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Abstract  

Multilayer Perceptron (MLP) is a powerful machine learning algorithm capable of modeling complex, non-linear 

relationships, making it suitable for predicting car purchasing power. However, its performance depends on hyperparameter 

tuning and data quality. This study optimizes MLP performance using GridSearch and Optuna for hyperparameter tuning 

while addressing data imbalance with the Synthetic Minority Over-sampling Technique (SMOTE). The dataset comprises 

demographic and financial attributes influencing car purchasing power. Initially, the dataset exhibited class imbalance, which 

could lead to biased predictions; SMOTE was applied to generate synthetic samples, ensuring a balanced class distribution. 

Two hyperparameter tuning approaches were implemented: GridSearch, which systematically explores a predefined parameter 

grid, and Optuna, an adaptive optimization framework utilizing a Bayesian approach. The results show that Optuna achieved 

the highest accuracy of 95.00% using the Adam optimizer, whereas GridSearch obtained the best accuracy of 94.17% with the 

RMSProp optimizer, demonstrating Optuna's superior ability to identify optimal hyperparameters. Additionally, SMOTE 

significantly improved model stability and predictive performance by ensuring adequate class representation. These findings 

offer insights into best practices for optimizing MLP in predictive modeling. The combination of SMOTE and advanced 

hyperparameter tuning techniques is applicable to various domains requiring accurate predictive analytics, such as finance, 

healthcare, and marketing. Future research can explore alternative optimization algorithms and data augmentation techniques 

to further enhance model robustness and accuracy.  
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1. Introduction  

In recent years, the use of Machine Learning (ML) 

algorithms, particularly Multilayer Perceptron (MLP), 

has become increasingly popular in various predictive 

applications. One of its applications is in predicting 

consumer purchasing power, especially in the 

automotive market. Vehicle purchasing power 

prediction plays an important role in the automotive 

industry for designing sales strategies, marketing, and 

product development. As a type of Artificial Neural 

Network (ANN), MLP has proven effective in handling 

prediction problems involving non-linear relationships 

between inputs and outputs, making it highly relevant 

in modeling purchasing power, which is complex and 

dynamic [1]-[3]. 

Technological advancements have driven various 

studies on the development and optimization of MLP 

for prediction, including in the automotive sector. One 

study showed that hyperparameter tuning significantly 

improved MLP performance, where the default Adam 

configuration achieved an accuracy of 89.50% and 

RMSProp of 87.50%. However, after tuning with a 

learning rate of 0.001, their accuracy increased to 

91.5% and 92.00%, respectively [1]. 

Another study on predicting Toyota car sales in 

Indonesia found that the MLP 10-15-1 architecture 

provided the best results, with an MAE of 1879.29 and 

a MAPE of 6.78% [2]. Meanwhile, research on chili 

price prediction in Tangerang compared MLP and 

RNN, showing that MLP was more accurate, with a loss 

of 0.0038, MSE of 10,271,959.0, and MAPE of 3.79% 

[3]. These findings suggest that similar techniques can 

be applied to vehicle purchasing power prediction, 
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given the data patterns involving economic factors and 

market trends [4]. 

Although MLP has shown promising results in various 

studies, several key challenges remain in the modeling 

process, particularly in hyperparameter optimization, 

data imbalance, and feature selection. One of the 

challenges in using MLP is hyperparameter 

optimization. Traditional techniques such as 

GridSearch are commonly used but require very long 

computation times and do not always produce optimal 

accuracy [1], [4]. Some studies have highlighted the 

limitations of GridSearch and proposed alternatives 

such as Optuna, which has proven to be more efficient 

in hyperparameter optimization through a faster and 

more accurate algorithmic search approach, as applied 

in heart disease prediction [5]-[8]. 

Additionally, data imbalance is a major challenge in 

many ML applications, including vehicle purchasing 

power prediction. This imbalance occurs when the 

number of samples in one category is significantly 

smaller than in another, which can lead to bias in the 

prediction model. One widely used solution is SMOTE 

(Synthetic Minority Over-sampling Technique), One 

way to enhance model performance is by generating 

synthetic data for the underrepresented class., thereby 

enhancing prediction accuracy [8], [9]. Further studies 

have also developed variations of SMOTE, such as 

GeometricSMOTE, which allows for faster and more 

efficient data balancing [10], [11]. Therefore, this study 

will explore the use of SMOTE to address data 

imbalance issues in vehicle purchasing power 

prediction. 

