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Abstract  

Waste management remains a critical challenge for many countries, including Indonesia, which ranks as the world's second-

largest contributor of waste. As tens of millions of tons are produced each year and the management system remains ineffective, 

environmental conditions and public health continue to deteriorate. To address this issue, it is imperative to develop more 

accurate and efficient solutions to enhance waste classification and management. This study investigates the influence of 

various image preprocessing techniques on the performance of MobileNetV1 and MobileNetV2 models in the classification of 

waste images. Preprocessing is crucial for enhancing data quality, particularly when dealing with real-world images that are 

affected by inconsistent lighting, texture, and clarity. Five preprocessing scenarios were evaluated: Baseline, CLAHE with 

Bilateral Filtering, CLAHE with Sharpening, Grayscale with CLAHE, and Gaussian Blur with Bilateral Filtering. Among 

these, the combination of CLAHE and Bilateral Filtering applied to MobileNetV1 achieved the best results, with 85% training 

accuracy, 96% validation accuracy, a training loss of 0.3178, and the lowest validation loss of 0.1630. Overall, MobileNetV1 

benefited more significantly from preprocessing variations than MobileNetV2, particularly in terms of accuracy improvement 

and reduction in prediction error. These findings underscore the importance of effective preprocessing in enhancing model 

performance for waste image classification.  
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1. Introduction  

Many countries, including Indonesia, are facing 

challenges in waste management [1]. Due to the high 

volume of waste generated from daily activities, 

particularly in urban areas, Indonesia has become the 

world’s second-largest contributor of waste [2]. Waste 

refers to residues produced from various production 

processes, whether industrial or household, that are no 

longer useful after their intended use or processing has 

been completed [3]. Certain types of waste are difficult 

to decompose and can pollute the environment [4]. 

According to data from Sistem Informasi Pengelolaan 

Sampah Nasional (SIPSN), the waste generation in 367 

regencies/cities across Indonesia is projected to reach 

39,737,086.45 tons annually by 2023. Of this amount, 

only 13.61% has been successfully reduced, with the 

waste handling at 47.25% and a total of 60.85% of 

waste being managed. However, 39.15% of waste 

remains unmanaged [5]. 

Balanced waste management is crucial, as poor waste 

handling can lead to environmental degradation and 

pollution, negatively affecting human quality of life [6]. 

Waste is classified into two categories: inorganic waste, 

which consists of non-decomposable chemical 

materials, and organic waste, which is composed of 

natural, biodegradable materials [7]. Inorganic waste, 

which is particularly difficult to break down in soil, 

often causes long-term pollution [8]. Therefore, an 

efficient waste management system is essential to 

minimize the environmental impact of waste. 

Modern technology can be leveraged to enhance the 

accuracy and efficiency of waste classification 

processes [9]. For example, waste classification using 

Convolutional Neural Network (CNN) algorithms has 

achieved an accuracy of 89% and a validation accuracy 

of 61% [10]. Similarly, the EfficientNetB0 architecture 

has demonstrated 88.53% accuracy with a loss of 

41.41% [11], while the VGG16 architecture has 
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reported 82.89% accuracy and 84.62% validation 

accuracy [12]. 

Other studies on classification tasks have also explored 

the MobileNet architecture, including MobileNetV1 

and MobileNetV2, which are well-known for their 

efficiency and adaptability in resource-constrained 

environments [13]. Previous research has demonstrated 

that MobileNetV1 can achieve high accuracy in various 

classification tasks, such as brain tumor classification, 

handwritten character recognition, and other 

classification challenges, with efficient performance on 

mobile devices [14], [15], [16]. For instance, 

MobileNetV1 was successfully applied to detect brain 

tumors from MRI images, achieving an accuracy of 

97% [14]. It also achieved 90% accuracy in identifying 

different types of freshwater fish [15] and 96.46% 

accuracy in recognizing 231 classes of Bangla 

handwritten characters [16]. 

A study analyzing eight deep learning architectures [17] 

revealed that the MobileNet architecture outperformed 

other models in terms of performance. Another study 

demonstrated that while MobileNet models can achieve 

high accuracy in classifying various waste types, 

significant challenges arise when images contain 

objects with similar and complex shapes, which can 

increase the likelihood of prediction errors [18]. 

