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Abstract  

Facial recognition remains a significant challenge in the advancement of computer vision technologies. This research seeks to 

develop a facial recognition system utilizing the Faster R-CNN architecture, with performance enhancement achieved through 

hyperparameter optimization. This research utilizes the "Face Recognition Dataset" from Kaggle, which comprises 2,564 face 

images across 31 classes. The development process involves creating bounding boxes using the LabelImg application and 

implementing the Grid Search method. The Grid Search is applied with predefined hyperparameter combinations (3 epochs 

[10, 25, and 50] × 3 learning rates [0.001, 0.0001, and 0.00001] × 3 optimizers [SGD, Adam, and RMS], resulting in 27 

models). The evaluation of the model was conducted using accuracy, precision, recall, and F1-score as performance metrics. 

The experimental findings indicate that hyperparameter selection has a substantial impact on model performance. Among the 

tested configurations, the combination of a learning rate of 0.00001, 50 training epochs, and the Adam optimizer achieved the 

highest accuracy, resulting in an 8.33% improvement over the baseline model. The results indicate that hyperparameter 

optimization enhances the ability of the model to recognize faces. Compared to conventional models, the Faster R-CNN 

performs better in detecting faces more accurately. Future research could further enhance the face recognition efficiency and 

accuracy by exploring other deep learning architectures and more advanced hyperparameter optimization techniques. 
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1. Introduction 

Facial recognition represents one of the principal 

applications in digital image analysis, employing 

computational techniques to detect, identify, and verify 

human faces. In the context of image processing, a face 

recognition system analyzes the unique features of an 

individual's face [1]. With the progression of 

technological advancements, facial recognition 

applications have been increasingly adopted across 

diverse domains, including security, surveillance, and 

human-computer interaction. Accuracy is a critical 

parameter in facial recognition, as it indicates the 

system’s capability to correctly identify or verify an 

individual’s identity [2]. 

Recent advancements in machine learning and deep 

learning have facilitated the development of more 

sophisticated and effective techniques in facial 

recognition [3]. Convolutional Neural Networks (CNN) 

have become one of the most widely used architectures 

due to their ability to automatically extract facial 

features [4]. Despite the strong performance of CNN, 

significant challenges persist—particularly in 

accurately recognizing faces under varying conditions, 

including low lighting, diverse facial expressions, and 

atypical orientations [5]. 

Faster R-CNN is an architectural framework that unifies 

object detection and classification within a single 

model. It employs a Region Proposal Network (RPN) to 

generate candidate object regions, which are 

subsequently refined through classification and 

bounding box regression processes [6]. While Faster R-

CNN has demonstrated high effectiveness, its 

performance is highly contingent upon the appropriate 

tuning of hyperparameters, including the learning rate, 

number of training epochs, and the choice of optimizer 

[7]. In the context of face recognition using Faster R-

CNN, hyperparameter optimization can enhance the 

model's accuracy [8]. 

https://doi.org/10.29207/resti.v9i3.6405
https://creativecommons.org/licenses/by/4.0/
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Previous studies have used default configurations or 

simple optimization methods in face recognition with 

Faster R-CNN [6]. This limits the model's potential in 

achieving its best performance. Furthermore, there has 

been limited research exploring the impact of 

hyperparameter variations on datasets with high 

variability, such as changes in position, lighting, and 

facial expressions. 

This study proposes the application of hyperparameter 

optimization through the Grid Search method to 

improve the performance of the Faster R-CNN 

architecture in facial recognition tasks. The "Face 

Recognition Dataset" from Kaggle is utilized for this 

purpose [9] It is used as test data with complex 

condition variations. By selecting the optimal 

hyperparameter combinations, this study aims to 

contribute to improving face recognition accuracy. 

2. Methods 

Several face recognition studies use deep learning, as 

shown in Table 1. The previous studies have made 

significant contributions to the development of related 

methods and approaches that have been proposed. On 

[6] proposed the face detection method using Faster R-

CNN, so to improve performance, this study proposes 

the impact of hyperparameter optimization on the Faster 

R-CNN architecture for face recognition. 

Table 1. Related Work 

No Title Method Contribution 
1 Deep Face 

Recognition: A 

Survey [2] 

Deep 

Learning  

Deep learning methods that 

can be applied to face 

recognition. 

2 Deep Learning 

Convolutional 

Neural 

Network for 

Face 

Recognition: A 

Review [10] 

Convolutional 
Neural 

Network 

Discusses face recognition 

using deep learning 

techniques. 

3 Recent 

Advances in 

Deep Learning 

Techniques for 

Face 

Recognition [5] 

Deep 

Learning  

Provides insights into other 

deep learning models 

relevant to face recognition. 

4 Review of 

Deep Learning: 

concepts, 

CNN architectu

res, challenges, 

application, 
future directions 
[11] 

Deep 

Learning  

Comprehending the 

foundational principles of 

Deep Learning and 

Convolutional Neural 

Networks (CNNs). 

5 A new face 

detection 

method based 

on Faster 

RCNN [6] 

Faster RCNN This paper introduces a novel 

face detection method based 

on the Faster R-CNN 

architecture. 

2.1 Face Recognition 

Facial recognition is the process of identifying or 

verifying an individual by analyzing distinctive facial 

features, including the spatial relationships between the 

eyes, nose, and mouth; the proportions of various facial 

components such as facial width and height; the 

contours and protrusions that characterize the 

individual’s facial structure; skin color attributes; 

surface texture; and the overall facial shape, which may 

be categorized as oval, square, or round [2],[12]. Facial 

recognition technology is widely applied across 

multiple domains, including surveillance, security, and 

human-computer interaction. In a more technical 

context, face recognition involves algorithms and 

machine learning methods to analyze and classify facial 

features [6]. Facial recognition encompasses a variety 

of technologies employed in the development of face 

recognition systems, including face detection, facial 

landmark localization, identity recognition, and image 

pre-processing. The face detection process involves 

identifying the coordinates of all faces within an image, 

whereas facial landmarking algorithms determine the 

precise positions of facial features within the 

established coordinate framework [13].  

