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Abstract  

Alzheimer's disease is one of the major challenges in medical care this century, affecting millions of people worldwide. 

Alzheimer's damages neurons and connections in brain areas responsible for memory, language, reasoning, and social 

behavior. Early detection of this disease enables more effective treatment and proper care planning. Unfortunately, the 

traditional method of detecting Alzheimer's has several limitations, such as subjective analysis and delayed diagnosis. One 

commonly used method is visual inspection, which uses magnetic resonance imaging (MRI). The limitations of visual inspection 

include subjectivity and its time-consuming nature, especially with large or complex MRI datasets, making accurate 

interpretation a significant challenge. Therefore, an alternative for detecting Alzheimer’s disease is to use deep learning-based 

MRI image analysis. One promising approach is to implement the External Attention Transformer (EAT) model. It enhances 

image classification by using two shared external memories and an attention mechanism that filters out redundant information 

for improved performance and efficiency. The aim of this research is to evaluate and compare the performance of the baseline 

Convolutional Neural Network (CNN) model, the Vision Transformer (ViT) model, and the EAT model in detecting Alzheimer's 

using a dataset of 6400 brain MRI images. The EAT model outperforms the baseline CNN model and ViT model in detecting 

Alzheimer's, achieving its best results with an accuracy of 0.965 and an F1-score of 0.747 for the test data. Our results could 

be integrated with clinical analysis to assist in the faster diagnosis of Alzheimer's. 
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1. Introduction  

Alzheimer’s disease (AD) is one of the biggest 

challenges in medical care this century and is the 

leading cause of dementia, affecting around 40 million 

people worldwide [1]. Dementia is a medical condition 

in which a person experiences difficulties with various 

cognitive aspects, especially in terms of memory, but 

also in terms of language, attention, orientation, 

judgment, and planning [2]. Alzheimer's damages 

neurons and their connections in areas of the brain that 

are responsible for memory, language, reasoning, and 

social behavior [3]. Alzheimer's disease is a progressive 

disease, which means it will get worse over time, how 

fast it progresses, and what abilities are affected vary 

from person to person [4]. The most relevant risk factor 

for the development of this disease is age, with a 

prevalence of 10% in people over 65 years of age and 

40% in people over 80 years of age [5]. 

Alzheimer's disease is the most common type of 

dementia, accounting for approximately 70% of all 

dementia cases [6]. Around 1 in 85 people in the world 

is expected to suffer from Alzheimer's disease by 2050 

[7]. Alzheimer's detection can provide patients with the 

opportunity to collaborate on the development of an 

advanced care plan with family, caregivers, doctors, 

and other members of the support team. Alzheimer's 

detection also allows patients to begin seeking 

treatments that help manage symptoms, make lifestyle 

changes to maintain quality of life, and reduce the risk 

of cognitive, functional, and behavioral decline [8]. One 

of the most used detection methods is through medical 

images based on magnetic resonance imaging (MRI). 

https://doi.org/10.29207/resti.v9i2.6257
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MRI is an imaging technique that can be used to 

visualize the anatomy and physiology of the body in 

both disease and health conditions [9]. MRI allows 

users to view detailed images from inside the body with 

good contrast and high resolution. This technology uses 

the principles of physics to create images showing 

various physical and physiological aspects of the body, 

such as the structure of tissues and the changes that 

occur within them. The advantage of MRI lies in its 

non-invasive nature, enabling safe and repeatable scans 

[10]. 

Visual inspection is an important process for evaluating 

the quality of data generated by an MRI machine. It 

involves manual inspection by an expert to detect 

artifacts, distortions, or other anomalies that may appear 

in the images. One of the drawbacks of visual inspection 

is its risk of observer subjectivity, where interpretation 

of data quality may vary between different observers. In 

addition, visual inspection requires considerable time 

and effort, especially in the case of large or complex 

datasets [11]. Alternatively, deep learning-based 

inspection has become a major attraction in disease 

detection, especially Alzheimer's disease. Deep 

learning allows the system to automatically learn 

meaningful features from MRI images, improving the 

speed and accuracy of the diagnosis. Therefore, this 

method offers the potential to improve speed, accuracy, 

and consistency in MRI image-based disease detection 

[12]. 

There have been several studies related to the 

implementation of Alzheimer's disease detection on 

MRI based on deep learning. In 2019, Ji and his team 

studied early diagnosis of Alzheimer's disease using 

MRI-based ConvNets, achieving 97.65% accuracy for 

Alzheimer's Disease (AD)/Mild Cognitive Impairment 

(MCI) and 88.37% for Mild Cognitive 

Impairment/Cognitively Normal (CN) using ensemble 

learning after convolution operations [13]. In 2021, 

Ebrahimi and Luo compared several models, including 

2D and 3D CNNs and RNNs, and found that ImageNet's 

transfer learning-based 3D voxel method achieved the 

highest accuracy of 96.88% [14]. In the same year, 

Helaly and colleagues designed an end-to-end 

framework using CNNs for early Alzheimer's detection, 

achieving 93.61% and 95.17% accuracy for 2D and 3D 

images, respectively [15]. In 2022, Houria and his team 

developed a multi-modality MRI fusion strategy, using 

2D deep CNN as the feature extractor and SVM as the 

classifier, and achieved 99.79% accuracy for AD/CN 

classification, 99.6% for AD/MCI classification, and 

97% for MCI/CN classification [16]. In 2023, Hoang 

and colleagues explored the MCI-to-AD prediction 

method using Vision Transformers for structural MRI, 

achieving 83.27% accuracy [17]. 

