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Abstract  

Electrocardiography (ECG) serves as an essential risk-stratification tool to observe further treatment for cardiac 

abnormalities. The cardiac abnormalities are indicated by the intervals and amplitude locations in the ECG waveform. ECG 

delineation plays a crucial role in identifying the critical points necessary for observing cardiac abnormalities based on the 

characteristics and features of the waveform. In this study, we propose a deep learning approach combined with Bayesian 

Hyperparameter Optimization (BHO) for hyperparameter tuning to delineate the ECG signal. BHO is an optimization method 

utilized to determine the optimal values of an objective function. BHO allows for efficient and faster parameter search 

compared to conventional tuning methods, such as grid search. This method focuses on the most promising search areas in the 

parameter space, iteratively builds a probability model of the objective function, and then uses that model to select new points 

to test. The used hyperparameters of BHO contain learning rate, batch size, epoch, and total of long short-term memory layers. 

The study resulted in the development of 40 models, with the best model achieving a 99.285 accuracy, 94.5% sensitivity, 99.6% 

specificity, and 94.05% precision. The ECG delineation-based deep learning with BHO shows its excellence for localization 

and position of the onset, peak, and offset of ECG waveforms. The proposed model can be applied in medical applications for 

ECG delineation. 
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1. Introduction  

Electrocardiography (ECG) is an essential risk-

stratification tool to observe cardiac abnormalities and 

determine further treatment options, with changes in 

ECG morphology serving as biomarkers for this 

purpose [1], [2]. Cardiologists can visually analyze the 

ECG tracings to identify cardiac abnormalities, such as 

ischemic changes in the ST segments. However, early 

detection and accurate diagnosis are crucial for timely 

treatment. Despite defined criteria, emergency 

physicians still encounter significant challenges in 

rapidly diagnosing such conditions [3]. Therefore, 

systematic methods to enhance ECG interpretation may 

have a significant impact on diagnosis [4]-[7]. 

 

The current deep learning (DL) revolution has provided 

us with an opportunity to be effective in medical 

applications [8]–[10]. With a deep learning approach, 

the ECG interpretation using a delineation technique is 

proposed. ECG signals contain three main waveforms, 

i.e., P-wave, QRS-complex, and T-wave [11]–[13]. 

ECG delineation involves identifying the localization 

and position of the onset, peak, and offset of these main 

waveforms. For example, in the case of ST-elevation 

myocardial infarction, the localization between QRS-

offset and T-onset corresponds to ST-segment [14]–

[17]. The implementation of deep learning and ECG 

delineation aims to identify substantial changes in ST 
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segments in an attempt to increase monitoring precision 

[1].  

DL is a very common approach used as a technology 

application in various studies because of its ability to 

automatically analyze complex patterns in data [18]. 

The application of DL will be used to improve the 

performance of ECG signal delineation. However, to 

obtain an optimal DL model, hyperparameter tuning is 

needed on the DL model. The more parameters are 

optimized, the more expensive the cost. 

Hyperparameter tuning is the process of adjusting 

parameters in a DL model to improve its performance 

and produce an optimal model [19]. Hyperparameters 

play a key role in determining the extent to which a 

model can generalize to new data. Some common 

methods used in hyperparameter tuning involve grid 

search, random search, and Bayesian hyperparameter 

optimization (BHO). 

Grid search is a simple and systematic method, but it is 

time-consuming and resource-intensive. This approach 

tests parameter combinations on a predetermined grid 

[20]. Although easy to implement and can find the best 

parameters, grid search is less efficient, especially in 

large parameter search spaces and this method does not 

utilize previous test result information. Random search 

overcomes the weaknesses of grid search by performing 

a random search across the entire parameter space [21]. 

Random search randomly selects parameter 

combinations to test. This method has advantages in the 

speed of parameter exploration, especially in large 

parameter spaces, but there is still a risk of missing 

optimal parameters and this method does not utilize 

previous test result information. 

To handle the problems in the grid search and random 

search methods, there is another method, namely BHO. 

BHO is an optimization method used to find the optimal 

value of an objective function that is expensive to 

evaluate [19]. Bayesian optimization uses a 

probabilistic model to model the objective function. 

This method focuses on the most promising search 

areas in the parameter space, iteratively builds a 

probability model of the objective function, and then 

uses the model to select new points to test.  