Apart from data balancing, feature selection also plays 

a crucial role in improving MLP model quality. 

Effective feature selection techniques can help enhance 

model accuracy by reducing data dimensions and 

eliminating irrelevant features [4]. Other studies have 

also emphasized the importance of optimizing feature 

selection in neural networks to improve predictive 

performance [6]. Therefore, this study will apply 

correlation-based feature selection to improve the 

quality of input data used in MLP model training [12]. 

Previous research has mostly addressed individual 

aspects like hyperparameter optimization or data 

imbalance management, without adopting a holistic 

approach. Few studies have integrated advanced 

techniques such as Optuna for hyperparameter tuning, 

SMOTE for data balancing, and effective feature 

selection in vehicle purchasing power prediction. This 

highlights a research gap that needs to be filled. Hence, 

this study seeks to enhance prediction accuracy and 

efficiency by utilizing GridSearch and Optuna for 

hyperparameter optimization, SMOTE for handling 

data imbalance, and correlation-based feature selection 

to refine input data quality. 

This study enhances vehicle purchasing power 

prediction accuracy, aiding the automotive industry in 

refining marketing and sales strategies. It is the first to 

integrate hyperparameter optimization, data balancing, 

and feature selection in this context. 

2. Research Methods 

2.1 Research Dataset 

The research dataset used in this study is taken from the 

Cars Purchase Decision Dataset on Kaggle, which 

contains 1000 entries and five key features [13]:  

The dataset includes “User ID”, which is an integer that 

uniquely identifies each user; “Gender”, a categorical 

variable with values ‘Male’ or ‘Female’; “Age”, an 

integer representing the user's age; “Annual Salary”, an 

integer indicating the user’s yearly income; and 

“Purchased”, a binary variable where 0 indicates no 

purchase and 1 indicates a purchase decision. 

This dataset predicts car purchase decisions based on 

Age, Gender, and Annual Salary. Preprocessing 

techniques, including oversampling with SMOTE and 

feature selection, are applied to handle class imbalance 

and improve model performance. 

2.2 Research Stages 

The research follows a structured workflow to ensure 

systematic handling of each step and improve model 

performance. Figure 1 illustrates the step-by-step 

process followed in this research. 

 

Figure 1. Research Stages 

The dataset used in this study is sourced from Kaggle 

and consists of 1,000 data entries for analysis. To ensure 

data quality, an initial exploration is conducted to 
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identify and handle missing values, outliers, and 

duplicate records. Categorical features, such as Gender, 

are then converted into numerical values using label 

encoding. For optimal model performance, a feature 

selection process is applied to remove low-correlation 

features. Additionally, to address the class imbalance, 

the Synthetic Minority Over-sampling Technique 

(SMOTE) is implemented to generate synthetic data for 

the minority class. The dataset is subsequently split into 

training and test sets to facilitate model evaluation. 

Before training, feature standardization is performed to 

ensure that all features are on the same scale. A 

Multilayer Perceptron (MLP) model is then built and 

assessed using accuracy, precision, recall, and F1-

score metrics. To further enhance model performance, 

hyperparameter tuning is conducted using GridSearch 

and Optuna. Finally, the model's performance is 

evaluated to measure the impact of hyperparameter 

tuning and ensure optimal predictive accuracy. 

2.3 Multilayer Perceptron (MLP) 

MLP is applied in this study as an artificial neural 

network to handle non-linear relationships between 

input and output variables, enabling the model to 

capture complex patterns in the data [14]. MLP consists 

of an input layer, hidden layers, and an output layer 

[15]. The training process uses optimization algorithms 

such as Adam or RMSProp with backpropagation to 

minimize model errors [16]. Following previous 

studies, the ReLU activation function is applied to the 

hidden layers, while the sigmoid function is used for the 

output layer [10], [15]. 