Although MRI has proven its usefulness in disease 

diagnosis with a prominent level of detail, accurate 

interpretation of MRI images remains a challenge. This 

interpretation challenge may hinder efforts for early 

detection of Alzheimer's and proper structural analysis 

of the brain. One promising solution is to utilize the 

External Attention Transformer (EAT) model. External 

Attention is a mechanism in data processing that allows 

consideration of correlations between all data samples 

in a dataset implicitly. Its advantages include strong 

regularization and generalization, linear computational 

complexity, and discriminative feature selection. This 

allows the model to capture the most informative part 

of the data and ignore distracting information from 

other samples [18]. This provides the superiority of 

obtaining understanding of the whole picture, which 

can be particularly useful in analyzing the brain 

structure for the detection of Alzheimer's. 

This research aims to develop an innovative approach 

that integrates the EAT model to detect Alzheimer's 

disease through MRI medical image analysis. In 

addition, this research also aims to evaluate the 

effectiveness of the EAT model in improving the 

accuracy and consistency of Alzheimer's disease 

detection compared to the baseline Convolutional 

Neural Network (CNN) model and Vision Transformer 

(ViT) model. It is expected that this approach will not 

only make an important contribution to the detection of 

Alzheimer's disease but can also open opportunities for 

the development of more advanced and effective 

medical image analysis methods in the future. 

2. Research Methods 

2.1 Data Preparation 

The dataset utilized in this research was sourced from 

Kaggle, consisting of a total of 6400 brain MRI images 

manually collected from various websites. Originally, 

the dataset contained four classes: Mild Demented, 

Moderate Demented, Non Demented, and Very Mild 

Demented. However, the sample number of the 

Moderate Dementia class (only 2 subjects) and Mild 

Dementia class (28 subjects), which is much lower than 

that of other classes, lead to class imbalance condition 

and risk of models that are biased towards the majority 

classes. Hence, we restructured the data set into two 

main classes: Demented and Non Demented. Also, in 

clinical practice, the primary concern is detecting the 

presence of dementia. This modified dataset will be 

utilized to evaluate the performance of the baseline 

CNN model, the ViT model, and the EAT model. The 

classes represent the cognitive state of Alzheimer 's-

related patients. The dataset can be accessed from the 

Alzheimer MRI 4 classes dataset. 

The first class, Demented, includes MRI images of 

patients who exhibit signs or symptoms of dementia. 

These individuals often experience a significant decline 

in cognitive function, which may manifest as impaired 

memory, difficulties in thinking and language, or 

challenges in performing daily activities. Example 

images can be seen in Figure 1. 

The second class, Non Demented, includes MRI images 

of patients who do not exhibit any signs or symptoms 

of dementia. These individuals typically have normal 

https://www.kaggle.com/datasets/marcopinamonti/alzheimer-mri-4-classes-dataset
https://www.kaggle.com/datasets/marcopinamonti/alzheimer-mri-4-classes-dataset
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cognitive functions, although they may display mild 

symptoms associated with normal ageing. Example 

images can be seen in Figure 2. 

 

Figure 1. Example images for the Demented class 

 

Figure 2. Example images for the Non Demented class 

Data normalization is a preprocessing technique that 

involves adjusting the scale of the data, ensuring that 

each feature contributes equally to the model's 

performance [19]. The dataset is normalized by 

converting the image pixel values from the range [0, 

255] to the range [0, 1] by dividing each pixel value by 

255. The purpose of this normalization is to ensure that 

all data values are on a consistent scale, which makes 

the modeling process more efficient and stable. 

The dataset is split into two main subsets: the training 

dataset and the test dataset. The training dataset consists 

of 5121 images used to train the model, while the test 

dataset consists of 1279 images used to test the 

performance of the model after the training process is 

complete. This splitting aims to balance learning and 

validation, as shown in Table 1. 

Table 1. Data Splitting Table 

Class Train Test 

Demented 2561 639 

Non Demented 2560 640 

Total 5121 1279 

2.2 Data Augmentation 

Data augmentation's main goal is to create new datasets 

to increase the diversity and sufficiency of training data. 

More comprehensive features can then be represented 

by the augmented dataset [20]. The augmentation 

techniques used include zooming to the image in the 

range of 10% to enhance resilience to resolution 

variations, horizontal shifting up to 10% of the image 

width, and vertical shifting up to 10% of the image 

height to simulate slight variations in patient 

positioning during MRI scans. When conducting image 

shifting, the missing areas were filled in using reflect 

mode to prevent artificial artifacts that could mislead 

the model. In addition, an image rotation of up to 10 

degrees was implemented to account for slight head 

orientation changes. Lastly, a brightness adjustment in 

the range of 80% to 120% of the original brightness was 

implemented to handle scanner and patient-related 

brightness variations. The selected augmentation 

techniques were performed to ensure that the model is 

robust to common variations without introducing 

unrealistic distortions. 