Therefore, the contributions of this study are: (1) 

propose an ECG delineation with a deep learning 

approach. The primary objective is to delineate the ECG 

morphology between the onset, peak, and offset of ECG 

waveforms. We segmented the ECG signal to Pstart – 

Pend, Pend – QRSstart, QRSstart – Rpeak, Rpeak – QRSend, 

QRSend – Tstart, Tstart – Tend and Tend – Pstart. A 

hyperparameter tuning method is required to obtain an 

optimal deep learning model, and (2) explore BHO. for 

hyperparameter tuning [19], [22]. BHO is an 

optimization method used to find the optimal value of 

an objective function. It focuses on the most promising 

search areas in the parameter space, iteratively builds a 

probability model from the objective function, and then 

uses the model to select new points to test  [23]. BHO 

enables efficient and faster parameter searches 

compared to conventional tuning methods, such as grid 

search [24]. 

2. Research Methods 

The research methodology of this study contains; (i) the 

data preparation of Lobachevsky University 

Electrocardiography Database (LUDB), (ii) the ECG 

denoising with discrete wavelet transforms (DWT), and 

(iii) conducting the deep learning architecture with 

BHO for hyperparameter tuning.  

2.1 Data Acquisition  

Lobachevsky University Electrocardiography Database 

(LUDB) consists of a 12-lead ECG signal with P, T 

waves, and QRS-complexes annotation [25]. There are 

200 10-second records, which are digitized at 500 

samples per second. There are annotated 16797 P-

waves, 21966 QRS-complexes, and 19666 T-waves.  

For this study, we have generated the ECG delineation 

model with only lead-II due to it contains the essential 

information for the ECG signal. The sample of ECG 

signal raw data that contains information on the onset, 

peak, and offset of P, T waves, and QRS complexes can 

be seen in Figure 1. Figure 1 represents an ECG 

waveform with detected key points, likely showing the 

onset, peak, and offset of each ECG segment, which X-

axis (Nodes - Points): represents time or signal samples 

(likely in milliseconds or discrete steps); the Y-axis 

(Amplitude in mV): shows the ECG signal intensity, 

capturing electrical activity of the heart; blue line: 

represents the ECG waveform, capturing normal heart 

rhythm, and red dots: mark significant ECG feature 

points, including the P-wave, QRS complex, and T-

wave. 

 

Figure 1. The sample of ECG signal with information on onset, peak, and offset of P, T waves and QRS-complexes 



Annisa Darmawahyuni, Winda Kurnia Sari, Nurul Afifah, Siti Nurmaini, Jordan Marcelino,  

Rendy Isdwanta 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 2 (2025)  

 

This is an open access article under the CC BY-4.0 license                                                                                 299 

 

2.2 ECG Pre-processing 

Discrete Wavelet Transform (DWT) is a signal analysis 

technique in the time and frequency domains. This 

technique is widely used to reduce noise in ECG signals 

[26]-[29]. The transformation process involves the use 

of two filters namely; low pass filter (LPF) and high 

pass filter (HPF). These two filters function to 

decompose the signal into approximate coefficients and 

detailed coefficients [30]. The equations of the 

decomposition are described in Equations 1 and 2.  

𝐴(𝑘) =  ∑ 𝑥(𝑛)ℎ(2𝑘 − 𝑛)𝑛              (1) 

𝐷(𝑘) =  ∑ 𝑥(𝑛)𝑔(2𝑘 − 𝑛)𝑛              (2) 

𝐴(𝑘) is approximate coefficients, 𝐷(𝑘) is detail 

coefficients, ℎ(𝑛) is half band low pass filter, and 𝑔(𝑛) 

is a half-band high-pass filter.  

After going through the decomposition process, various 

ECG signal processing can then be carried out, one of 

which is reducing noise in the signal (denoising). The 

denoising process involves three stages; signal 

decomposition, applying thresholding to detail 

coefficients to reduce noise in the signal, and Inverse 

Discrete Wavelet Transform (IDWT) or signal 

reconstruction. Table 1 presents 14 used mother 

wavelet functions, i.e., db4, db5, db6, db7, sym5, sym8, 

sym10, haar, coif1, coif3, coif4, coif5, and bior6.8. To 

find out which mother wavelet function has the best 

results, the signal-to-noise ratio (SNR) calculation is 

used. Among the experimental wavelet functions, the 

highest output SNR value was that of bior6.8, with 

32.78 decibels (dB).  

The bior6.8 wavelet achieved the highest SNR (32.78 

dB), indicating it is the most effective at preserving 

signal quality while reducing noise. This makes it the 

most suitable candidate for ECG denoising in this study. 