This study concentrates on the implementation of a 

Faster R-CNN architecture utilizing ResNet-50 as the 

Feature Pyramid Network (FPN) within a facial 

recognition system. Faster R-CNN is a deep learning-

based object detection technique that enables accurate 

face detection by employing a Region Proposal 

Network (RPN). By leveraging ResNet-50, this model 

can extract deeper and more complex facial features, 

thereby improving identification accuracy. 

Previous studies have shown that ResNet-50 has high 

capabilities in face classification. One study used 

ResNet-50 to explore facial features by utilizing a 

modified dataset with OpenCV, such as random 

brightness adjustments [14]. This study also discusses 

the development of face recognition technology prior to 

ResNet-50 by comparing methods such as Eigenfaces 

and Fisherfaces. The results indicated that the model 

based on ResNet-50 attained the highest accuracy of 

98.75%, demonstrating its robustness across diverse 

lighting conditions. 

2.2 Faster R-CNN 

 
Figure 1. Faster R-CNN Architecture [15] 

Faster R-CNN is an object detection method that 

integrates the RPN with Fast R-CNN to perform region 

proposal generation, classification, and bounding box 

regression [15]. As illustrated in Figure 1, this 

architecture processes the input image through the 

backbone network (ResNet-50) to produce a feature 
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map. The RPN then utilizes this feature map to generate 

anchor boxes, which are subsequently assessed by 

calculating the Intersection Over Union (IoU) with the 

ground truth annotations. 

Anchors with high confidence scores are subsequently 

processed by Region of Interest (ROI) Pooling or ROI 

Align to produce fixed-size feature representations. 

These features are then classified to determine the 

object type and processed by the bounding box 

regressor to refine the coordinates. Equipped with 

components such as the FPN, Faster R-CNN is capable 

of detecting objects across multiple scales, thereby 

achieving high accuracy in object detection tasks. 

ResNet-50 is a deep neural network comprising 50 

layers, specifically designed to address the degradation 

problem in deep architectures, and is widely recognized 

for its superior performance in image classification 

tasks [16],[17]. The FPN enhances detection accuracy 

by combining features from multiple resolution levels 

to support multi-scale object detection [18]. 

The RPN works by applying a sliding window to the 

feature map to generate anchor boxes at each location. 

These anchors are assessed using the IoU in comparison 

to the ground truth, with the IoU values greater than 0.7 

classified as positive, values less than 0.3 classified as 

negative, and intermediate values disregarded. This 

evaluation employs a composite loss function 

comprising an objectness loss, which detects the 

presence of an object, and a bounding box regression 

loss, which refines the anchor coordinates [19]. 

Fast R-CNN is employed to classify the region 

proposals generated by the RPN and to perform 

bounding box regression [20]. It utilizes the CNN to 

extract features from the entire image and all region 

proposals simultaneously in a single processing step. 

Furthermore, Fast R-CNN incorporates the RoI pooling 

layer to extract features from each region proposal, 

thereby eliminating the need to re-crop the proposals 

from the image. Finally, fully connected layers are 

applied to the network’s output to conduct object 

detection and classification on the region proposals 

[20]. 

 

Figure 2. Anchor Boxes 

 

An anchor is a reference bounding box on the feature 

map, characterized by a specific scale and aspect ratio, 

employed to predict the locations of objects with 

varying sizes [15], as illustrated in Figure 2. 

An anchor is centered on the sliding window and has 

specific scale and aspect ratio, as shown in Figure 2. By 

default, the anchor box is configured with three scales 

and three aspect ratios, yielding a total of k = 9 anchors 

at each sliding position [15].  

The IoU is a metric utilized to quantify the degree of 

overlap between an object detection model’s predicted 

bounding box and the corresponding ground truth. The 

IoU is computed as the ratio of the area of intersection 

between the predicted and ground truth boxes to the 

area of their union. The intersection refers to the 

overlapping region shared by both boxes, while the 

union represents the total combined area encompassed 

by them. The IoU serves as a criterion for determining 

whether an anchor (candidate bounding box) should be 

retained as a valid proposal, with values greater than 0.7 

typically classified as positive and values less than 0.3 

as negative [21]. The calculation of the IoU is expressed 

in Equation 1. 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
               (1) 

The area of overlap refers to the region of intersection 

between the model’s predicted bounding box and the 

ground truth bounding box. The area of union denotes 

the total combined area covered by both the predicted 

and ground truth bounding boxes, excluding any 

double-counted overlapping regions. Interpretation of 

IoU values is as follows: 

IoU = 0: indicates no overlap between the prediction 

and ground truth. 

IoU = 1: signifies a perfect correspondence between the 

predicted bounding box and the ground truth. 

Generally, IoU values greater than 0.5 are regarded as 

acceptable, although this threshold may vary depending 

on the specific application. 

 

Figure 3. Non-Maximum Suppression 

Figure 3 illustrates the Non-Maximum Suppression 

(NMS) algorithm, which preserves the detection with 

the highest confidence score while removing redundant 

or duplicate detections [22]. 
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The NMS is employed in object detection to refine 

prediction outputs by retaining only the most accurate 

bounding box—characterized by the highest confidence 

score—for each identified object. 

The ROI Pooling g is used to reduce features from 

region proposals to a fixed size. However, in modern 

implementations, the ROI Pooling is often replaced by 

ROI Align to improve precision by better preserving 

spatial relationships through bilinear interpolation [23]. 