2.3 Convolutional Neural Network (CNN) 

Convolutional Neural Network is a type of deep 

learning model specifically designed to process data 

with grid patterns, such as images. CNN was developed 

to learn a spatial hierarchy of features automatically and 

adaptively, from low-level to high-level patterns [21].  

 

Figure 3. CNN architecture 

The CNN architecture in Figure 3 is used for 

Alzheimer's detection through MRI image processing. 

The CNN architecture consists of several layers: 

convolutional, activation, pooling, and fully connected 

layers. The convolutional layer identifies the image 

features using a kernel (ReLU), followed by the 

activation layer, which applies ReLU to capture non-

linear patterns and enhance training speed. The pooling 

layer reduces the dimensionality of the features, and 

finally, the fully connected layer flattens the output 

matrix into a vector, connecting the features to their 

corresponding categories, and improving overall 

classification performance [22]. 

Several CNN models with varying numbers of 

convolutional layers were used as baseline models in 

comparison with the research results, as presented in 

Table 2. These baseline models were evaluated to 

determine the impact of the depth of convolutional 

layers on model performance, which provides a 

reference for analyzing the effectiveness of the 

proposed approach. 

Table 2. CNN Baseline Model Parameters 

Scheme Conv. Layer Number of Kernels 

Baseline 1 1 32 

Baseline 2 2 32, 64 

Baseline 3 3 32, 64, 128 

Table 3. CNN Fixed Parameters 

Parameters 

Kernel size 3 × 3 

Pooling method Max-Pooling 

Pool Size 2 × 2 

Fully Connected Layer 256 

Table 3 presents the fixed parameters used across each 

scheme. In all schemes presented, the kernel size in 

each convolutional layer is 3 × 3, the pooling method 

used is max-pooling, and the pooling size is 2 × 2. In 

addition, the fully connected layer has 256 neurons for 

all schemes. The CNN model is trained with 100 

epochs, a batch size of 32, and a learning rate of 0.001. 

The Adam optimizer is used, and the loss function is 

Categorical Crossentropy with accuracy as the 

evaluation metric. To improve training efficiency, the 

ReduceLROnPlateau technique is applied. This method 
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reduces the learning rate by a factor of √5 if the 

validation loss does not show improvement over 5 

consecutive epochs, with a minimum learning rate set 

to 1e-6. 

2.4 Vision Transformer (ViT) 

Vision Transformer (ViT) is an architecture derived 

from the vanilla Transformer, which was originally 

designed for natural language processing tasks. ViT 

utilizes the Transformer's encoder module and self-

attention mechanism to process image data. This 

mechanism captures long-range dependencies by 

attending to different regions of the image and 

integrating information across the image. By dividing 

images into patches and mapping them to semantic 

labels, ViT generalizes the Transformer’s capabilities 

for image classification without relying on data-specific 

architectures, demonstrating its versatility across 

modalities beyond text [23]. 

 

Figure 4. Vision Transformer framework 

The ViT framework, as shown in Figure 4, processes 

2D images by dividing them into small fixed-size 

patches. These patches are flattened and linearly 

projected into a higher-dimensional space to create 

patch embeddings. A learnable embedding token is 

added to the sequence of patch embeddings, which 

represents the image. To retain positional information, 

1D position embeddings are added to the patch 

embeddings. ViT utilizes only the encoder part of the 

transformer architecture, and the output of the encoder 

is passed through an MLP head for classification tasks 

[24]. 

Table 4. ViT Model Parameters 

Parameters 

Project dimensions 64 

Attention heads 4 

Transformer layers 4 

Table 4 presents the parameters used in the Vision 

Transformer (ViT) model. The model's architecture 

includes a project dimension of 64, which represents the 

size of the feature embeddings projected from the image 

patches. The ViT model utilizes 4 attention heads and 

consists of 8 transformer layers. The ViT model is 

trained with 100 epochs, a batch size of 32, a patch size 

of 6, a learning rate of 0.001, and a weight decay of 

0.0001. The model training employs the Adam 

optimizer and uses Categorical Crossentropy as the loss 

function, with accuracy serving as the evaluation 

metric. To enhance training efficiency, the 

ReduceLROnPlateau technique is implemented, which 

reduces the learning rate by a factor of √5 if the 

validation loss does not show improvement over 5 

consecutive epochs, with a minimum learning rate set 

to 1e-6. 

2.5 External Attention Transformer (EAT) 

External Attention Transformer is a model built on two 

small, teachable, shared external memories. It 

introduces an external attention mechanism that 

improves performance and computational efficiency in 

image classification tasks by eliminating patches with 

repetitive and unnecessary information [25]. In External 

Attention, all samples share two memory units 𝑀𝑘 and 

𝑀𝑣, which represents the most essential information of 

the entire dataset [26]. 

𝐴 = Norm(𝐹𝑀𝑘
𝑇  )              (1) 

Equation 1 is the first step in calculating the attention 

value. It multiplies the input feature 𝐹 with the 

transposed external memory 𝑀𝑘, resulting in the 

attention to weight 𝐴 [18]. 