Furthermore, another study emphasized the importance 

of applying filtering-based preprocessing techniques to 

address these challenges [19]. For instance, a study on 

lung disease classification using MobileNet highlighted 

that proper preprocessing methods could significantly 

enhance model performance in classification tasks [20]. 

These findings indicate that effective data processing 

strategies are a crucial factor in improving image 

classification accuracy. 

MobileNetV2 has been applied to various image 

classification tasks, including plant disease detection, 

melanoma identification, lung disease diagnosis, and 

waste classification [21], [22], [23], [24]. For tomato 

leaf disease classification, the model achieved an 

accuracy exceeding 90% [21]. In melanoma 

classification, it reached over 85% accuracy, despite 

challenges related to class imbalance [22]. Similarly, in 

lung disease prediction, the model achieved an accuracy 

of over 90%, but low sensitivity due to imbalanced class 

distribution remained a challenge [23]. In waste 

classification involving four categories, achieved an 

accuracy of 82.92% [24]. 

The performance of a model in object identification is 

not solely determined by the type of CNN architecture 

employed, but is also influenced by the preprocessing 

stages applied to the dataset prior to training [19]. 

Moreover, preprocessing techniques can significantly 

impact the model’s accuracy level [25]. In this study, 

we work with a waste image dataset that presents 

several challenges, including variations in lighting, 

differences in texture, and visual detail complexity. 

These variations have the potential to degrade model 

performance if not properly addressed through adequate 

preprocessing procedures.  

Therefore this study aims to conduct a comparative 

evaluation of various preprocessing methods to 

determine the most effective approach for enhancing 

the performance of MobileNetV1 and MobileNetV2 in 

waste classification. Comparing preprocessing 

techniques across both models is crucial for 

understanding how each architecture responds to 

different data treatments. Consequently, this research 

not only examines the effectiveness of preprocessing 

but also addresses a research gap concerning the 

relationship between preprocessing strategies and 

model architectures in the context of waste 

classification. 

The dataset utilized in this study consist of 630 images 

sourced from Waste Bank Bougenville in Magelang. 

The research findings are anticipated to aid in 

identifying the optimal combination of preprocessing 

methods and model architecture for waste 

classification. 

2. Methods 

The research was conducted through several stages, as 

illustrated in Figure 1, which presents the research 

workflow. Two models were utilized in this study: 

MobileNetV1 and MobileNetV2. In each scenario, the 

models were trained using various parameters. Two 

models were subsequently tested, and the result from 

different scenarios were compared to identify the best 

scenario based on the highest accuracy achieved. 

 

Figure 1. Research Workflow 
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2.1 Data Collection 

The data were collected directly at the Waste Bank 

Bougenville in Magelang using a high-resolution web 

camera. The dataset obtained consisted of 630 images, 

comprising 370 images of inorganic waste and 260 

images of organic waste. All images were resized to 

224x224 pixels to fit the MobileNet architecture. 

The disparity in the number of inorganic and organic 

waste images could affect the model training process. 

Therefore, steps were taken to balance the dataset 

distribution to minimize bias in the models. Figure 2 

and 3 illustrate the differences in the characteristics of 

inorganic and organic waste. Inorganic waste tends to 

exhibit distinctive geometric shapes and reflective 

surfaces. In contrast, organic waste is characterized by 

irregular textures and natural patterns. 

 

Figure 2. Inorganic Waste 

 

Figure 3. Organic Waste 

2.2 Data Preprocessing 

Data preprocessing aims to enhance the quality of 

images, enabling the model to learn from cleaner and 

more informative data. Table 1 outlines the 

preprocessing scenarios applied in this study. 

Table 1. Preprocessing Scenarios 

Alias Scenario 

S1 Baseline 

S2 CLAHE + Bilateral Filtering 

S3 CLAHE + Sharpening 

S4 Grayscale + CLAHE 

S5 Gaussian Blur + Bilateral Filtering 

Five preprocessing scenarios were designed to evaluate 

their impact on the model’s performance (Table 1). The 

first scenario, referred to as the Baseline (S1), consist of 

the original images without the any additional 

processing and serves as the fundamental benchmark 

for comparison. In the second scenario, CLAHE + 

Bilateral Filtering (S2), Contrast Limited Adaptive 

Histogram Equalization (CLAHE) is applied to 

improve image contrast [26], followed by bilateral 

filtering to smooth the image while preserving edge 

information [27].  This method aims to enhance contrast 

without compromising fine details.  