The bounding box regressor is a module designed to 

optimize the parameters of the bounding box so that 

they closely correspond to the ground truth annotations 

[24]. 

The classifier is a model that classifies data based on 

learned patterns to determine the object category [15]. 

2.3 Hyperparameter Optimization 

Hyperparameter optimization refers to the process of 

determining the most suitable values for parameters that 

are predefined prior to the commencement of model 

training. In the context of object detection, 

hyperparameters play a crucial role in influencing both 

detection accuracy and the efficiency of the training 

process [25], [7]. In hyperparameter optimization, 

several key components need to be considered to 

improve the performance of a face recognition model 

using Faster R-CNN, including: 

Grid search is a technique employed to systematically 

explore multiple combinations of parameters, where 

each combination is evaluated to identify the one that 

delivers the optimal performance [26]. 

An epoch refers to a complete iteration of the learning 

algorithm over the entire training dataset. During each 

epoch, every sample in the dataset contributes to 

updating the model’s parameters [27].  

The influence of the number of epochs on model 

performance can be understood by examining the 

training dynamics within the machine learning process. 

An epoch denotes a single full cycle during which the 

model is trained on the entirety of the training dataset. 

Each epoch allows the model to adjust its weights and 

parameters in response to the errors generated in 

previous predictions. Throughout the training process, 

the model learns from the data by minimizing the loss 

function. Increasing the number of epochs enables the 

model to progressively reduce prediction errors and 

enhance its learning from the training data, which may 

lead to improved accuracy. However, an excessively 

high number of epochs can result in overfitting, a 

condition in which the model becomes overly tailored 

to the training data, thereby compromising its ability to 

generalize to new, unseen data [27]. 

The learning rate is a hyperparameter in machine 

learning algorithms that governs the magnitude of 

adjustments made to the model’s weights during the 

training process [28]. When utilizing a dynamic 

learning rate, the model exhibited superior performance 

relative to a fixed learning rate, as evidenced by higher 

AUC values. This indicates that selecting an 

appropriate learning rate can enhance the effectiveness 

of the optimizer used during model training. Therefore, 

adjusting the learning rate is a crucial step toward 

achieving optimal results [28]. 

An optimizer is an algorithm used to update the model’s 

weights in a neural network during the training process. 

The goal is to minimize the loss function and improve 

the model’s accuracy. Commonly employed optimizers 

include Stochastic Gradient Descent (SGD), Adam, and 

RMSprop [25]. Each optimizer operates through 

distinct mechanisms and exhibits varying levels of 

performance stability, alongside an optimal learning 

rate that influences the overall outcomes [29]. 

The selection of optimizers significantly influences the 

ultimate outcomes of the model training process. Each 

optimizer may yield different performance outcomes 

depending on the learning rate applied. According to the 

experimental results, the SGD exhibited the highest 

performance at a learning rate of 0.1, attaining a test 

accuracy of 74.80% and a test loss of 72.55%. In 

contrast, RMSProp and Adam showed inferior 

performance when evaluated at the same learning rate. 

At a learning rate of 0.01, RMSProp outperformed both 

SGD and Adam, although the results were still below 

expectations. Subsequently, at a learning rate of 0.001, 

both RMSProp and Adam delivered improved 

performance, whereas SGD remained unsuitable for 

this learning rate. These findings indicate that selecting 

the appropriate optimizer and tuning the learning rate 

are key factors in enhancing model performance [29]. 

2.4 Model Evaluation 

Evaluation metrics in the domain of object detection 

algorithms denote the instruments utilized to measure 

and describe the performance of a detection system. 

These metrics are frequently grounded in the concept of 

true positives, which pertain to prediction instances that 

correctly identify an object [30]. Evaluation metrics are 

used to assess how well the model performs object 

detection. These metrics help measure how effectively 

an algorithm can detect objects in images or videos [31]. 

The evaluation metrics used to measure the 

performance of the model include: 

Accuracy refers to the proportion of correct predictions, 

determined by the alignment between the predicted 

bounding box and object class with the corresponding 

ground truth, as illustrated in Equation 2. 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
               (2) 

Precision measures how much of the area that is 

correctly part of the face, compared to the pixels 

incorrectly labeled as a face, as shown in Equation 3. 

𝑃𝑅𝐸𝐶 =  
𝑇𝐶

𝑇𝐶+𝐹𝐶
               (3) 

Recall measures how much of the area that is actually 

part of the face is correctly predicted by the model, 



 

Jasman Pardede et al                               Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025) 

 

                                                                                                510 

 

compared to all the pixels that make up the face, as 

shown in Equation 4. 

𝑅𝐸𝐶 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (4) 

F1-Score combines both recall and precision. This 

metric is useful when aiming to balance between 

precision and recall, providing a single value that 

accounts for both, as shown in Equation 5. 

𝐹1 = 2 ×  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑟𝑒𝑐𝑎𝑙𝑙
              (5) 

2.5 Dataset 

 

Figure 4. Face Recognition Dataset 

Figure 4 presents sample images from the “Face 

Recognition Dataset” available on Kaggle, which 

comprises 2,564 facial images categorized into 31 

classes [9]. This dataset includes variations in face 

position, expression, and lighting to ensure that the 

model can recognize faces under different conditions. 

Each image is annotated with a bounding box using the 

LabelImg application, which produces an XML file that 

includes the coordinates of the face and the 

corresponding class label.  

The dataset used in this study has previously been 

utilized in a research project involving facial 

recognition using the ResNet-50 architecture [32]. In 

that study, a CNN-based facial classification model was 

trained utilizing the same dataset. The evaluation results 

indicated consistently high performance on both the 

training and validation sets, achieving an accuracy of 

98.09% for each. However, when tested on the unseen 

data (testing set), the model’s accuracy dropped 

significantly to 67.76%. 