𝐹𝑜𝑢𝑡 = 𝐴𝑀𝑣                 (2) 

Equation 2 describes how the attention weights 

computed in the first step are used to weight another 

external memory, 𝑀𝑣, to produce an updated feature 

output, 𝐹𝑜𝑢𝑡 [18]. 

 

Figure 5. External attention for the EAT model 

In Figure 5, external attention first computes the 

attention map by measuring the affinities between the 

self-query vector and the external learnable key 

memory. Once the attention map is obtained, a more 

refined feature map is generated by multiplying the 

attention map with the external learnable value 

memory, rather than weighing the self-value vector. 

This approach introduces an external learnable memory 

for more efficient and scalable attention computation 

[18]. 

Furthermore, the configuration of the EAT parameters 

is also detailed in Table 5. Sequential tuning was 

employed to optimize the parameters for the EAT 

model. Initially, 12 different combinations of 

hyperparameters were tested. However, after evaluating 

the performance and training time, 4 configurations 
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were selected for further evaluation. The selected 

parameters for the final 4 schemes are listed in Table 6. 

Table 5. EAT Model Parameters 

Parameters 

Image size 150 × 150 × 3 

Optimizer Adam 

Loss function Categorical Crossentropy 

Learning rate 1 × 10-3 

Weight decay 0.0001 

Activation function Softmax 

Patch Size 2 

Batch Size 32 

Epochs 100 

Table 6. EAT Model Scheme Experiments 

Scheme 
MLP 

Dimensions 

Attention 

Heads 

Transformer 

Blocks 

1 64 4 4 

2 64 8 4 

3 128 4 4 

4 128 8 4 

2.6 Model Evaluation 

Model validation is performed to collect, analyze, and 

evaluate the performance of the model. Performance is 

measured by accuracy, precision, recall, F1-score, 

Matthews correlation coefficient (MCC), and Cohen’s 

kappa values, which can be calculated using the 

confusion matrix in Table 7. 

Table 7. Confusion Matrix Table 

Class Actual YES Actual NO 

Predict YES True Positive (TP) False Positive (FP) 

Predict NO False Negative (FN) True Negative (TN) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                          (5) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (6) 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                         (7) 

𝜅 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
                                                                   (8) 

Equation 3 calculates the overall accuracy by 

determining the proportion of correct predictions across 

the entire dataset. Equation 4 calculates the ratio of 

accurately predicted positive cases. Equation 5 

measures the model’s ability to find all positive cases in 

the dataset. Equation 6 is the harmonic mean of 

precision and recall, balancing their contributions 

equally [27]. Equation 7 measures the quality of a 

classifier by considering both positive and negative 

cases, accounting for class imbalance, and ensuring 

invariance to class swapping [28]. Equation 8 measures 

the level of agreement between two classifications by 

considering the possibility of agreement occurring by 

chance [29]. 

In this study, the best model is selected based on F1-

score, which provides a balance between precision and 

recall. In Alzheimer's detection, it is important to 

minimize both types of errors, namely false positives 

and false negatives. The F1-score calculates the 

harmonic mean of precision and recall, thus providing a 

more comprehensive picture of the model's 

performance in a medical context. Therefore, F1-score 

was chosen to ensure that the selected model is not only 

accurate, but can also provide more consistent and 

reliable results in clinical applications. 

3. Results and Discussions 

The results of this research focus on evaluating the 

performance of the baseline CNN model, ViT model, 

and EAT model in classifying brain MRI images, with 

a particular emphasis on the Demented class. To tackle 

the class imbalance and guide the model’s focus 

effectively on correctly classifying the Demented class, 

class weights were applied during training. Key metrics 

are analyzed to provide a comprehensive comparison 

between the two models. 

3.1 Augmentation Process 

The data augmentation process produced a diverse set 

of transformed images, demonstrating the effectiveness 

of the applied techniques. These transformations 

include zooming up to 10 percent, horizontal and 

vertical shifting by 10 percent of the image dimensions, 

rotation up to 10 degrees, and brightness adjustments 

ranging from 80 percent to 120 percent.  The reflected 

mode was used during image shifting to fill the missing 

areas, ensuring a seamless and natural appearance in the 

augmented images. 

 

Figure 6. Augmented training images of (a) Demented class and (b) 

Non Demented class 

The augmented images, which can be seen in Figure 6, 

display various changes in scale, position, orientation, 

and lighting conditions, demonstrating the effectiveness 

of the augmentation process. This diversity enhances 

the model’s capacity to adapt to new, unseen data by 

presenting it with a wider variety of features and 

scenarios. By visualizing the results of augmentation, it 

becomes evident how these transformations improve 

the dataset's quality. The augmentation process ensures 

that the core characteristics of the original data are 

retained while introducing meaningful variations, 
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making it a vital step toward building a robust and 

reliable model. 

3.2 Baseline CNN Model Result 

A set of experiments was carried out on the CNN 

baseline model to evaluate its performance. Three 

baseline schemes were developed, as outlined in Table 

2. Each scheme is configured with a different number 

of layers, specifically using 1, 2, and 3 layers, 

respectively, to explore the impact of depth on 

performance. 