The third scenario, CLAHE + Sharpening (S3), 

combines CLAHE with a sharpening technique to 

enhance the visual sharpness of image elements [28].  

Thereby improving edge clarity. The fourth scenario, 

Grayscale + CLAHE (S4), begins by converting images 

to grayscale, capturing intensity variations from black 

to white [29], followed by the application of CLAHE to 

further enhance detail. Finally, the fifth scenario, 

Gaussian Blur + Bilateral Filtering (S5), applies 

gaussian blur to smooth images by reducing noise and 

reflections [30], followed by bilateral filtering. This 

combination is intended to mitigate high-frequency 

noise while preserving important edge details. 

2.3 Class Balancing 

The next step involves class balancing using the class 

weighting method as shown in Equation 1 to address the 

imbalance in the number of data points across classes 

[31]. This method was chosen because it effectively 

balances the weights among classes in an uneven 

dataset, allowing the model to pay greater attention to 

classes with fewer samples. 

𝑊𝑒𝑖𝑔ℎ𝑡 =  
𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠

(n_classes * np.bincount(y))
               (1) 

Where n_samples represent the total number of samples 

in the dataset, n_classes is the number of distinct 

classes, and np.bincount(y) counts the number of 

samples for each class. Using this approach, the weights 

for each class can be calculated as Equations 2 and 3. 

𝑊𝑒𝑖𝑔ℎ𝑡 (𝐼𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐) =  
630

2 x 370
=  

630

740
≈ 0.851       (2) 

𝑊𝑒𝑖𝑔ℎ𝑡 (𝑂𝑟𝑔𝑎𝑛𝑖𝑐) =  
630

2 x 260
=  

630

520
≈ 1.212          (3) 

Based on the results, it is evident that the organic class, 

which has a smaller number of samples compared to the 

inorganic class, receives a higher weight of 

approximately 1.212, compared to the inorganic class, 

which has a weight of around 0.851. 

2.4 Fine-tuning MobileNetV1 and MobileNetV2 

MobileNetV1 and MobileNetV2 are Convolutional 

Neural Network (CNN) architectures selected in this 

study for their ability to process data quickly, 

accurately, and efficiently, even on devices with 

computational limitations [32]. At this stage, several 

parameters were optimized to enhance the performance 

of the proposed model. Fine-tuning was applied by 

unlocking several of the model’s final layers to improve 

accuracy. This selection of the fine-tuning parameters 

was conducted using a trial-and-error approach, testing 

various training parameters to identify the optimal 

configuration. The training process was performed 

using TensorFlow, supported by hardware equipped 

with a GPU and 16GB of RAM, sufficient to handle the 

model training process. 

Table 2. Proposed Hyperparameters 

Parameter Value 

Learning Rate 1e-5 

Batch Size 32 

Epoch 10 

Optimizer Adam 

Data Train 70 % 

Data Validation 15% 

Data Test 15% 
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Table 2 presents the hyperparameters used in this 

experiment. These hyperparameters were applied 

across all preprocessing scenarios and both 

architectures tested. For a more detailed explanation of 

the proposed model architectures, readers are referred 

to Tables 3 and 4, which illustrate the layer structures 

of MobileNetV1 and MobileNetV2 after fine-tuning. 

Table 3. Proposed Layers in MobileNetV1 

Layer (Type) Output Shape Param # 

input_layer (None, 224, 

224, 3) 

0 

global_average_pooling2d (None, 1024) 0 

dense  (None, 512) 524,800 

batch_normalization (None, 512) 2,048 

dropout  (None, 512) 0 

dense_1 (None, 2) 1,026 

Table 4. Proposed Layers in MobileNetV2 

Layer (Type) Output Shape Param # 

input_layer (None, 224, 

224, 3) 

0 

global_average_pooling2d (None, 1280) 0 

dense  (None, 512) 655,872 

batch_normalization (None, 512) 2,048 

dropout  (None, 512) 0 

dense_1 (None, 2) 1,026 

Tables 3 and 4 detail the modifications applied to both 

models, including the addition of several layers in 

MobileNetV1 and MobileNetV2. These modifications 

encompass the implementation of a Global Average 

Pooling layer, a Dense layer with 512 units utilizing the 

ReLU activation function, and the application of Batch 

Normalization. To mitigate the risk of overfitting, a 

Dropout layer is incorporated, followed by an output 

Dense layer with a softmax activation function that 

generates probabilities for two classes. 