These results indicate that although the model was able 

to learn patterns effectively during training and 

validation, it exhibited a considerable degree of 

overfitting, as it failed to maintain its performance on 

the testing data. This outcome serves as a motivation to 

explore alternative approaches such as face detection 

using Faster R-CNN to improve the model’s 

generalization capability in facial recognition tasks on 

the same dataset. 

In the face recognition procedure employing Faster R-

CNN, the initial step involves annotating the dataset 

with bounding boxes to designate the positions of faces 

within the images. The application used for this 

research is LabelImg, a GUI-based annotation tool. 

 

Figure 5. LabelImg Application 

SetAnnotation: 

 SetFolderLocationImage 

 SetFileName 

 SetPathLocation 

 SetSourceDatabase 

 SetSizeImage: 

  SetWidthImage 

  SetHeightImage 

  SetDepthImage 

 SetSegmentedImage 

 SetInfoObject: 

  SetNameImageObject 

  SetDescPoseImage 

  SetTruncated 

  SetDifficult 

  SetDescBndBox: 

   SetXmin 

   SetYmin 

   SetXmax 

   SetYmax 

Figure 6. Annotation results of the LabelImg application 

Figure 5 illustrates the annotation process, wherein each 

image in the dataset is sequentially opened, and a 

bounding box is delineated around the facial region 

using the selection tool within LabelImg. After the 

bounding box is created, the appropriate label, such as 

"Elizabeth Olsen," is assigned to each face in the image. 

LabelImg saves the annotations in the Pascal VOC 

format (.xml). 

After all images in the dataset have been annotated, 

Figure 6 shows the file generated by LabelImg, which 

contains important information such as bounding box 

coordinates, object labels, and image size. This file will 

be used as the ground truth when training the Faster R-

CNN model, helping the neural network recognize 

facial patterns based on manually marked bounding 

boxes. Subsequently, the dataset was partitioned into 

three subsets: 70% for training, 20% for validation, and 

10% for testing. 

2.6 Flowchart and System Flow 

In Figure 7, the Faster R-CNN flowchart illustrates the 

object detection workflow consisting of several key 

stages. The process commences with the input image, 

which is subsequently subjected to pre-processing steps 

including normalization and resizing. Feature 
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extraction is performed on each image using the 

backbone (ResNet-50 with FPN) to generate feature 

maps at various scales. The subsequent stage involves 

the RPN, which employs a sliding window mechanism 

to generate anchor boxes of varying scales and aspect 

ratios. Anchors are assessed based on the IoU metric; 

anchors with an IoU greater than 0.7 are classified as 

positive, those with an IoU less than 0.3 are classified 

as negative, while anchors falling within the 

intermediate range are disregarded. The NMS process 

filters out redundancies, resulting in approximately 

2,000 of the best proposals. The RPN uses a loss 

function consisting of objectness loss (to differentiate 

between objects and non-objects) and bounding box 

regression loss (to refine coordinates). 

 

Figure 7. Flowchart of the Face Recognition System Based on the Faster R-CNN Architecture  

The region proposals filtered by the NMS are processed 

by RoI Pooling/RoI Align to generate features with 

fixed sizes. Subsequently, these features were 

forwarded to the classifier for object class 

determination and to the bounding box regressor for 

coordinate refinement. The final output is the object 

detection, which includes both class information and 

location coordinates of the detected objects. 

Figure 8 presents the block diagram of the Face 

Recognition System implemented with the Faster R-

CNN architecture. In the training and validation 

sections, the process begins with facial image data for 

training and validation as inputs. These data were 

subsequently subjected to pre-processing, which 

involved resizing the images to 512 pixels, normalizing 

the pixel values to a range of 0 to 1, annotating the 

bounding boxes, and partitioning the dataset. Following 

pre-processing, hyperparameter optimization was 

conducted, encompassing the selection of the learning 

rate, the number of epochs, and the choice of optimizer. 

Upon optimizing the hyperparameters, the model was 

trained utilizing Faster R-CNN to develop the most 

effective face recognition model. The performance of 

the trained model was assessed using evaluation metrics 

such as accuracy, precision, recall, and F1-score. 

The testing section begins with facial image data for 

testing as input. Similar to the training stage, the images 

undergo pre-processing, which includes resizing to 512 

pixels and normalizing the pixel values. The processed 

data is subsequently evaluated using the Faster R-CNN 

model that was trained earlier. The result of this testing 

is the face detection, which includes classification and 

bounding box determination on the images. Finally, the 

face detection outcomes are assessed employing the 

same evaluation metrics utilized during the training 

phase, specifically accuracy, precision, recall, and F1-

score. 
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Figure 8. Block diagram of Face Recognition System Using Faster R-CNN Architecture 

2.7 Training Scheme 

During the model training process employing grid 

search, as presented in Table 2.  