The denoising process plays a critical role in ensuring 

the quality of ECG signals before waveform 

delineation. The decision is backed by quantitative 

results and is essential for improving the accuracy of 

downstream deep learning models. 
Table 1. The used hyperparameter for BHO 

 

Mother wavelet functions SNR 

bior6.8 32,780 

db4 32,763 

sym10 32,621 

sym5 32,544 

sym8 32,508 

coif5 32,504 

coif4 32,491 

db6 32,482 

db5 32,459 

db7 32,431 

coif3 32,425 

coif1 31,684 

haar 24,667 

2.3 Deep Learning with Bayesian Hyperparameter 

Optimization 

One-dimensional convolutional neural networks 

(CNNs) have one convolutional layer, with a kernel size 

of three with stride one. The rectified linear unit (ReLU) 

function was adopted with 8 filters. We have combined 

CNN as feature extraction and long short-term memory 

(LSTM) as a fully connected layer. The other 

hyperparameters tuning are tuned by BHO. BHO is an 

optimization method used to find the optimal value of 

an objective function that is expensive to evaluate.  

BHO uses a probabilistic model to model the objective 

function [19]. This method focuses on the most 

promising search areas in the parameter space, 

iteratively builds a probability model from the objective 

function, and then uses the model to select new points 

to test. Based on probability models such as the 

Gaussian Process, BHO can understand and exploit the 

underlying structure of the objective function [31]. The 

objective function in Equation 3 represents model 

performance based on hyperparameter values [31]. 

𝑓(𝑥) =  Model performance (hyperparameter)    (3) 

𝑥 is hyperparameters (e.g., learning rate, batch size, 

number of layers), and 𝑓(𝑥) is an objective function 

(e.g., accuracy or loss). 

This process begins with initiating a model with several 

starting points and then selecting the next evaluation 

location based on acquisition calculations, such as 

Expected Improvement (EI) [32]. After evaluation, the 

probabilistic model is updated, and this process is 

repeated until an optimal solution is reached. The 

parameters for BHO can be tuned with the following 

hyperparameter (refer to Table 2).  

Table 2 presents the used parameters containing 

learning rate, batch size, epoch and total LSTM layers. 

The learning rate’s range is well-suited for deep 

learning, especially for sensitive models like LSTMs or 

transformers. The lower bound (0.00001) allows for 

very fine updates, reducing the risk of overshooting the 

minima. Upper bound (0.001) still keeps training stable 

but allows faster convergence. Smaller batch sizes (8, 

16) lead to noisier gradient updates, which can help 

escape local minima and improve generalization. 

Larger sizes (32) offer faster training and better use of 

GPU parallelism but may require more memory.  

The model is trained for a minimum of 100 and up to 

300 epochs. This is suitable for deep models like 

LSTM, especially when trained on small datasets. More 

epochs give room for full convergence, though they 

increase computational cost.  The number of layers 

experimented with shallow to moderately deep 

architectures. Increasing layers may improve learning 

of complex features, but can also lead to vanishing 

gradients or overfitting with limited data. 

Based on the used hyperparameter for BHO, we 

obtained 40 deep-learning models (refer to Table 3). 

Batch size 8 dominates the experiments (75%). Smaller 

batch sizes can improve generalization but increase 

training time. The presence of models with batch sizes 
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16 and 32 provides diversity and allows exploration of 

performance and computational trade-offs. Over half of 

the models trained for 300 epochs, suggesting the need 

for extended learning to reach convergence. Early 

stopping mechanisms might be beneficial in long 

training sessions to avoid overfitting. Very small 

learning rates (e.g., 0.00001 – 0.00007) were tested in 

early models (e.g., Models 3, 4, 9), which may lead to 

slow convergence. Higher learning rates (near 0.001) 

risk overshooting minima but were tested extensively 

(Models 11–14, 21–25). 