Figure 7 illustrates the learning curves for the CNN 

baseline model. The graph presents the accuracy and 

loss metrics for the training and validation datasets. The 

x-axis represents the training iterations in terms of 

epochs, while the y-axis indicates the loss value. A 

lower loss value corresponds to a higher level of 

predictive accuracy achieved by the CNN model. 

 

 

 

 

Figure 7. The plot of a learning curve for each CNN baseline scheme 

 

Table 8 presents the evaluation results of the three CNN 

baseline schemes in classifying the Demented class. 

Each scheme is evaluated based on key metrics such as 

TP, FN, FP, TN, accuracy, precision, average precision, 

recall, F1-score, MCC, and Cohen’s kappa. 

Table 8. CNN Result 

Metrics Baseline 1 Baseline 2 Baseline 3 

TP 503 555 495 

FN 136 84 144 

FP 252 316 199 

TN 388 324 441 

Accuracy 0.787 0.868 0.774 

Precision 0.666 0.637 0.713 

Avg Precision 0.703 0.716 0.734 

Recall 0.767 0.869 0.775 

F1-Score 0.722 0.735 0.743 

MCC 0.400 0.402 0.465 

Cohen’s Kappa 0.393 0.375 0.463 

In Baseline 1, the model correctly classified 503 

samples as positive, while 136 positive samples were 

misclassified as negative. The scheme recorded 252 

false positives and 388 true negatives, with an accuracy 

of 0.787. This scheme has a precision of 0.666, average 

precision of 0.703, recall of 0.787, and F1-score of 

0.722. The MCC value of 0.400 indicates modest 

consistency between predicted results and real 

classifications, while Cohen's Kappa value of 0.393 

confirms moderate agreement, suggesting the model 

could improve in handling class imbalance and 

distinguishing classes. This performance indicates that 

while the model is capable of capturing basic features, 

its shallow architecture limits its ability to represent 

complex patterns in the data. The relatively high false 

positive count and false negative count suggest that the 

single layer struggles to generalize well across all 

classes. 

In Baseline 2, there was A notable rise in the count of 

true positives to 555, while false negatives were 

reduced to 84. However, this scheme recorded higher 

false positives of 316, with true negatives of 324. 

Achieved results included 0.868 accuracy, 0.637 

precision, 0.716 average precision, 0.869 recall, and 

0.735 F1-score. The MCC value of 0.402 and Cohen's 

Kappa of 0.375 suggest moderate agreement, implying 

that despite improvements in performance, the model 

still encounters issues with false positives. The 

increased depth enhances the model's capacity to 

recognize correlations within the data, resulting in more 

true positives and fewer false negatives. However, the 

added complexity increases false positives. The second 

layer's improved sensitivity to positive cases makes the 

model incorrectly label negative samples as positive. 

The Baseline 3 scheme displayed a true positive count 

of 495 and a false negative count of 144. This scheme 

Baseline 1 

Baseline 2 

Baseline 3 
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recorded a lower number of false positives than 

Baselines 1 and 2, which was 199, with a true negative 

of 441. The accuracy achieved was 0.774, precision 

0.713, average precision 0.734, recall 0.775, and F1-

score 0.743. The MCC value of 0.465 and Cohen's 

Kappa of 0.463 further indicate a better level of 

agreement compared to the previous baselines, 

reflecting improved model performance. The additional 

layer enhances the model's proficiency in 

differentiating between classes., leading to a higher 

precision and F1 score. While its accuracy and recall are 

slightly lower than Baseline 2, the overall balance 

between precision and recall makes Baseline 3 the most 

robust of the three. 

Overall, the Baseline 3 scheme model is the best based 

on the highest F1-score of 0.743. Although the Baseline 

2 scheme has higher accuracy, the Baseline 3 scheme 

Achieves a more balanced trade-off between precision 

and recall, thus providing a more reliable performance 

in overseeing the trade-off between the two. This is due 

to the increased depth of the model, with three 

convolution layers that allow it to capture more 

complex features. As a result, Baseline 3 is superior in 

Demented class classification compared to other 

schemes.  

3.3 ViT Model Result 

An experiment was carried out on the Vision 

Transformer (ViT) model to evaluate its performance. 

The ViT model, as outlined in Table 4, is configured 

with a specific number of project dimensions, attention 

heads, and transformer layers. 

 

Figure 8. The plot of a learning curve for the ViT model 

Figure 8 depicts the learning curves of the ViT model 

for its experiment, presenting accuracy and loss metrics 

for the training and validation datasets. The x-axis 

represents the epochs, while the y-axis shows the loss 

values. A decrease in loss values signifies improved 

accuracy achieved by the ViT model. 

Table 9 presents the evaluation results of the ViT model 

in classifying the Demented class. The model is 

evaluated based on key metrics such as TP, FN, FP, TN, 

accuracy, precision, average precision, recall, F1-score, 

MCC, and Cohen’s kappa. 