Table 2. Training Scheme 

Model Learning Rate Epoch Optimizer 

 Model 1 0.001 10 SGD 

Model 2 0.001 10 ADAM 

Model 3 0.001 10 RMS 

Model 4 0.001 25 SGD 

Model 5 0.001 25 ADAM 

Model 6 0.001 25 RMS 

Model 7 0.001 50 SGD 

Model 8 0.001 50 ADAM 

Model 9 0.001 50 RMS 

Model 10 0.0001 10 SGD 

Model 11 0.0001 10 ADAM 

Model 12 0.0001 10 RMS 

Model 13 0.0001 25 SGD 

Model 14 0.0001 25 ADAM 

Model 15 0.0001 25 RMS 

Model 16 0.0001 50 SGD 

Model 17 0.0001 50 ADAM 

Model 18 0.0001 50 RMS 

Model 19 0.00001 10 SGD 

Model 20 0.00001 10 ADAM 

Model 21 0.00001 10 RMS 

Model 22 0.00001 25 SGD 

Model 23 0.00001 25 ADAM 

Model 24 0.00001 25 RMS 

Model 25 0.00001 50 SGD 

Model 26 0.00001 50 ADAM 

Model 27 0.00001 50 RMS 

The initial step involves establishing the model 

architecture, specifically utilizing Faster R-CNN, which 

is configured to accept parameters such as the learning 

rate, optimizer, and number of epochs. Subsequently, 

the hyperparameter search space is defined, 

encompassing learning rates [0.001, 0.0001, 0.00001], 

epochs [10, 25, 50], and optimizers [SGD, ADAM, 

RMS]. Grid search is implemented with various 

hyperparameter combinations, resulting in a total of 27 

combinations.  

Each model is trained using the training dataset to build 

a model that corresponds to the given hyperparameters. 

Each constructed model is subsequently evaluated on 

the validation image dataset to identify the 

configuration that yields the highest accuracy. 

3. Results and Discussions 

3.1 Training Results 

Based on the training outcomes of the various 

developed models, the performance of each model was 

assessed using multiple metrics, including Accuracy, 

Precision, Recall, F1-Score, and Loss. Table 3 shows 

that several models exhibited no performance at all, 

with all metrics scoring 0.000, such as models 3, 5, 6, 

8, 9, 10, 12, 13, 15, 18, 19, 22, and 25. This indicates 

that these models failed during the learning process or 

were unable to recognize patterns within the provided 

data. In addition, there are models with low 

performance, such as models 2 and 21, which have very 

low Accuracy and F1-Score values. Several models 

achieved moderate performance, with Accuracy values 

ranging between 0.75 and 0.95, including models 1, 4, 

11, 14, 16, 20, and 24. 

There are five (5) models that demonstrated excellent 

performance, namely models 7, 17, 23, 26, and 27, with 

Accuracy scores above 0.95, F1-Scores close to 1.000, 

and very small Loss values, below 0.05. These models 

successfully identified the majority of the data 

correctly, leading to a minimal number of prediction 

errors. The highest-performing models were models 7, 

23, and 26, each attaining perfect scores of 1.000 in 

Accuracy, Precision, Recall, and F1-Score, 

demonstrating their ability to flawlessly recognize all 

data without any errors. Moreover, model 26 recorded 

the lowest Loss value (0.023), making it the most 

optimal model in this experiment. 

Table 3. Training Results 

Model 

 

Training 
Accuracy Precision Recall F1-Score Loss 

Model 1 0,857 0,462 0,429 0,500 0.214 

Model 2 0,614 0,047 0,077 0,059 0.224 

Model 3 0,000 0,000 0,000 0,000 0,000 

Model 4 0,767 0,673 0,639 0,617 0.148 

Model 5 0,000 0,000 0,000 0,000 0,000 
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Model 

 

Training 
Accuracy Precision Recall F1-Score Loss 

Model 6 0,000 0,000 0,000 0,000 0,000 

Model 7 0,995 0,996 0,933 0,994 0.049 

Model 8 0,000 0,000 0,000 0,000 0,000 

Model 9 0,000 0,000 0,000 0,000 0,000 

Model 10 0,000 0,000 0,000 0,000 0,000 

Model 11 0,810 0,746 0,643 0,644 0.108 

Model 12 0,037 0,001 0,032 0,002 2.904 

Model 13 0,000 0,000 0,000 0,000 0,000 

Model 14 0,838 0,861 0,838 0,832 0.072 

Model 15 0,000 0,000 0,000 0,000 0,000 

Model 16 0,941 0,630 0,667 0,647 0.231 

Model 17 0,983 0,982 0,980 0,981 0.047 

Model 18 0,000 0,000 0,000 0,000 0,000 

Model 19 0,000 0,000 0,000 0,000 0,000 

Model 20 0,855 0,760 0,684 0,694 0.132 

Model 21 0,519 0,275 0,278 0,227 0.137 

Model 22 0,000 0,000 0,000 0,000 0,000 

Model 23 0,999 1,000 0,999 0,999 0.039 

Model 24 0,839 0,871 0,825 0,832 0.076 

Model 25 0,000 0,000 0,000 0,000 0,000 

Model 26 1,000 1,000 1,000 1,000 0.023 

Model 27 0,976 0,979 0,973 0,975 0.045 

Regarding the models that failed to demonstrate any 

performance (all metrics equal to 0.000), several 

hypotheses can be proposed to explain the cause. A 

potential explanation for this outcome is the suboptimal 

combination of hyperparameters—including learning 

rate, number of epochs, and optimizer—which hindered 

the models' ability to effectively learn from the data. 

The selection of an excessively large learning rate, an 

insufficient number of epochs, or an unsuitable 

optimizer may have caused the models to be unable to 

capture patterns from the data. 

This hypothesis is supported by several previous 

studies. Choi et al. (2019) highlighted the critical role 

of optimizer sensitivity to hyperparameter tuning 

protocols, noting that such sensitivity can substantially 

affect model performance [33]. Nurdiati et al. (2022) 

also reported that optimizers such as Adam, Nadam, and 

AdamW performed better than other optimizers in 

facial expression recognition tasks [34]. Furthermore, 

Kim et al. (2022), in the AdaFace study, demonstrated 

that adaptive approaches to input quality can enhance 

model performance, indicating that low-quality input or 

poor initial weights may result in model failure [35]. Ali 

and Kumar (2022) also highlighted the significance of 

selecting the appropriate architecture and activation 

functions in achieving optimal performance in face 

recognition systems [36]. 

