the model attained high precision,

recall, and F1-score values, reaching 1.00 for certain

individuals.

Figure 12. Face recognition results using Model 26

This high accuracy can be attributed to several factors,

such as distinct facial features of the individuals,

uniform lighting in the images, and sufficient data

during training. For example, the faces of Camila

Cabello and Zac Efron are recognized very well, likely

because the model has been trained on a sufficient

number of images of them with representative

variations.

Nevertheless, despite the model demonstrating

excellent results, it is important to acknowledge the

potential for dataset bias; for example, if certain

individuals are underrepresented in the training data,

the model’s performance for those individuals may be

compromised. To further improve generalization,

additional data could be added to ensure the model

remains accurate under various lighting conditions,

poses, and facial expressions.

Figure 13. Face Recognition errors

As shown in Figure 13, the misclassification of faces

observed in the image is likely caused by several factors

related to the dataset used. One of the primary factors is

data imbalance, in which the number of images for each

individual in the dataset is unevenly distributed. If

certain individuals have significantly more samples

than others, the model tends to classify faces with

similar features into a more dominant category during

training. This may result in misidentification, especially

when the model encounters faces that are

underrepresented within the training dataset.

Additionally, similar facial features between different

individuals are another major cause of

misclassification. Face recognition models often rely on

features such as facial shape, bone structure, or

accessories (e.g., glasses and hats) to make

classifications. Misclassifications, such as identifying

Brad Pitt as Akshay Kumar or Tom Cruise as Henry

Cavill, can occur due to the strong resemblance between

their facial features in the images used. If the model is

not trained with a sufficiently diverse set of images for

each individual, these errors are more likely to occur.

Another influencing factor is the variation in lighting

conditions and facial angles within the dataset. If the

model is trained using images with uniform lighting and

limited facial angles, its performance declines when

recognizing faces under dim lighting conditions or from

different angles. As seen in some misclassification

examples, faces captured under well-lit conditions are

easier to recognize than those captured under dim

lighting or tilted positions. This indicates that the model

struggles to generalize variations in facial appearance

across different conditions.

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 517

4. Conclusions

The findings of this study demonstrate that the

combination of hyperparameters in the "Face

Recognition Using Faster R-CNN Architecture with

Hyperparameter Optimization," including learning rate,

number of epochs, and optimizer type, exerts a

significant impact on model performance. Specifically,

the model configured with a learning rate of 0.00001,

50 epochs, and the Adam optimizer (Model 26)

achieved the highest performance according to

evaluation metrics such as accuracy, precision, recall,

and F1-score on the test dataset.

From the confusion matrix, it is evident that Model 26

has a high accuracy in classifying faces, with minimal

errors in distinguishing between classes of faces that

share similar lighting or expressions. This indicates that

the model is effective in recognizing facial patterns but

still faces challenges in differentiating faces with

similar features. The IoU calculation revealed that

Model 26 achieved an average IoU value of 0.902,

indicating a strong correspondence between the

bounding boxes generated during the detection process

and the ground truth. A higher IoU value signifies

greater accuracy in localizing the face detection boxes.

Visual analysis of the detection results revealed that the

model performed better in recognizing faces under good

lighting conditions and when the face was in a

straightforward position, as shown in Figure 12.

However, under low-light conditions or when the face

is tilted, detection errors still occur. This suggests that

image attributes, including lighting conditions, viewing

angle, and resolution, significantly influence the

model’s performance. Across multiple experiments, it

was observed that selecting a learning rate of 0.00001

was critical for ensuring training stability. Higher

learning rates tend to hinder model convergence due to

abrupt weight updates, while lower learning rates result

in a slower learning process. A value of 0.00001

provides an optimal balance, allowing the model to

learn gradually without overfitting or underfitting.

Furthermore, the use of the Adam optimizer improves

the training stability compared to SGD.

Overall, this study demonstrates that hyperparameter

optimization in the Faster R-CNN architecture

significantly impacts facial recognition performance.

Proper hyperparameter selection can improve the

accuracy, ensure optimal bounding box detection, and

adapt the model to varying image characteristics.

Acknowledgment

The author would like to thank the LPPM at Institut

Teknologi Nasional (Itenas) Bandung for supporting

this research project. The author declares no conflict of

interest.

References

[1] F. Boutros, N. Damer, F. Kirchbuchner, and A. Kuijper,

“ElasticFace: Elastic Margin Loss for Deep Face

Recognition,” IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit. Work., vol. 2022-June, pp. 1577–1586,

2022, doi: 10.1109/CVPRW56347.2022.00164.

[2] M. Wang and W. Deng, “Deep face recognition: A survey,”

Neurocomputing, vol. 429, pp. 215–244, 2021, doi:

10.1016/j.neucom.2020.10.081.

[3] P. Payal and M. M. Goyani, “A comprehensive study on face

recognition: methods and challenges,” Imaging Sci. J., vol.