3. Results and Discussions 

The result of the five preprocessing scenarios are 

visualized to illustrate the effect of each method on the 

appearance of waste images. Figures 4, 5, 6, 7, and 8 

display the waste images after preprocessing. 

 

Figure 4. S1 (Baseline) 

In Figure 4, the output of S1 represents the original 

image without any additional preprocessing methods. 

The color and details remain identical to the raw data. 

This first scenario serves as the primary baseline for 

evaluating the effectiveness of other preprocessing 

methods in improving model performance. 

 

Figure 5. S2 (CLAHE + Bilateral Filtering) 

The second scenario employs CLAHE followed by 

Bilateral Filtering methods. As shown in Figure 5, the 

results of these methods yield smoother image textures 

while preserving clear edge details. 

 

Figure 6. S3 (CLAHE + Sharpening) 

The third scenario applies CLAHE and Sharpening 

methods. In Figure 6, the preprocessing results reveal 

images with sharper edges and enhanced contrast.  

 

Figure 7. S4 (Grayscale + CLAHE) 

The fourth scenario, Grayscale and CLAHE methods 

are used. The results, presented in Figure 7, show 

images with more focused details in grayscale, 

effectively minimizing distractions from irrelevant 

color information. 

 

Figure 8. S5 (Gaussian Blur + Bilateral Filtering) 



Aulia Afifah et al                                 Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 1 (2025) 

 

                                                                                             

198 

 

The fifth scenario utilizes Gaussian Blur and Bilateral 

Filtering methods. The results, illustrated in Figure 8, 

exhibit images with smoother textures while 

maintaining critical elements such as the edges of waste 

objects.   

3.1 Model Performance Comparison 

In this section, a performance comparison is conducted 

between MobileNetV1 and MobileNetV2 using five 

preprocessing scenarios as previously described. The 

performance comparison results of these two models 

are presented in Table 5, including training accuracy, 

validation accuracy, and loss value for each scenario of 

both models. 

Based on the results shown in Table 5, scenarios S1-V2 

and S2-V2 achieved the highest training accuracy at 

86%, while S2-V1 recorded the highest validation 

accuracy at 96%. On other hand, for training loss and 

validation loss, S2-V1 demonstrated the lowest values, 

with 0.3178 and 0.1630, respectively. Although S1-V2 

and S2-V2 achieved slightly higher training accuracy 

(86%) compared to S1-V1, S2-V1, and S3-V1, which 

each recorded 85%, the S2-V1 scenario stood out with 

higher validation accuracy and lower validation loss 

than other scenarios. This indicates that the 

preprocessing method applied in S2-V1 significantly 

impacts improving validation performance. S2-V1 

successfully achieved the highest validation accuracy of 

96% and the lowest loss value among all tested 

scenarios and models, demonstrating its capability to 

generalize unseen data effectively 

Table 5. Performance of MobileNetV1 and MobileNetV2 

Alias Training 

Accuracy 

Validation 

Accuracy 

Training 

Loss 

Validation 

Loss 

Alias Training 

Accuracy 

Validation 

Accuracy 

Training 

Loss 

Validation 

Loss 

S1-V1 85% 95% 0.3296 0.1665 S1-V2 86% 93% 0.3463 0.2358 

S2-V1 85% 96% 0.3178 0.1630 S2-V2 86% 90% 0.3690 0.2421 

S3-V1 85% 93% 0.3540 0.2084 S3-V2 84% 88% 0.3827 0.2984 

S4-V1 83% 90% 0.3646 0.2180 S4-V2 83% 86% 0.3894 0.3245 

S5-V1 84% 87% 0.4362 0.2753 S5-V2 83% 89% 0.4217 0.2748 

Interestingly, the S1-V2 scenario in MobileNetV2, 

which does not employ additional preprocessing 

methods (baseline), demonstrates a more optimal 

performance compared to other scenarios in 

MobileNetV2. The S1-V2 scenario successfully 

maintains good training accuracy (86%) and achieves 

relatively lower validation loss values despite the 

absence of additional preprocessing techniques. 