Thus, the appropriate selection and combination of 

hyperparameters, proper data preprocessing, and 

optimal choice of model architecture and optimizer are 

crucial in determining the success of model training in 

facial recognition tasks. 

This explanation reinforces that the combination of 

specific parameters a small learning rate (0.00001), 50 

training epochs, and the use of the Adam optimizer 

significantly contributed to the optimal performance 

achieved by Model 26. These findings are also 

supported by several previous studies that have 

demonstrated how proper parameter selection directly 

influences model performance in face recognition tasks. 

First, the use of the Adam optimizer has been proven 

effective in various studies [37] showed that Adam 

achieved up to 97.93% accuracy in a 2.5D face 

recognition system based on the EfficientNet 

architecture. This underscores Adam’s advantages in 

autonomously adapting the learning rate and mitigating 

the vanishing gradient problem, rendering it particularly 

well-suited for deep learning models within this 

domain. 

Second, a small learning rate facilitates gradual and 

stable learning, promoting more precise convergence. 

According to [38], employing a small learning rate 

generally results in lower loss values and more stable 

training, especially when paired with optimizers such as 

Adam or AdamW. This aligns with the results of Model 

26, which demonstrated a very low loss value (0.023) 

and perfect performance across all evaluation metrics. 

Third, training the model for 50 epochs proved to be an 

optimal choice in this experiment. This number of 

epochs is adequate for the model to effectively capture 

patterns within the data while avoiding both overfitting 

and underfitting. The relevant literature has emphasized 

that an insufficient number of epochs may lead to 

underfitting, whereas an excessive number may cause 

overfitting, thereby diminishing the model’s ability to 

generalize effectively [39], [40]. 

Fourth, these findings are reinforced by a study 

conducted by [34], which concluded that Adam 

outperformed other optimizers in facial expression 

recognition tasks, owing to its capacity to accelerate 

convergence and ensure training stability. 

Finally, the success of Model 26 can serve as a 

benchmark for evaluating other models in the 

experiment that showed poor or failed performance 

(such as Models 3, 5, 6, etc.). The suboptimal 

performance of these models is likely due to less 

effective parameter configurations, such as a larger 

learning rate or the use of less adaptive optimizers like 

SGD without momentum. 

3.2 Training Model Performance 

Figure 9 presents a comparison of the best-performing 

models based on the parameters utilized, indicating that 

a learning rate (lr) of 0.00001 yielded the most optimal 

results in comparison to 0.001 or 0.0001. Models with 

a larger learning rate, such as 0.001 (Model 7), achieved 

high accuracy (0.995), but the resulting loss was higher 

than that of models with smaller learning rates. 

Meanwhile, a learning rate of 0.00001 (Model 23 and 

Model 26) demonstrated the best performance, with 

Model 26 even achieving perfect accuracy (1.000), 

although there was an initial indication of overfitting. 
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Figure 9. Performance comparison of training models 

From the number of epochs, Model 23 with 25 epochs 

was sufficient to achieve an accuracy of 0.999 with a 

smaller loss (0.039). In contrast, Model 26 with 50 

epochs achieved perfect results, although it was initially 

suspected of overfitting. However, upon evaluation 

using the testing dataset, Model 26 achieved the highest 

performance across all evaluation metrics relative to the 

other models, indicating its strong generalization 

capability to previously unseen data. 

The choice of optimizer also affects the model's 

performance. ADAM proved to be the best choice, as 

seen in Model 23 and Model 26, which achieved 

optimal results with low loss. The use of the SGD 

optimizer (Model 7) was still quite good but less 

optimal compared to ADAM, while RMSProp (Model 

27) showed a performance with an accuracy of 0.976, 

indicating that this optimizer was less effective in this 

case. 

Although Model 23 was initially considered the best 

choice based on training results, testing evaluation 

showed that Model 26 is the most optimal model, as it 

has a small learning rate (0.00001), a relatively high 

number of epochs (50), and the ADAM optimizer, 

which helped the model learn better without losing 

generalization. The small learning rate facilitated 

gradual weight updates, thereby preventing 

overshooting of the optimal solution, while the 

increased number of epochs allowed the model to learn 

more complex patterns effectively. The lower loss 

(0.023) compared to other models also indicates that 

Model 26 is more stable and has better optimization. 

3.3 Testing Model Performance 

Figure 10 presents a comparison between Model 7 

(baseline) and Model 26 (best-performing), 

demonstrating that Model 26 outperforms the baseline 

across all evaluation metrics, including accuracy, 

precision, recall, and F1-score. The primary distinction 

between the two models lies in their respective choices 

of learning rate and optimizer, which substantially 

influence the stability and effectiveness of the training 

process. 

Model 7 employs a learning rate of 0.001 in conjunction 

with the SGD optimizer. This relatively large learning 

rate causes the weight updates to be made with larger 

steps, which risks the model skipping the optimal point 

and struggling with convergence. Additionally, the use 

of SGD as the optimizer has the drawback of high 

gradient oscillations, particularly if not combined with 

the proper momentum. This can cause the model to 

struggle in finding the optimal loss minimum, resulting 

in suboptimal performance. 

 

Figure 10. Performance comparison of testing models 

In contrast, Model 26 utilizes a significantly lower 

learning rate of 0.00001 combined with the ADAM 

optimizer. The smaller learning rate allows for a 

smoother and more stable learning process, avoiding 

the risk of overshooting during the optimization 

process. The use of ADAM as the optimizer also offers 

advantages, as it combines the best features of 

Momentum SGD and RMSProp, making it more 

adaptive in adjusting learning based on the gradients 

obtained. ADAM has a mechanism that accelerates 

convergence without experiencing high oscillations like 

SGD, making it a better choice for deep learning models 

like Faster R-CNN. 