Table 2. The used hyperparameter for BHO 

Parameter Lower Bound Upper Bound 

Learning Rate 0.00001 0.001 

Batch Size 8 32 

Epoch 100 300 

n-layer 1 5 

Table 3. The 40 deep-learning models with BHO 

Model Batch Size Epoch Learning Rate Total layer 

1 8 300 0.00034 3 

2 16 300 0.0007 5 

3 32 200 0.00007 2 

4 8 300 0.00002 1 

5 8 100 0.00004 2 

6 32 100 0.00022 1 

7 16 100 0.00003 4 

8 16 200 0.00008 4 

9 8 300 0.00001 5 

10 32 200 0.00026 3 

11 8 300 0.00075 3 

12 8 300 0.00096 3 

13 8 300 0.00097 4 

14 8 300 0.00067 4 

15 8 200 0.00047 4 

16 8 300 0.00097 2 

17 8 200 0.00016 2 

18 8 300 0.00041 2 

19 16 300 0.00046 1 

20 32 200 0.0002 5 

21 8 200 0.00091 2 

22 8 200 0.00084 2 

23 8 200 0.00051 2 

24 8 300 0.00099 1 

25 8 100 0.001 1 

26 8 200 0.00059 1 

27 8 300 0.00033 2 

28 8 200 0.00058 1 

29 16 300 0.00033 1 

30 32 300 0.00038 3 

31 8 300 0.00069 2 

32 8 300 0.00071 2 

33 8 300 0.00067 3 

34 8 300 0.00077 2 

35 8 300 0.00059 2 

36 8 200 0.00084 1 

37 8 300 0.00099 2 

38 32 100 0.00049 1 

39 16 300 0.00059 2 

40 8 200 0.00029 3 

3. Results and Discussions 

A total of 200 records have been segmented by beat-to-

beat. The total of normal beats is 1,219, which are split 

into 975 beats for the training set, 112 beats for the 

validation set, and 112 beats for the testing set (unseen). 

the experiments are conducted with one Intel(R) 

Core(TM) I9-9900K CPU @ 3.60 GHz (16 CPUs) 

~3.6GHz, 32GB RAM, and one NVIDIA GeForce RTX 

2080 Ti 27GB GPU (11 GB Dedicated, 16 GB Shared) 

is conducted. All experiments were run on Windows 10 

Pro 64 Bit. We have used Python language 

programming with Visual Studio Code version 1.86.1 

on Windows 10 Pro 64 Bit. The library is numpy, 

pandas, matplotlib, seaborn, wfdb, pywavelets, SciPy 

and TensorFlow.  

The confusion matrix can be used to calculate the 

assessment parameters, namely; accuracy, sensitivity, 

specificity, precision, and F1. For the performance 

results of 40 models by BHO can be listed in Table 4. 

All presented 40 models are experimental. Among 40 

models, the best performance results are achieved by 

model 10 with the parameters are 0.00026 learning rate, 

batch size of 32, 200 epochs and three hidden layers of 

LSTM. The performance results of model 10 achieved 

99.28% accuracy, 94.5% sensitivity, 99.60% 

specificity, 94.05% precision, and 94.26% F1 score. 

Table 4. The performance results of 40 models by BHO in the 

validation set 

Model Accuracy Sensitivity Specificity Precision 

1 99.2 93.72 99.56 93.55 

2 99.17 93.78 99.54 94.02 

3 99.14 92.95 99.52 93.44 

4 98.92 91.84 99.4 91.73 

5 99.14 93.32 99.52 93.68 

6 99.03 93.08 99.46 92.8 

7 99.19 93.32 99.55 93.76 

8 99.21 94.13 99.56 94.11 

9 99.07 91.99 99.49 92.66 

10 99.28 94.5 99.6 94.05 

11 99.28 94.32 99.6 94.76 

12 99.31 94.45 99.62 94.53 

13 99.29 94.65 99.61 94.69 

14 99.26 94.64 99.59 94.4 

15 99.34 95.17 99.63 94.79 

16 99.31 94.65 99.62 94.99 

17 99.31 94.62 99.62 94.57 

18 99.3 94.91 99.62 94.47 

19 99.14 93.49 99.52 93.4 

20 99.27 94.12 99.59 94.29 

21 99.3 94.58 99.62 94.49 

22 99.15 93.49 99.53 93.89 

23 76.91 12.5 87.5 0.95 

24 99.22 94.16 99.57 94.01 

25 99.23 94.03 99.57 94.22 

26 99.18 93.86 99.54 93.95 

27 99.33 94.88 99.63 94.85 

28 99.28 93.93 99.6 94.68 

29 99.09 93.59 99.5 92.89 

30 99.26 94.27 99.59 94.61 

31 99.3 94.51 99.61 94.61 

32 99.28 94.48 99.6 94.47 

33 99.32 94.86 99.62 94.66 

34 99.3 94.46 99.61 94.54 

35 97.67 83.1 98.7 83.68 

36 99.14 93.13 99.53 93.45 

37 99.29 94.35 99.61 94.46 

38 98.94 92.99 99.42 91.86 

39 99.22 94.2 99.57 93.93 

For each class performance result of Model 10, the 

misclassification mostly occurs in Poff-QRSon (PR-

segments) with 90.29% sensitivity, 86.44% precision 

and 88.32% F1. The interval between atrial and 

ventricular activation is reflected in the PR segment. 