One of the key advantages of MLP is its ability to learn 

complex decision boundaries through the hierarchical 

representation of features. By adjusting the number of 

hidden layers and neurons, the model can capture 

intricate patterns that traditional machine-learning 

algorithms might struggle with. However, selecting the 

optimal network architecture is crucial, as an excessive 

number of hidden layers may lead to overfitting, while 

too few may result in underfitting. To address this, 

techniques such as dropout and batch normalization are 

commonly implemented to enhance generalization and 

improve model stability. 

2.4 Oversampling with SMOTE 

To handle class imbalance, SMOTE (Synthetic Minority 

Over-sampling Technique) is utilized. This technique 

generates synthetic data for the minority class by 

interpolating existing data points, enhancing model 

accuracy when working with imbalanced datasets. [7], 

[16], [17]. 

In addition to increasing the number of samples in the 

minority class, SMOTE helps the model recognize 

more diverse patterns compared to traditional 

oversampling methods, such as simple data duplication. 

However, SMOTE must be applied carefully, as 

excessive use can lead to overfitting. To mitigate this, 

SMOTE is often combined with undersampling 

techniques for the majority class or other regularization 

methods, such as dropout in neural networks [18], [19]. 

Furthermore, previous studies have shown that the 

effectiveness of SMOTE depends on the original data 

distribution and the appropriate selection of parameters, 

such as the number of neighbors used for synthetic data 

interpolation [20]. 

2.5 Hyperparameter Tuning with GridSearch and 

Optuna 

GridSearch is employed to examine all possible 

hyperparameter combinations to identify the optimal 

one, though it can be time-intensive [21], [22]. As an 

alternative, Optuna is applied to efficiently search for 

optimal hyperparameters, reducing the search time 

compared to GridSearch [20]-[25]. 

In practice, GridSearch is best suited for smaller search 

spaces due to its exhaustive nature, whereas Optuna 

leverages efficient sampling techniques, such as Tree-

structured Parzen Estimator (TPE) and pruning 

strategies, to focus on the most promising 

hyperparameter configurations. This makes Optuna 

particularly effective when working with deep learning 

models or complex machine learning pipelines that 

require extensive computational resources. Moreover, 

Optuna supports adaptive learning rates and parallel 

processing, further enhancing optimization efficiency. 

By combining both approaches, researchers can initially 

use GridSearch for a broad search and refine the results 

with Optuna for a more precise and efficient 

hyperparameter tuning process. 

2.6 Model Evaluation 

The model's performance is assessed using metrics like 

Accuracy, Precision, Recall, and F1-Score to evaluate 

its effectiveness in predicting car purchase decisions. 

Accuracy is determined using Formula 1: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑎+𝑑)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑒𝑙
× 100%                            (1) 

“𝑎” represents the number of correct positive 

predictions, “𝑑” is the number of incorrectly predicted 

positives, and “Total Samples” refers to the total 

number of tested data points. 

Additionally, Precision is computed by dividing the 

number of true positive predictions (TP) by the total 

number of positive predictions (TP + FP), following  

Formula 2: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                                   (2) 

Recall is determined by comparing the number of true 

positive predictions (TP) with the total actual positive 

cases (TP + FN), using Formula 3: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                       (3) 

Finally, F1-Score is calculated as the harmonic mean of 

Precision and Recall, formulated as Formula 4. 
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1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
                             (4) 

These metrics provide a comprehensive evaluation of 

the model's ability to balance correct predictions and 

misclassifications, offering deeper insight into its 

overall performance in making purchase decisions. 

3. Results and Discussions 

3.1 Data Collection 

Once the data was collected, it was imported into the 

Kaggle Notebook for further processing and analysis. 

Figure 2 presents the dataset successfully loaded into 

Kaggle Notebook, displaying the first few rows along 

with their column names and values. 

 

Figure 2. Importing Data into Kaggle Notebook 

From this view, we can confirm that the dataset has 

been correctly imported and structured, with clearly 

defined columns and data types. This preliminary 

verification confirms that the data is prepared for the 

next preprocessing steps, including handling 

categorical variables, scaling numerical values, and 

preparing it for model training. These steps will be 

discussed in the next section. 