Conversely, scenarios S2 through S5, which 

incorporate various additional preprocessing methods. 

Do not show significant performance improvements in 

the MobileNetV2 model. Certain scenarios, such as S4-

V2 and S5-V1, even demonstrate a decrease in accuracy 

and an increase in loss. Notably, S4-V2 records the 

lowest validation accuracy (86%), while S5-V1 shows 

a relatively high training loss value (0.4362). 

In MobilNetV1, the S2-V1 scenario provides the best 

performance, whereas in MobileNetV2, the S1-V2 

scenario (without additional preprocessing) yields more 

optimal results. This suggests that, for certain models, 

implementing preprocessing may not always deliver 

significant advantages and could even risk reducing 

performance. Moreover, although MobileNetV2 

generally exhibits slightly better training accuracy, 

MobileNetV1 with the S2-V1 scenario still outperforms 

in terms of validation accuracy and validation loss. This 

highlights the importance of selecting appropriate 

preprocessing methods and aligning them with the 

model’s characteristics to achieve optimal performance.  

Table 6 illustrates a comparison of preprocessing times 

across various training scenarios using MobileNetV1 

and MobileNetV2.  

Based on the data presented in Table 6, there is a 

significant difference in training time between 

MobileNetV1 and MobileNetV2. MobileNetV1 

consistently demonstrates faster training times 

compared to MobileNetV2 across all scenarios. The 

shortest training time for MobileNetV1 is recorded in 

scenario S1 at 86.51 seconds, while its longest training 

time occurs in scenario S2 at 89.66 seconds. 

Meanwhile, MobileNetV2 achieves its shortest training 

time in scenario S2 at 98.20 seconds and its longest 

training time in scenario S1 at 99.87 seconds. This 

indicates that MobileNetV1 is more efficient in 

processing data than MobileNetV2, particularly during 

the training phase. This efficiency can be attributed to 

the simpler architecture of MobileNetV1, which 

reduces computational Complexity. 

Table 6. Time Preprocessing Methods 

Scenario Timer 

S1-V1 86.51s 

S2-V1 89.66s 

S3-V1 88.16s 

S4-V1 88.31s 

S5-V1 87.05s 

S1-V2 99.87s 

S2-V2 98.20s 

S3-V2 99.81s 

S4-V2 98.38s 

S5-V2 98.77s 

3.2 Model Evaluation 

Model evaluation was conducted to measure the 

performance of MobileNetV1 and MobileNetV2 in 

classifying data into two categories: organic waste and 

inorganic waste. The evaluation results are presented 
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using a classification report and a confusion matrix. 

These metrics were chosen to provide a comprehensive 

understanding of the model’s performance from various 

perspectives, including overall precision, recall, F1-

score. Table 7 summarizes the classification report 

results, while Figure 9 visualizes the confusion matrix, 

illustrating the distribution of correct and incorrect 

predictions for each class. This analysis is used to 

identify patterns of classification errors.  

Table 7. Classification Report 

Alias Precision Recall F1-score Alias Precision Recall F1-score 

S1-V1 92% 91% 91% S1-V2 92% 91% 91% 

S2-V1 93% 92% 92% S2-V2 89% 86% 87% 

S3-V1 93% 92% 92% S3-V2 84% 78% 78% 

S4-V1 92% 91% 91% S4-V2 90% 86% 87% 

S5-V1 89% 86% 87% S5-V2 89% 88% 89% 

Based on Table 7, the evaluation results indicate that 

MobileNetV1 outperforms MobileNetV2 across 

various scenarios. In scenarios S2-V1 and S3-V1, 

MobileNetV1 achieved the highest precision, recall, 

and F1-score values of 93%, 92%, and 92%, 

respectively. Conversely, MobileNetV2 demonstrated 

its best performance in scenario S1-V2, with precision, 

recall, and F1-score values of 92%, 91%, and 91%. 

However, MobileNetV2 experienced a significant 

performance decline in scenario S2-V2, with precision, 

recall, and F1-score dropping to 89%, 86%, and 87%. 

A further decrease was observed in scenario S3-V2, 

where the precision, recall, and F1-score fell to 84%, 

78%, and 78%. This is in stark contrast to 

MobileNetV1, which exhibited its best performance in 

scenarios S2-V1 and S3-V1. 