Due to their low amplitude, low frequency range, and 
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overlap, P-waves are challenging to identify. Figure 2 

shows the differences between LUDB annotated Figure 

2 (a)) and ECG delineation results of Pstart – Pend, Pend – 

QRSstart, QRSstart – Rpeak, Rpeak – QRSend, QRSend – Tstart, 

Tstart – Tend, and Tend – Pstart from Model 10 (Figure 2 

(b)).  

Figure 2 visually demonstrates the success of the ECG 

delineation-based deep learning model. The well-

defined segmentation across multiple cycles confirms 

its effectiveness in waveform localization, reinforcing 

its suitability for medical applications. The legend on 

the right side provides information about the color 

coding: Pink (P-on - P-off): represents the P-wave 

region (onset to offset); orange (P-off - QRS-on): the 

interval between the end of P-wave and the beginning 

of the QRS complex; yellow (QRS-on - QRS-off): 

marks the QRS complex, which is the most prominent 

feature of an ECG; green (T-wave onset - T-wave 

offset): represents the T-wave, indicating ventricular 

repolarization; blue (Isoelectric Line): indicates the 

baseline (the flat line between waves). The blue dashed 

line represents the actual ECG waveform, showing the 

characteristic peaks for P-waves, QRS complexes, and 

T-waves. 

The delineation algorithm successfully identifies the 

different segments of the ECG waveform. The 

transition points between colors align with waveform 

changes, meaning the algorithm correctly marks onset, 

peak, and offset positions. Periodic structure suggests 

multiple ECG cycles, indicating the model generalizes 

across several heartbeats. The P-wave, QRS, and T-

wave segmentation is well-defined, supporting the 

claim that the deep learning approach effectively 

detects boundaries. The performance of delineation is 

influenced by the morphological feature of each lead. 

the magnitude of the shift, the direction of 

displacement, and the ECG segment selected for 

investigation all contribute to the degree of 

morphological changes. The difference in electrical 

potentials between two points in space is represented by 

each lead.  

 

(a) LUDB annotated (ground truth) 

 

(b) DL-predicted 

Figure 2. The ECG delineation results between ground truth and DL-predicted 

Though the results look promising, there are limitations 

of this study; (1) exploring a new dataset is required, 

with varying frequency sampling and length of ECG 

records, and (2) the comparison of optimization 

techniques can be included in future works. The study 

results are based on a single dataset, meaning that model 

generalizability across different populations is not fully 

validated. The dataset might have limited variability in 

ECG morphology, potentially leading to bias toward 

specific patient groups or recording conditions. 

Different ECG devices record signals at different 

resolutions (e.g., 250 Hz, 500 Hz, 1000 Hz). The current 

model should be tested on multiple frequency settings 

to ensure robustness. Some clinical applications require 

long-term ECG recordings (e.g., Holter monitors) while 

others focus on short 10-second ECG strips. Ensuring 

performance across different ECG lengths is essential. 

Expanding to datasets with diverse cardiac conditions 

(e.g., arrhythmias, ischemia, and conduction blocks) 

will improve clinical reliability. 

4. Conclusions 

Precise ECG delineation is crucial for accurately 

identifying the onset, peak, and offset of waveform 

localization. ECG serves as an essential risk-

stratification tool for observing further treatment for 

cardiac abnormalities, with changes in ECG 

morphology serving as biomarkers for this purpose. In 

this study, a deep learning approach coupled with a 

delineation technique is proposed for ECG 

interpretation. The localization and positioning of the 

onset, peak, and offset of the three main ECG 

waveforms are informed by this ECG delineation 

method. This study introduces an ECG delineation-
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based deep learning approach with BHO. As a result, 40 

models were developed, with the best model achieving 

99.285% accuracy, 94.5% sensitivity, 99.6% 

specificity, 94.05% precision, and 94.26% F1 score. 

The ECG delineation-based deep learning with BHO 

demonstrates excellence in localizing and positioning 

the onset, peak, and offset of P-wave, QRS-complex, 

and T-wave. The proposed model holds promise for 

application in medical contexts for ECG delineation.  

The integration of ECG delineation with deep learning 

and BHO optimization presents a powerful method for 

improving cardiac diagnostics. The proposed framework 

not only surpasses existing performance benchmarks but 

also lays the groundwork for real-world deployment in 

clinical and remote healthcare settings.  
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