Although both models were trained for the same 

number of epochs (50), the notable performance 

disparity is primarily attributed to differences in the 

chosen learning rate and optimizer. As illustrated in 

Figure 10, Model 26 attains higher values across all 

evaluation metrics—accuracy, precision, recall, and F1-

score—compared to Model 7, indicating superior 

performance in face recognition with a more balanced 

trade-off between precision and recall. Consequently, 

Model 26 demonstrates greater effectiveness in 

detecting faces while minimizing classification errors. 

3.4 Model Evaluation 

Table 4 presents the Classification Report, which 

outlines the performance evaluation of the facial 

recognition model across various individuals. The 

metrics used include precision, recall, F1-score, and 

support for each class (i.e., individual name). As 

previously noted, these results correspond to Model 26, 

which achieved a perfect accuracy score of 1.000 on the 

training dataset. Nevertheless, despite the model’s 

outstanding performance during training, variations in 

testing performance are observed, as reflected in the 

differing values of precision, recall, and F1-score across 

individual classes. 
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Images with good performance, such as those of 

Dwayne Johnson, Ellen Degeneres, and Lisa Kudrow, 

show precision, recall, and F1-Score values of 1.00, 

meaning the model recognizes them extremely well 

without errors. This high performance may be due to 

distinct facial features, such as unique facial structures 

that are easily distinguishable from other individuals. 

Additionally, the consistent image quality, with good 

lighting and high resolution, enables the model to 

capture facial features accurately. 

Table 4. The Performance Evaluation Report 

Name Precision Recall F1-

Score 

Support 

Akshay Kumar 0.62 0.71 0.67 7 

Alexandra 

Daddario 

0.83 0.94 0.88 16 

Alia Bhatt 0.82  0.78  0.80 18 

Amitabh 

Bachchan 

1.00  0.93  0.96 14 

Andy Samberg 0.82  0.88  0.85 16 

Anushka 

Sharma 

0.88  0.93  0.90 15 

Billie Eilish 1.00  0.95  0.97 19 

Brad Pitt 0.84  0.84 0.84 19 

Camila Cabello 0.95  0.83  0.88 23 

Charlize Theron 0.93  0.68  0.79 19 

Claire Holt 0.76  0.95  0.84 20 

Courtney Cox 0.93  0.93  0.93 14 

Dwayne 

Johnson 

1.00 1.00 1.00 12 

Elizabeth Olsen 0.91  1.00  0.95 21 

Ellen Degeneres 1.00 1.00 1.00 15 

Henry Cavill 0.90  0.95  0.92 19 

Hrithik Roshan 0.90 0.90 0.90 20 

Hugh Jackman 0.83  0.87  0.85 23 

Jessica Alba 0.94  0.89  0.91 18 

Kashyap 0.67  1.00  0.80 4 

Lisa Kudrow 1.00 1.00 1.00 9 

Margot Robbie 0.92  0.79  0.85 14 

Marmik 1.00  0.80  0.89 5 

Natalie Portman 0.86  1.00  0.93 19 

Priyanka 

Chopra 

0.91  0.88  0.89 24 

Robert Downey 

Jr 

0.95  0.91  0.93 22 

Roger Federer 0.94  0.94  0.94 18 

Tom Cruise 0.71  0.77  0.74 13 

Vijay 

Deverakonda 

0.96  0.89  0.92 27 

Virat Kohli 0.88  0.78  0.82 9 

Zac Efron 1.00 1.00 1.00 21 

Accuracy   0.90 513 

Macro Avg 0.89 0.89 0.89 513 

Weighted Avg 0.90 0.90 0.90 513 

On the other hand, images with lower performance, 

such as those of Akshay Kumar, Kashyap, and Charlize 

Theron, demonstrates lower precision, recall, and F1-

score values compared to other individuals. A primary 

factor contributing to this diminished performance is 

the limited number of images in the dataset, with 

Akshay Kumar represented by only 7 images and 

Kashyap by 5, which restricts the model’s capacity to 

effectively learn facial patterns. Additionally, other 

factors such as significant pose variation, uneven 

lighting, or low-quality images can further complicate 

accurate identification. 

From this analysis, the model performs very well on 

individuals with distinct facial features, good image 

quality, and sufficient data. However, individuals with 

lower-quality images, significant pose variation, or 

limited data experience a drop in accuracy. This 

indicates that while Model 26 shows high performance, 

there are still factors within the dataset that could be 

improved to enhance its overall performance. 

Improving dataset diversity, image quality, and 

ensuring a sufficient number of samples for each 

individual could help the model generalize better across 

various conditions. 

 

Figure 11. Confusion matrix 

The evaluation results indicate that the model achieves 

an accuracy of 0.90, signifying that 90% of its 

predictions correspond to the correct labels. 

Additionally, the macro average and weighted average 

scores are 0.89 and 0.90, respectively, demonstrating 

that the model performs relatively consistently across 

all classes. To ensure dataset balance, a sample 

distribution analysis was conducted. The dataset 

consists of 31 classes, with the number of samples per 

class ranging from 4 to 27 images. This analysis 

revealed that the dataset is imbalanced, with some 

classes having fewer samples than others. Therefore, a 

weighted loss method was employed to ensure that 

classes with fewer samples are proportionally 

considered during model training. Additionally, the 

model was evaluated using the IoU. The best model 

showed an average IoU of 0.902, while models with 

lower performance had an IoU around 0.861. 