Table 9. ViT Result 

Metrics Value 

TP 498 

FN 141 

FP 284 

TN 356 

Accuracy 0.779 

Precision 0.637 

Avg Precision 0.677 

Recall 0.779 

F1-Score 0.701 

MCC 0.344 

Cohen’s Kappa 0.335 

The ViT model achieved an accuracy of 0.779, with 498 

true positives and 356 true negatives correctly 

classified. However, it also generated 141 false 

negatives and 284 false positives. The model has a 

precision of 0.637, which reflects moderate 

effectiveness in avoiding false positives, as well as a 

recall of 0.779, showing strong sensitivity in detecting 

true positives. With an F1-score of 0.701, this model 

shows a balanced performance between precision and 

recall. In addition, the MCC value of 0.344 and Cohen's 

Kappa of 0.335 indicate a fair agreement between 

predictions and actual results, emphasizing the need for 

further refinement to improve overall classification 

accuracy and reliability. 

3.4 EAT Model Result 

A series of experiments on the EAT model were 

conducted to analyze its performance with different 

parameter settings. Four optimization schemes were 

developed for EAT, as outlined in Table 6. Each scheme 

has a unique configuration of EAT parameters, focusing 

on variations in MLP dimensions and the number of 

attention heads.  

Figure 9 displays the learning curves for each EAT 

scheme. The graph shows the accuracy and loss figures 

for the training and validation data sets. The training 

iterations are represented by the epochs on the x-axis. 

Meanwhile, the y-axis displays the loss amount. A 

lower loss number indicated a higher degree of accuracy 

in the model's predictions. Table 10 presents the 

evaluation results of the four EAT model schemes in 

classifying the Demented class. Each scheme is 

evaluated based on key metrics such as TP, FN, FP, TN, 

accuracy, precision, average precision, recall, F1-score, 

MCC, and Cohen’s kappa. 

Table 10. EAT Result 

Metrics 1 2 3 4 

TP 628 622 617 624 

FN 11 17 22 15 

FP 162 234 243 196 

TN 478 406 397 444 

Accuracy 0.982 0.973 0.965 0.976 

Precision 0.568 0.605 0.608 0.584 

Avg Precision 0.752 0.769 0.763 0.757 

Recall 0.983 0.973 0.966 0.977 

F1-Score 0.720 0.746 0.747 0.731 

MCC 0.344 0.426 0.425 0.380 

Cohen’s Kappa 0.235 0.338 0.345 0.282 
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Figure 9. The plot of learning curve for each EAT scheme 

In scheme 1, the model recorded 628 true positives and 

11 false negatives, reflecting a high capacity to detect 

positive classes with a recall of 0.982. However, this 

scheme produces a high number of false positives, 

which is 478. Therefore, the precision only reached 

0.568 with an average precision of 0.752 and an F1-

score of 0.72. The MCC value of 0.344 and Cohen's 

Kappa of 0.235 suggest a modest agreement between 

the predicted and actual labels, with room for 

improvement. The model demonstrates strong positive 

class detection, as reflected by its high recall. However, 

the high count of false positives limits its precision and 

F1-score, indicating challenges in classification. 

Scheme 2 shows an improvement in precision to 0.605 

with a drop in false positives to 406. True positives 

decreased slightly to 622 with a false negative of 17. 

Model accuracy reached 0.973, while recall remained 

high at 0.973, resulting in an average precision of 0.769 

and an F1-score of 0.746. The MCC value of 0.426 and 

Cohen's Kappa of 0.338 indicate better agreement 

between predicted and actual labels compared to 

Scheme 1, reflecting improved model performance. The 

model improves precision by lowering false positives 

while maintaining a high recall. A minor decrease in 

true positives reflects a trade-off for a better balance of 

detection accuracy and misclassification. 

In scheme 3, the model successfully classified 617 data 

as true positives with only 22 false negatives. Although 

the number of false positives recorded was 397, the  

model achieved a precision of 0.608 and a recall of 

0.966. The accuracy achieved was 0.965, with an 

average precision of 0.763 and an F1-score of 0.747, 

showing a good balance between positive detection 

ability and avoiding misclassification. The MCC value 

of 0.425 and Cohen's Kappa of 0.345 reflect a moderate 

level of agreement between predicted and actual labels. 

The model achieves an ideal balance, with slightly 

better precision and F1-score than previous schemes. Its 

ability to effectively manage false positives contributes 

to ensuring overall strong performance. 

The model in scheme 4 performs exceptionally well in 

detecting positive data, with 624 true positives and only 

15 false negatives. However, the high number of false 

positives, which is 444, causes the precision of this 

model to be 0.584. However, 0.976 accuracy and 0.977 

recall were achieved. Average precision was recorded 

at 0.757, while the F1-score reached 0.731, which 

shows a solid performance despite the drop in precision. 

The MCC value of 0.380 and Cohen's Kappa of 0.282 

are lower than those observed in Scheme 3, indicating a 

decline in agreement between predicted and actual 

labels. The model excels in recall and overall accuracy, 

indicating its strength in positive case detection. 

However, the increase in false positives impacts 

precision, showcasing a trade-off in balancing both 

sensitivity and specificity. 