3.2 Data Exploration 

To ensure data quality, several checks were performed 

in the data exploration phase, including missing value 

detection, outlier identification, and duplicate data 

removal. These steps are essential to maintaining 

dataset integrity and ensuring accurate model 

predictions. Figure 3 presents the results of these 

checks.: 

 

Figure 3. Data without Outliers 

The analysis revealed that there were no missing values 

in the dataset, meaning that all records were complete 

and no imputation was required. Additionally, no 

duplicate entries were found, ensuring that the dataset 

does not contain redundant records that could bias the 

model’s learning process. 

Outlier detection was conducted using boxplots and the 

Interquartile Range (IQR) method. The IQR method 

identifies outliers by calculating the range between the 

first quartile (Q1) and the third quartile (Q3). Data 

points that fall below Q1 - 1.5IQR or above Q3 + 

1.5IQR are regarded as outliers. The results confirmed 

that all feature values fall within an acceptable range, 

indicating that the dataset is free from extreme 

deviations. 

Since the dataset does not contain missing values, 

duplicates, or significant outliers, no additional data 

cleaning or transformation was necessary at this stage. 

This ensures that the dataset is in optimal condition for 

further preprocessing, feature selection, and model 

training. 

3.3 Label Encoding 

At this stage, Label Encoding was applied to convert 

categorical features into a numerical format suitable for 

machine learning models. This transformation is 

necessary because most machine learning algorithms 

only accept numerical data. 

In this dataset, the Gender column contained two 

categories: 'Male' and 'Female'. Using Label Encoding, 

the 'Male' category was given a value of 1, and the 

'Female' category was assigned 0. This encoding 

enables the model to handle gender data efficiently 

without adding to the dimensionality. 

Label Encoding was chosen over One-Hot Encoding 

because the feature has only two categories (binary 

classification). One-Hot Encoding is more suitable 

when dealing with categorical features with multiple 

unique values, as it prevents the model from 

interpreting numerical labels as ordinal relationships. 

However, since Gender is a non-ordinal variable with 

only two categories, Label Encoding is a more efficient 

and appropriate choice. 

By applying this encoding, the dataset remains 

compact, avoids unnecessary feature expansion, and 

ensures that machine learning models can correctly 

interpret and utilize the Gender feature during training. 

3.4 Feature Selection 

The first step in Feature Selection was to analyze the 

correlation between features and the target variable 

(Purchased) to identify which features have significant 

relationships with the target. Pearson’s correlation 

coefficient was used for this calculation, as it is a widely 

accepted method for measuring linear relationships 

between numerical variables. 

To better understand the relationships between features 

and their impact on the target variable, an initial 

correlation analysis was conducted. Figure 4 presents 
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the Correlation Matrix, highlighting the strength of 

relationships among the features in the dataset. 

From these results, features with a correlation greater 

than 0.1 with the Purchased column were selected for 

inclusion in the model. The threshold of 0.1 was chosen 

to ensure that only features with at least a weak to 

moderate correlation with the target variable were 

considered, helping to reduce noise in the dataset and 

improve model efficiency. 

 

Figure 4. Initial Correlation Between Features 

To prevent multicollinearity, a second correlation 

analysis was performed on the chosen features. 

Multicollinearity arises when independent variables are 

strongly correlated, causing redundancy and instability 

in the model. A high correlation (typically above 0.8) 

between independent features can cause inflated 

variance in the regression coefficients, reducing the 

model’s interpretability and robustness. 

The results of the heatmap visualization, which 

illustrate the correlation between the selected features, 

are presented in Figure 5. 

 

Figure 5. Correlation Between Features After Feature Selection 

3.5 Oversampling with SMOTE 

To tackle the class imbalance problem in the dataset, the 

Synthetic Minority Over-sampling Technique 

(SMOTE) was applied at this stage. SMOTE is a 

commonly used oversampling technique that creates 

synthetic samples for the minority class rather than just 

replicating existing data. This method helps avoid 

overfitting and improves the model's ability to 

generalize more effectively. 