In scenario S4, MobileNetV1 again outperformed 

MobileNetV2, achieving precision, recall, and F1-score 

values of 92%, 91%,, and 91%, compared to 

MobileNetV2’s 90%, 86%, and 87%. Nevertheless, in 

scenario S5, MobileNetV2 showed improvement, with 

recall and F1-score values of 88% and 89%, slightly 

surpassing MobileNetV1’s S5-V1 performance, which 

recorded recall and F1-score values of 86% and 87%. 

The precision for both models in scenario S5 remained 

the same at 89%. Overall, MobileNetV1 demonstrated 

more consistent and superior performance across 

various scenarios compared to MobileNetV2, 

indicating that MobileNetV1 is more reliable in 

handling the data variations used in this study. 

In Figure 9, the confusion matrix illustrates the 

performance across five preprocessing scenarios tested 

using MobileNetV1 and MobileNetV2. The results 

reveal that the S2-V1 configuration achieved the lowest 

prediction error rate, with only 8 errors (8 

misclassifications occurred where inorganic waste was 

predicted as organic waste, and no errors were found in 

predicting organic waste as inorganic waste). This 

indicates that the combination of CLAHE and Bilateral 

Filtering delivers the most stable and accurate 

performance compared to other scenarios. 

However, a closer analysis reveals that most prediction 

errors across the preprocessing scenarios involved 

waste that should have been classified as inorganic but 

was mistakenly predicted as organic. For instance, in 

S5-V1, there were 11 misclassifications where 

inorganic waste was predicted as organic waste, 

representing the highest error rate among all scenarios 

using MobileNetV1. Conversely, misclassifications of 

organic waste as inorganic waste were relatively rare, 

with error counts ranging from 1 to 3 across all 

scenarios. 

On MobileNetV2, performance is generally lower 

compared to MobileNetV1, with a tendency for higher 

prediction errors. For instance, in the S3-V2 scenario, 

the highest number of errors was recorded, amounting 

to 21 errors, consisting of 19 misclassifications of 

inorganic waste as organic waste and 2 

misclassifications of organic waste as inorganic waste. 

This indicates that preprocessing methods in certain 

scenarios can interfere with the model’s ability to 

accurately distinguish between inorganic and organic 

waste. 
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(a)                                                        (b) 

      

(c)                                                        (d) 

      

(e)                                                        (f) 

      

(g)                                                        (h) 

      
(i)                                                        (j)                    

Figure 9. Confusion Matrix (a) S1-V1, (b) S2-V1, (c) S3-V1, (d) S4-V1, (e) S5-V1,  

(f) S1-V2, (g) S2-V2, (h) S3-V2, (i) S4-V2, (j) S5-V2 
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4. Conclusions 

The results of the study indicate that both models 

exhibit different responses to the preprocessing 

scenarios tested, with MobileNetV1 consistently 

outperforming MobileNetV2. Specifically, 

MobileNetV1 with the second preprocessing scenario 

which uses a combination of CLAHE and Bilateral 

Filtering, achieved the highest validation accuracy of 

96%, with the lowest validation loss of 0.1630. this 

finding suggests that the combination of preprocessing 

methods can enhance model performance, as reflected 

in the accuracy and the prediction error rate observed 

from the confusion matrix. On the other hand, 

MobileNetV2 performed best in the first scenario 

(baseline), which did not involve any additional 

preprocessing. In the baseline scenario, MobileNetV2 

exhibited better accuracy, and a lower prediction error 

rate compared to other scenarios that included 

additional preprocessing methods. Both additional 

preprocessing scenarios for MobileNetV1 and 

MobileNetV2, namely S2-V1 and S1-V2, required 

considerable processing times of 89.66 seconds and 

99.87 seconds, respectively. Nonetheless, these times 

did not diminish the overall performance gains 

achieved. Evaluation results also showed that prediction 

errors were more likely to occur in the classification of 

inorganic waste being misidentified as organic waste. 

However, the error rate for MobileNetV1 was lower 

than that of MobileNetV2, indicating that MobileNetV1 

was more effective at capturing distinguishing features 

even with additional preprocessing. The results of this 

study can be utilized to assist in the sorting of inorganic 

and organic waste through an artificial intelligence-

based waste management application.  
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