To determine the best model, we consider F1-score 

metrics as an overall measurement because the F1-score 

harmonizes the trade-off between precision and recall, 

offering a single, robust metric that reflects the model's 

Scheme 1 

Scheme 2 

Scheme 3 

Scheme 4 
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effectiveness. Overall, the model in scheme 3 is the best 

based on the highest F1-score of 0.747. Although 

scheme 4 achieves the highest accuracy and recall, 

scheme 3 demonstrates a better balance between 

precision and recall, providing more reliable 

performance in managing the trade-off between the 

two. This is due to the optimal combination of 128 MLP 

dimensions and 4 attention heads in scheme 3. The 

larger MLP dimensions enhance learning capacity, 

while the 4 attention heads help capture dependencies 

effectively without overfitting. Despite a slight 

difference in the F1-score compared to scheme 2, 

scheme 3 still outperforms the other schemes in overall 

classification performance. 

3.5 Overall Comparison 

The performance of the Convolutional Neural Network 

(CNN), Vision Transformer (ViT), and External 

Attention Transformer (EAT) is compared using three 

key evaluation metrics including accuracy, average 

precision, and F1-score. 

Table 11. CNN, ViT, and EAT Comparison 

Metrics 
CNN 

Baseline 3 

ViT 

Model 

EAT 

Scheme 3 

Accuracy 0.774 0.779 0.965 

Avg Precision 0.734 0.677 0.763 

F1-Score 0.743 0.701 0.747 

The results in Table 11 indicate a substantial 

performance improvement for the EAT scheme over 

both the CNN model and the ViT model. The EAT 

scheme achieved an accuracy of 0.965, significantly 

higher than the CNN accuracy of 0.774 and the ViT 

accuracy of 0.779. This suggests that EAT is better at 

capturing long-range dependencies and key features in 

the data, resulting in more accurate predictions 

compared to both CNN and ViT. 

For average precision, the EAT scheme also 

outperformed both CNN and ViT, with a value of 0.763 

compared to 0.734 for CNN and 0.677 for ViT. This 

highlights the superior ability of EAT to prioritize 

correct prediction results, a critical advantage for tasks 

involving unbalanced data. The ViT model’s relatively 

lower average precision indicates that it may struggle to 

maintain precision across all classes compared to the 

EAT and CNN models. 

The F1-score metric, in which precision and recall are 

balanced, shows a slight advantage for the EAT scheme 

with a score of 0.747 compared to 0.743 for CNN and 

0.701 for ViT. Although the difference is modest 

between EAT and CNN, the gap is more pronounced 

when compared to ViT, further emphasizing EAT's 

ability to provide a more balanced and reliable 

prediction performance. 

The External Attention Transformer (EAT) consistently 

outperformed both the Convolutional Neural Network 

(CNN) and the Vision Transformer (ViT) across all 

three metrics evaluated. The superiority in accuracy, 

average precision, and F1 score underscores the 

strengths of the external attention mechanism in 

recognizing complex relationships and patterns in the 

data. These results affirm that EAT is a more robust and 

efficient model set for tasks that require both precision 

and accuracy, exceeding the abilities of CNN and ViT. 

3.6 Computational Considerations 

Overall, the training time for the CNN model is quite 

efficient, with a duration of about 55 to 65 minutes per 

training session. The training time tends to increase as 

the number of layers increases, although the difference 

is relatively small. Meanwhile, the training time for the 

ViT model is considerably longer, taking almost 2 

hours. On the other hand, for the EAT model, the 

training time is strongly influenced by the number of 

significant parameters in each scheme. Schemes with 

more parameters require more time for computation. 

The EAT model took between 2 to 3 hours of training 

time, depending on the scheme used. After the model 

was developed, the prediction of Alzheimer's using a 

single image takes less than 2 minutes. 

In terms of resource requirements, the CNN model 

demonstrates high efficiency with relatively modest 

demands on computational resources. It requires 

approximately 2GB of RAM and around 2GB of GPU 

memory, making it suitable for environments with 

limited hardware capabilities. In contrast, the Vision 

Transformer (ViT) model necessitates slightly higher 

computational resources, utilizing about 2GB of RAM 

but significantly more GPU memory, approximately 

11GB, reflecting its reliance on the attention 

mechanism to process image patches. The EAT model, 

being more complex, demands the highest resources 

among the three. It requires around 3GB of RAM and 

approximately 13GB of GPU memory, indicating its 

intensive computational requirements due to the high 

number of parameters and the complexity of its 

architecture. All model training processes were 

conducted using dual NVIDIA T4 GPUs provided by 

Kaggle, ensuring consistent hardware resources across 

experiments. 

3.7 False Prediction Analysis 

Visual examples of the model's predicted results are 

presented in Figure 10, which categorizes them as True 

Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN). These examples offer useful 

insights into the classification process of the model. 

Through these visual representations, the process of 

correctly identifying relevant instances is shown 

alongside cases where the model has failed to accurately 

distinguish between different categories, thereby 

highlighting potential areas for improvement in its 

performance. 

The true positive (TP) image shows a brain with typical 

features of dementia, such as shrinkage of certain areas 

or significant structural changes. The model 

successfully identifies dementia as the visible changes 

are highly consistent with the training data present in 
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dementia. On the other hand, the true negative (TN) 

image shows a brain that has no signs of dementia, with 

a normal structure without shrinkage or other 

abnormalities. The model was able to recognize the 

normal pattern of a healthy brain. This correct 

classification highlights the importance of including 

representative samples in the training dataset for the 

model to properly generalize unseen data. 