Before applying SMOTE, the class distribution in the 

Purchased column was imbalanced, with significantly 

more samples in Class 0 (not purchasing a car) than in 

Class 1 (purchasing a car). This imbalance can cause 

the model to favor the majority class, reducing its 

accuracy in correctly classifying the minority class. 

Figure 6 visualizes the class distribution before 

oversampling. 

 
Figure 6. Class Distribution Before Oversampling 

To resolve this imbalance, SMOTE was applied to 

generate synthetic samples for Class 1 until its count 

equaled that of Class 0. This process ensures that the 

model does not develop a bias toward the majority class, 

thereby improving its ability to classify both categories 

accurately. Figure 7 illustrates the class distribution 

after oversampling.: 

 

Figure 7. Class Distribution After Oversampling 
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The class distribution before and after applying 

SMOTE is presented in Table 1, highlighting the 

increase in samples for the minority class: 

Table 1. Data Distribution Before and After SMOTE Application 

Class   

Before 

SMOTE After SMOTE 

Class 0 (Not Purchased) 598 402 

Class 1 (Purchased) 598 598 

3.6 Split Data 

At this point, the dataset, which had been resampled 

using SMOTE, was split into training and testing sets. 

This separation is crucial to ensure that the model learns 

from one portion of the data and is tested on a different 

portion that it has not encountered during training. This 

approach allows us to evaluate the model's ability to 

generalize to new, unseen data instead of merely 

memorizing the training data. 

The data was split using the train_test_split method, 

with 80% allocated for training and 20% for testing. The 

80-20 split is a commonly used ratio in machine 

learning because it provides the model with sufficient 

data for training while keeping a reasonable portion for 

evaluation. This ensures that the model has enough 

samples to learn from while preventing overfitting to 

the training data. 

To maintain reproducibility, a random state was used 

during the split. This ensures that every time the split is 

performed, the data is divided in the same way, which 

is crucial for achieving consistent and comparable 

results across multiple runs. 

3.7 Data Standardization 

After the dataset was split, data standardization was 

performed to ensure all features were on a comparable 

scale. Standardization is crucial because many Machine 

Learning (ML) models, particularly those based on 

distance calculations (such as logistic regression, 

neural networks, and support vector machines), 

perform better when the input features have similar 

scales. Without standardization, features with larger 

numerical ranges could dominate and negatively affect 

the learning process. 

The StandardScaler method was used for this purpose. 

StandardScaler adjusts the data so that each feature has 

a mean of 0 and a standard deviation of 1, ensuring that 

no single feature dominates others due to differences in 

magnitude. The transformation follows Formula 5. 

𝑋′ =  
𝑋− 𝜇

𝜎
                                                                   (5) 

𝑋′ represents the standardized value, 𝑋 is the original 

feature value, 𝜇 denotes the mean of the feature, and 𝜎 
is the standard deviation. By transforming the data in 

this manner, the model benefits from improved 

numerical stability and better convergence during 

training. 

Standardization was applied to both the training and 

testing data, but the testing data was transformed using 

the scaling parameters calculated from the training data. 

This is necessary to prevent data leakage, ensuring that 

the test data remains unseen and does not influence the 

model’s learning process. 

3.8 Multilayer Perceptron (MLP) Model 

At this stage, a Multilayer Perceptron (MLP) model 

was built and tested using three different optimizers: 

Adam, LBFGS, and RMSProp. These optimizers were 

chosen because they each have distinct characteristics 

and strengths, which can significantly impact model 

performance. The comparison between these optimizers 

helps determine which one provides the best accuracy, 

precision, recall, and F1 score for car purchase 

predictions. 

The choice of optimizer is critical in influencing model 

performance. Adam (Adaptive Moment Estimation) 

integrates the benefits of momentum-based 

optimization techniques and adaptive learning rates, 

making it effective for non-stationary problems and 

deep networks with faster convergence. LBFGS 

(Limited-memory Broyden-Fletcher-Goldfarb-Shanno) 

It is a second-order optimization technique that 

approximates the Hessian matrix, offering stability for 

convex problems and faster convergence for small to 

medium datasets, though it is computationally 

expensive for large-scale deep learning tasks. RMSProp 

(Root Mean Square Propagation) adjusts learning rates 

dynamically by dividing the gradient by an 

exponentially decaying average of squared gradients, 

making it ideal for non-stationary objectives and 

recurrent networks like RNN and LSTM while 

providing more stability than Adam when handling 

noisy gradient updates. 