The confusion matrix presented in Figure 11 illustrates 

the performance of Model 26 in face recognition across 

31 distinct classes. Each row corresponds to the true 

labels, while each column corresponds to the labels 

predicted by the model. The values along the main 

diagonal represent the number of correct predictions 

(true positives), with higher values indicating superior 

performance in accurately identifying the faces. For 

example, for the class Elizabeth Olsen, the model 
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successfully identified her face 21 times, indicating 

good performance for that particular class. 

However, there are some misclassifications indicated 

by the numbers outside the main diagonal. For example, 

for the class Akshay Kumar, although there were 5 

correct predictions, the model also misclassified his 

face into other classes multiple times. These 

misclassifications can occur due to similarities in faces 

between individuals or insufficient training data, which 

limits the model's ability to distinguish facial features 

accurately. 

In terms of visualization, the darker the color of the 

boxes on the main diagonal, the higher the number of 

correct predictions in that category. Conversely, lighter 

colors outside the main diagonal indicate small 

mispredictions. Overall, the model performs quite well 

as most predictions are on the main diagonal, but there 

are still a few errors that need to be addressed. 

Figure 12 presents the testing outcomes of the best-

performing model, Model 26, in detecting and 

classifying the faces of multiple individuals. Each 

sample in the image displays a person's face with the 

model's prediction and the original label. Out of the six 

test images, Model 26 correctly predicted the faces, and 

the generated bounding boxes accurately identified the 

faces corresponding to the original labels. This 

indicates that Model 26 exhibits strong performance in 

face recognition, consistent with the prior evaluation 

results in which the model attained high precision, 

recall, and F1-score values, reaching 1.00 for certain 

individuals. 

 

Figure 12. Face recognition results using Model 26 

This high accuracy can be attributed to several factors, 

such as distinct facial features of the individuals, 

uniform lighting in the images, and sufficient data 

during training. For example, the faces of Camila 

Cabello and Zac Efron are recognized very well, likely 

because the model has been trained on a sufficient 

number of images of them with representative 

variations. 

Nevertheless, despite the model demonstrating 

excellent results, it is important to acknowledge the 

potential for dataset bias; for example, if certain 

individuals are underrepresented in the training data, 

the model’s performance for those individuals may be 

compromised. To further improve generalization, 

additional data could be added to ensure the model 

remains accurate under various lighting conditions, 

poses, and facial expressions. 

 

Figure 13. Face Recognition errors 

As shown in Figure 13, the misclassification of faces 

observed in the image is likely caused by several factors 

related to the dataset used. One of the primary factors is 

data imbalance, in which the number of images for each 

individual in the dataset is unevenly distributed. If 

certain individuals have significantly more samples 

than others, the model tends to classify faces with 

similar features into a more dominant category during 

training. This may result in misidentification, especially 

when the model encounters faces that are 

underrepresented within the training dataset. 

Additionally, similar facial features between different 

individuals are another major cause of 

misclassification. Face recognition models often rely on 

features such as facial shape, bone structure, or 

accessories (e.g., glasses and hats) to make 

classifications. Misclassifications, such as identifying 

Brad Pitt as Akshay Kumar or Tom Cruise as Henry 

Cavill, can occur due to the strong resemblance between 

their facial features in the images used. If the model is 

not trained with a sufficiently diverse set of images for 

each individual, these errors are more likely to occur. 

Another influencing factor is the variation in lighting 

conditions and facial angles within the dataset. If the 

model is trained using images with uniform lighting and 

limited facial angles, its performance declines when 

recognizing faces under dim lighting conditions or from 

different angles. As seen in some misclassification 

examples, faces captured under well-lit conditions are 

easier to recognize than those captured under dim 

lighting or tilted positions. This indicates that the model 

struggles to generalize variations in facial appearance 

across different conditions. 
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4. Conclusions 

The findings of this study demonstrate that the 

combination of hyperparameters in the "Face 

Recognition Using Faster R-CNN Architecture with 

Hyperparameter Optimization," including learning rate, 

number of epochs, and optimizer type, exerts a 

significant impact on model performance. Specifically, 

the model configured with a learning rate of 0.00001, 

50 epochs, and the Adam optimizer (Model 26) 

achieved the highest performance according to 

evaluation metrics such as accuracy, precision, recall, 

and F1-score on the test dataset. 

From the confusion matrix, it is evident that Model 26 

has a high accuracy in classifying faces, with minimal 

errors in distinguishing between classes of faces that 

share similar lighting or expressions. This indicates that 

the model is effective in recognizing facial patterns but 

still faces challenges in differentiating faces with 

similar features. The IoU calculation revealed that 

Model 26 achieved an average IoU value of 0.902, 

indicating a strong correspondence between the 

bounding boxes generated during the detection process 

and the ground truth. A higher IoU value signifies 

greater accuracy in localizing the face detection boxes. 

Visual analysis of the detection results revealed that the 

model performed better in recognizing faces under good 

lighting conditions and when the face was in a 

straightforward position, as shown in Figure 12. 

However, under low-light conditions or when the face 

is tilted, detection errors still occur. This suggests that 

image attributes, including lighting conditions, viewing 

angle, and resolution, significantly influence the 

model’s performance. Across multiple experiments, it 

was observed that selecting a learning rate of 0.00001 

was critical for ensuring training stability. Higher 

learning rates tend to hinder model convergence due to 

abrupt weight updates, while lower learning rates result 

in a slower learning process. A value of 0.00001 

provides an optimal balance, allowing the model to 

learn gradually without overfitting or underfitting. 

Furthermore, the use of the Adam optimizer improves 

the training stability compared to SGD. 

Overall, this study demonstrates that hyperparameter 

optimization in the Faster R-CNN architecture 

significantly impacts facial recognition performance. 

Proper hyperparameter selection can improve the 

accuracy, ensure optimal bounding box detection, and 

adapt the model to varying image characteristics. 
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