 

Figure 10. Sample images from each classification category 

The false positive (FP) image may show normal 

variations of the brain or conditions that are similar to 

dementia but not directly related, such as slight 

shrinkage that can occur due to age. The model may be 

too sensitive to small changes similar to signs of 

dementia, thus misclassifying healthy brains as having 

dementia. This sensitivity can lead to a high rate of false 

positive results, with small variations in brain structure 

being considered as an indication of dementia. This can 

lead to unnecessary anxiety and potential misuse of 

medical interventions for individuals who do not 

actually have dementia. To mitigate this issue, 

integrating additional training data with examples of 

age-related variations and similar non-dementia 

conditions can help the model better distinguish 

between pathological and non-pathological changes. 

The consequence of FP is unnecessary medical 

treatment received by the patient due to an uncorrect 

positive demented condition. 

The false negative (FN) image may show early or mild 

signs of dementia that are not obvious, such as slight 

shrinkage or small structural changes to the brain. Such 

changes are so subtle that they are difficult to detect. 

The model may not be sensitive enough to detect early 

or mild signs of dementia, thus failing to identify brains 

that actually have dementia. This could be caused by the 

small amount of variation in the training data that 

includes these small changes, or because the model is 

unable to identify subtle patterns that indicate structural 

changes in the brain associated with dementia. As a 

result, brains showing early signs of dementia may go 

undetected, which could hinder early diagnosis and 

effective treatment. To overcome this problem, it is 

possible to increase the diversity of training data by 

including a wider range of representative samples that 

can describe the characteristics of early-stage dementia. 

The consequence of FN leads to delayed treatment to 

misleading in the prediction of true demented condition. 

These errors highlight significant ethical 

considerations, particularly in medical contexts. False 

positives could cause unnecessary stress and lead to 

patients undergoing unneeded diagnostic procedures, 

while false negatives might delay treatment, worsening 

the disease progression. In addition to the direct impact 

on patient well-being, such misclassifications can also 

strain healthcare resources and affect caregivers' mental 

and emotional health. Caregivers may experience 

heightened anxiety and uncertainty if a false positive 

result leads to unnecessary treatments or procedures, 

while a false negative could cause them to 

underestimate the severity of the disease, delaying 

proper care and interventions. 

4. Conclusions 

The External Attention Transformer (EAT) method is 

used to detect Alzheimer's from MRI medical images. 

After conducting several experiments with predefined 

schemes, the EAT model was trained with various 

configurations, testing different MLP dimensions and 

attention heads. All models used a learning rate of 0.001 

and 100 epochs. While EAT achieved better accuracy 

and F1-scores, particularly in Scheme 3, which 

produced the best results with an accuracy of 0.965 and 

an F1-score of 0.747 on test data, the training process 

was more time-consuming compared to Convolutional 

Neural Networks (CNN).  The Vision Transformer 

(ViT) model, on the other hand, achieved an accuracy 

of 0.779, with a lower F1-score of 0.701, but also 

exhibited long training times similar to the EAT model. 

CNN demonstrated faster training times and greater 

stability, making them a preferred choice in scenarios 

with limited computational resources or the need for 

rapid model development, despite slightly lower 

performance metrics. For future studies, it is 

recommended to explore some key areas to enhance the 

EAT model. Utilizing pre-trained transformer models 

can accelerate training and improve performance, 

especially with limited data. Optimizing the EAT 

architecture by refining the attention mechanism and 

testing various model depths would boost efficiency 

without sacrificing accuracy. In addition, addressing 

computational efficiency through techniques such as 

pruning, quantization, or mixed-precision training can 

reduce resource requirements, while techniques like 

Grad-CAM or SHAP can be applied to improve model 

interpretability. In addition, incorporating cross-

validation could provide a more robust assessment of 

the model’s generalizability, particularly in medical 

applications where overfitting is a concern. Evaluating 

the model on multiple datasets or conducting external 

validation is also recommended to strengthen the 

findings and improve applicability in real-world 
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scenarios. Lastly, investigating the impact of data 

augmentation strategies through ablation studies can 

improve model robustness and generalization. While 

basic augmentation is applied, exploring more 

advanced techniques, such as elastic deformations, 

which are particularly suitable for brain MRI data, 

could further enhance the model’s ability to capture 

anatomical variations. These approaches will make the 

EAT model more efficient and applicable to real-world 

scenarios, especially in medical image analysis. 

Furthermore, for real-world integration of the EAT 

model into clinical workflows, addressing challenges 

like computational demands and user interpretability is 

crucial. Optimizing the model's computational 

efficiency will be important for its application in 

resource-constrained settings. Additionally, improving 

the model's explainability will help doctors trust its 

predictions, allowing for easier integration into 

everyday medical practice. Overcoming these 

challenges will make the EAT model more feasible and 

impactful in actual clinical environments. Also, the 

consideration of 4 classes of Alzheimer might be 

possible by performing sampling approach, such 

overampling, and weighting approach, such as 

weighted loss 
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