The MLP model was trained using three different 

optimizers, each with specific hyperparameter settings, 

as shown in Table 2. 

Table 2. Optimizer Parameters for Adam, LBFGS, and RMSProp 

Optimization Hidden Layer Iterations Learning Rate 

Adam 100 500 0,1 

Lbfgs 100 500 0,1 

Rmsprop 100 50 0,001 

After the model was trained, predictions were made, 

and its performance was evaluated using four key 

metrics. Accuracy measures the percentage of correct 

predictions across the entire test data, providing an 

overall assessment of model performance. Precision 

indicates how many of the predicted positive cases are 

actually correct, which is crucial in imbalanced datasets 

to avoid excessive false positives. Recall (Sensitivity) 

evaluates how well the model identifies actual positive 

cases, ensuring that the minority class is not 

overlooked. Finally, F1-Score is the harmonic mean of 

precision and recall, making it the best metric for 

assessing the balance between these two aspects in an 

imbalanced dataset. 
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To compare the performance of each optimizer, the 

results of the initial model evaluation are presented in 

Table 3. 

Table 3. Initial Model Evaluation with Adam, LBFGS, and 

RMSProp Optimizers 

  Model Evaluation 

Optimization Accuracy Precision Recall F1-Score 

Adam 93,33% 90,60% 95,50% 92,98% 

Lbfgs 90,42% 90,74% 88,29% 89,50% 

Rmsprop 93,75% 92,11% 94,59% 93,33% 

RMSProp achieved the highest accuracy (93.75%) and 

F1-score (93.33%), indicating the best balance between 

precision and recall, making it the most effective 

optimizer in this comparison. Adam followed closely 

with 93.33% accuracy but had the highest recall 

(95.50%), demonstrating its strength in identifying 

positive cases due to its adaptive learning rate, which 

efficiently adjusts to small gradient updates. LBFGS 

had the lowest accuracy (90.42%), likely because it is 

more suited for convex optimization problems and 

struggles to generalize well in complex, non-linear deep 

learning models. Thus, RMSProp appears to be the 

most effective optimizer for this model, though further 

tuning may enhance performance. 

3.9 Hyperparameter Tuning 

In this phase, Hyperparameter Tuning was conducted to 

identify the best parameter combinations that could 

enhance the performance of the MLP model. Tuning 

hyperparameters is an essential step in the development 

of a model, ensuring that the model can handle data 

variations effectively and improve overall predictive 

capability. 

This study utilized two optimization methods: 

GridSearch and Optuna. Both methods were applied to 

three different optimizers: Adam, LBFGS, and 

RMSProp, to explore optimal parameter combinations 

that improve model accuracy. Each optimizer has 

unique characteristics and performance, which can 

significantly impact prediction results. Therefore, 

conducting experiments with various hyperparameter 

combinations is essential to achieve a more efficient and 

accurate model. 

3.9.1 GridSearch 

In this phase, the best parameters were determined 

using GridSearchCV. GridSearch performs an 

exhaustive search by evaluating all possible parameter 

combinations within a predefined range. This approach 

ensures that the best combination is found, but it has 

significant computational costs due to its brute-force 

nature. In this study, GridSearch was applied to the 

three optimizers (Adam, LBFGS, and RMSProp) with 

the following hyperparameters being optimized: hidden 

layer size, activation function, alpha regularization, and 

learning rate. 

The GridSearch results for each optimizer are 

summarized in Table 4. 