68, no. 2, pp. 114–127, 2020, doi:

10.1080/13682199.2020.1738741.

[4] M. Feurer and F. Hutter, "Parameter Optimization, (eds)

Automated Machine Learning," The Springer Series on

Challenges in Machine Learning. Springer, Cham., doi:

10.1007/978-3-030-05318-5_1.

[5] M. T. H. Fuad et al., “Recent advances in deep learning

techniques for face recognition,” IEEE Access, vol. 9, no.

July, pp. 99112–99142, 2021, doi:

10.1109/ACCESS.2021.3096136.

[6] H. Yan, X. Wang, Y. Liu, Y. Zhang, and H. Li, “A new face

detection method based on Faster RCNN,” J. Phys. Conf.

Ser., vol. 1754, no. 1, 2021, doi: 10.1088/1742-

6596/1754/1/012209.

[7] M. Zhou, B. Li, and J. Wang, “Optimization of

Hyperparameters in Object Detection Models Based on

Fractal Loss Function,” Fractal Fract., vol. 6, no. 12, 2022,

doi: 10.3390/fractalfract6120706.

[8] J. Selvaganesan et al., “Enhancing face recognition

performance: a comprehensive evaluation of deep learning

models and a novel ensemble approach with hyperparameter

tuning,” Soft Comput., 2024, doi: 10.1007/s00500-024-

09954-y.

[9] Kaggle, “Face Recognition Dataset,” 2021, [Online].

Available:

https://www.kaggle.com/datasets/vasukipatel/face-

recognition-dataset/data

[10] R. J.Hassan and A. M. Abdulazeez, “Deep Learning

Convolutional Neural Network for Face Recognition: A

Review,” Int. J. Sci. Bus., vol. 5, no. 2, pp. 114–127, 2021,

doi: 10.5281/zenodo.4471013.

[11] L. Alzubaidi et al., "Review of deep learning: concepts, CNN

architectures, challenges, applications, future directions,"

Journal of Big Data, vol. 8, no. 53, 2021, doi:

10.1186/s40537-021-00444-8.

[12] S. B. Mane, N. Shah, V. Garje and A. Tejwani, "A

Comprehensive Survey of Face Recognition

Advancements," 2024 8th International Conference on

Computing, Communication, Control and Automation

(ICCUBEA), Pune, India, 2024, pp. 1-5, doi:

10.1109/ICCUBEA61740.2024.10774962.

[13] L. Li, X. Mu, S. Li, and H. Peng, “A Review of Face

Recognition Technology,” IEEE Access, vol. 8, pp. 139110–

139120, 2020, doi: 10.1109/ACCESS.2020.3011028.

[14] J. Liu, “Face recognition technology based on ResNet-50,”

Appl. Comput. Eng., vol. 39, no. 1, pp. 160–165, 2024, doi:

10.54254/2755-2721/39/20230593.

[15] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal

Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,

no. 6, pp. 1137–1149, Jun. 2015, doi:

10.1109/TPAMI.2016.2577031.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–

778, 2016, doi: 10.1109/CVPR.2016.90.

[17] B. Mandal, A. Okeukwu, and Y. Theis, “Masked Face

Recognition using ResNet-50,” arXiv, 2021, doi:

10.48550/arXiv.2104.08997

[18] G. Ghiasi, T. Y. Lin, and Q. V. Le, “NAS-FPN: Learning

scalable feature pyramid architecture for object detection,”

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., pp. 7029–7038, 2019, doi:

10.1109/CVPR.2019.00720.

[19] K. H. Shih, C. Te Chiu, J. A. Lin, and Y. Y. Bu, “Real-Time

Object Detection with Reduced Region Proposal Network

via Multi-Feature Concatenation,” IEEE Trans. Neural

Jasman Pardede et al Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025)

 518

Networks Learn. Syst., vol. 31, no. 6, pp. 2164–2173, 2020,

doi: 10.1109/TNNLS.2019.2929059.

[20] R. Girshick, “Fast R-CNN,” Proc. IEEE Int. Conf. Comput.

Vis., pp. 1440–1448, 2015, doi: 10.1109/ICCV.2015.169.

[21] S. A. K. Mohammed, A. H. A. Rahman, M. A. Bakar, and

M. Z. A. Razak, “An Efficient Intersection Over Union

Algorithm with Angle Orientation for an Improved 3D

Object Detection,” 6th IEEE Int. Conf. Artif. Intell. Eng.

Technol. IICAIET 2024, pp. 312–316, 2024, doi:

10.1109/IICAIET62352.2024.10730667.

[22] J. Hosang, R. Benenson, and B. Schiele, “Learning non-

maximum suppression,” Proc. - 30th IEEE Conf. Comput.

Vis. Pattern Recognition, CVPR 2017, pp. 6469–6477, 2017,

doi: 10.1109/CVPR.2017.685.