Table 4. Best Parameters with GridSearch 

Optimizer Best Parameters Best Score 

Adam 

{'activation': 'logistic', 'alpha': 

0.0001, 'hidden_layer_sizes': 

(100,), 'learning_rate_init': 0.1} 

90,59% 

LBFGS 

{'activation': 'logistic', 'alpha': 

0.1, 'hidden_layer_sizes': (100,), 

'learning_rate_init': 0.1} 

89,85% 

RMSProp 

{'batch_size': 32, 'epochs': 50, 

'learning_rate': 0.01, 

'hidden_units': 50} 

94,58% 

After hyperparameter tuning, model evaluation was 

conducted using Accuracy, Precision, Recall, and F1-

Score to assess the performance of each optimizer. 

Table 5 presents the model evaluation results for each 

optimizer tested using GridSearch. 

Table 5. Model Evaluation Results with GridSearch 

Optimizer Accuracy Precision Recall F1-Score 

Adam 93,75% 92,86% 93,69% 93,27% 

LBFGS 92,92% 90,52% 94,59% 92,51% 

RMSProp 94,17% 93,69% 93,69% 93,69% 

3.9.2 Optuna 

In this phase, hyperparameter optimization was 

performed using Optuna, which employs Bayesian 

Optimization, a more efficient approach compared to 

traditional GridSearch. Optuna uses probabilistic 

models to intelligently explore the hyperparameter 

space instead of exhaustively testing all combinations. 

Unlike GridSearch, which performs brute-force 

searching, Optuna dynamically adjusts its search based 

on prior trials, allowing it to converge to optimal 

parameters faster and with less computational cost. 

In this study, Optuna was used to fine-tune several key 

hyperparameters, including hidden_layer_size, 

learning_rate_init, max_iter, epochs, and batch_size. 

These hyperparameters play a critical role in model 

performance, and their optimal configuration can lead 

to significantly improved predictive accuracy. 

Table 6 summarizes the hyperparameter tuning results 

obtained using Optuna. 

Table 6. Best Parameters with Optuna 

Optimizer Best Parameters Best Score 

Adam 

{'hidden_layer_size': 168, 

'learning_rate_init': 0.00083, 

'max_iter': 562} 

95,00% 

LBFGS 

{'hidden_layer_size': 50, 

'learning_rate_init': 0.000191, 

'max_iter': 720} 

93,33% 

RMSProp 

{'hidden_layer_size': 186, 

'learning_rate': 0.0039, 'epochs': 

39, 'batch_size': 64} 

94,58% 

After optimization, the model was re-evaluated, and the 

results are summarized in Table 7. 

Table 7. Model Evaluation Results with Optuna 

Optimizer Accuracy Precision Recall F1-Score 

Adam 95,00% 94,59% 94,59% 94,59% 

LBFGS 93,33% 92,79% 92,79% 92,79% 

RMSProp 94,58% 93,75% 94,59% 94,17% 
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3.10 Model Evaluation 

The results of the Optuna-based model evaluation 

indicate that the Adam optimizer achieved the best 

performance among all tested optimizers. The 

confusion matrix obtained after tuning the Adam 

optimizer with Optuna is presented in Figure 7. 

 

Figure 7. Confusion Matrix for Adam Optimizer with Optuna 

In the GridSearch model evaluation, RMSProp 

outperformed the other optimizers. The confusion 

matrix obtained after tuning RMSProp with GridSearch 

is presented in Figure 8. 

 

Figure 8. Confusion Matrix for Adam Optimizer with GridSearch 

By implementing GridSearch and Optuna, this study 

successfully explored more optimal hyperparameter 

combinations for the Multilayer Perceptron (MLP) 

model. 

Optuna outperforms GridSearch in computational 

efficiency by utilizing Bayesian Optimization to direct 

hyperparameter searches toward more promising areas. 

In contrast, GridSearch requires significantly more time 

as it exhaustively tests all possible combinations using 

a brute-force approach, which increases computational 

costs. On the other hand, Optuna accelerates the process 

by leveraging previous trial results to focus on the most 

promising hyperparameters. Additionally, the study 

results indicate that Adam consistently delivers the best 

performance compared to LBFGS and RMSProp. This 

is due to Adam's ability to adjust the learning rate 

adaptively, making it more effective in handling 

gradient variations and improving model training 

stability. 

3.11 Research Contribution 

This study provides a valuable contribution to the 

optimization of Multilayer Perceptron (MLP) for 

kidney disease classification by adopting a more 

comprehensive approach compared to previous 

research. One of the key contributions is the 

comparative analysis between GridSearch and Optuna 

for hyperparameter tuning, demonstrating that Optuna 

is more efficient and achieves higher accuracy than 

GridSearch. Unlike prior studies that relied on a single 

tuning method, this research provides a direct 

comparison of both approaches in medical data 

classification, offering deeper insights into the 

effectiveness of each method. 

Additionally, this study integrates multiple model 

optimization techniques, such as SMOTE for handling 

imbalanced data and correlation-based feature selection 

to improve input quality. This combination has rarely 

been explored in kidney disease classification, making 

this research one of the first to integrate these three 

approaches in a single study. The results also indicate 

that MLP optimized with Optuna, combined with 

SMOTE and feature selection, achieves superior 

accuracy and F1-score compared to previous methods. 

This confirms that effective hyperparameter tuning can 

significantly enhance disease classification 

performance, which is crucial for early diagnosis and 

treatment planning. 

Furthermore, the methodology developed in this study 

is not limited to kidney disease classification but also 

has the potential to be applied to other medical 

classification tasks, such as heart disease and diabetes 

prediction. Thus, this research not only improves MLP 

accuracy for kidney disease classification but also 

provides a foundation for developing similar models in 

broader healthcare analytics. 

4. Conclusions 

This study successfully demonstrated that Multilayer 

Perceptron (MLP) optimized with hyperparameter 

tuning techniques can significantly improve accuracy in 

predicting car purchase decisions. By utilizing 

GridSearch and Optuna, the best hyperparameter 

combinations were identified, where RMSProp 

achieved the highest performance in GridSearch with 

an accuracy of 94.17%, while Adam achieved the 

highest accuracy of 95.00% in Optuna. Compared to 

other optimizers, LBFGS reached an accuracy of 

92.92% with GridSearch and 93.33% with Optuna, 

while RMSProp achieved 94.58% with Optuna. These 

results indicate that Adam performs better with Optuna, 

whereas RMSProp demonstrated the best performance 

within GridSearch. Additionally, this study shows that 

Optuna is more efficient than GridSearch in 

hyperparameter tuning. With Optuna, an accuracy of 

95.00% was achieved using 562 iterations and a 

learning rate of 0.00083, whereas GridSearch required 

significantly more computational time due to its 
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exhaustive search of multiple parameter combinations. 

This confirms that Optuna is not only faster in finding 

optimal parameters but also yields a more accurate 

model. The application of SMOTE successfully 

addressed data imbalance, raising the number of 

minority class samples from 402 to 598, resulting in a 

more stable and accurate model for predicting car 

purchase decisions. Correlation-based feature selection 

also contributed to improving input data quality, which 

ultimately enhanced the model’s predictive 

performance. Although the results are promising, this 

study has several limitations. The hyperparameter 

tuning process, especially with GridSearch, remains 

computationally expensive, as it requires testing a vast 

number of parameter combinations. Additionally, the 

dataset used had a limited number of features, which 

means the model’s ability to fully capture the 

complexity of real-world purchasing behavior may not 

be fully optimized. Furthermore, this study did not 

evaluate the model’s performance on real-time datasets 

or with additional, more dynamic variables, which 

could enhance predictive accuracy in more complex 

environments. For future research, it is recommended to 

use a larger and more diverse dataset, incorporating 

external factors such as consumer preferences, 

economic indicators, and historical purchase data to 

improve model robustness. Additionally, exploring 

ensemble learning techniques such as Random Forest 

or XGBoost could provide valuable comparisons to the 

MLP model. Testing the model in real-time scenarios or 

with continuously updated datasets would also enhance 

validation and improve its applicability in dynamic 

environments. Furthermore, integrating multiple 

hyperparameter optimization methods, such as 

combining GridSearch with Bayesian Optimization, 

could be explored to achieve even more optimal results. 

With these future directions, upcoming research is 

expected to enhance the efficiency and accuracy of car 

purchase prediction models, providing valuable insights 

for further studies and industry applications. 
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