[23] M. -C. Roh and J. -y. Lee, "Refining faster-RCNN for

accurate object detection," 2017 Fifteenth IAPR

International Conference on Machine Vision Applications

(MVA), Nagoya, Japan, 2017, pp. 514-517, doi:

10.23919/MVA.2017.7986913.

[24] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and

S. Savarese, “Generalized intersection over union: A metric

and a loss for bounding box regression,” Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 658–

666, 2019, doi: 10.1109/CVPR.2019.00075.

[25] T. Yu and H. Zhu, “Hyper-Parameter Optimization: A

Review of Algorithms and Applications,” arXiv, 2020, doi:

10.48550/arXiv.2003.05689

[26] A. Prasetya, C. Fatichah, and U. L. Yuhana, “Parsing the

semantic structure of Indonesian math word problems using

the recursive neural network,” Regist. J. Ilm. Teknol. Sist.

Inf., vol. 5, no. 2, pp. 106–115, 2019, doi:

10.26594/register.v5i2.1537.

[27] C. Hu, P. Coen-Pirani, and X. Jiang, “Empirical Study of

Overfitting in Deep FNN Prediction Models for Breast

Cancer Metastasis,” arXiv, 2022, doi:

10.48550/arXiv.2208.02150.

[28] A. Johny and K. N. Madhusoodanan, “Dynamic Learning

Rate in Deep CNN Model for Metastasis Detection and

Classification of Histopathology Images,” Comput. Math.

Methods Med., vol. 2021, 2021, doi: 10.1155/2021/5557168.

[29] D. Irfan, T. S. Gunawan, and W. Wanayumini, “Comparison

Of SGD, Rmsprop, and Adam Optimation In Animal

Classification Using CNNs,” Int. Conf. Inf. Sci. Technol.

Innov., vol. 2, no. 1, pp. 45–51, 2023, doi:

10.35842/icostec.v2i1.35.

[30] M. Breton and P. Eng, “Overview of two performance

metrics for object detection algorithms evaluation,” Def. Res.

Dev. Canada Ref. Doc., no. December, 2019.

[31] R. Padilla, S. L. Netto, and E. A. B. Da Silva, “A Survey on

Performance Metrics for Object-Detection Algorithms,” Int.

Conf. Syst. Signals, Image Process., vol. 2020-July, no. July,

pp. 237–242, 2020, doi:

10.1109/IWSSIP48289.2020.9145130.

[32] Kaggle, “Face Recognition with Resnet50.” [Online].

Available:

https://www.kaggle.com/code/sushanshrestha0690/face-

recognition-with-resnet50

[33] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and

G. E. Dahl, “On Empirical Comparisons of Optimizers for

Deep Learning,” arXiv, 2020, doi:

10.48550/arXiv.1910.05446.

[34] S. Nurdiati, M. K. Najib, F. Bukhari, R. Revina, and F. N.

Salsabila, “Performance Comparison Of Gradient-Based

Convolutional Neural Network Optimizers For Facial

Expression Recognition,” BAREKENG: Journal of

Mathematics and Its Applications, vol. 16, no. 3, pp. 927–

938, 2022, doi: 10.30598/barekengvol16iss3pp927-938.

[35] M. Kim, A. K. Jain, and X. Liu, “AdaFace : Quality Adaptive

Margin for Face Recognition” arXiv, 2023, doi:

10.48550/arXiv.2204.00964.

[36] M. E. A. Ali and D. Kumar, “The Impact of Optimization

Algorithms on The Performance of Face Recognition Neural

Networks,” J. Adv. Eng. Comput., vol. 6, no. 4, p. 248, 2022,

doi: 10.55579/jaec.202264.370.

[37] M. E. Teo, L. Y. Chong, S. C. Chong, and P. Y. Goh, “2.5D

Face Recognition System using EfficientNet with Various

Optimizers,” Int. J. Informatics Vis., vol. 8, no. 4, pp. 2388–

2399, 2024, doi: 10.62527/joiv.8.4.3030.

[38] S. Hamid, H. Madni, H. Muhammad, F. Shahzad, S. Shah,

and M. Faheem, “Exploring optimizer efficiency for facial

expression recognition with convolutional neural networks,”

The Journal of Engineering, vol. 2025, no. 1, pp. 1–29,

2025, doi: 10.1049/tje2.70060.

[39] D. Bashir, G. D. Montañez, S. Sehra, P. S. Segura, and J.

Lauw, “An Information-Theoretic Perspective on

Overfitting and Underfitting,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 12576 LNAI, pp. 347–358, 2020, doi:

10.1007/978-3-030-64984-5_27.

[40] O. A. Montesinos López, A. Montesinos López, and J.

Crossa, "Multivariate Statistical Machine Learning Methods

for Genomic Prediction," Springer, 2022. doi: 10.1007/978-

3-030-89010-0.

