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Abstract 

Engagement can be defined as how individuals are involved in and interact with a task that requires attention and emotional 

conditions. Engagement is an affective state positively correlated with learning processes. Engagement along with other 

affective states, such as boredom, confusion, and frustration must be analyzed to identify students’ learning behavior. 

Implementing proper prevention by measuring student engagement levels could increase students’ learning intake. Such 

implementation involves building an effective feedback system or rearranging the learning design. Several researchers have 

proposed deep-learning approaches using the DAiSEE dataset to classify student engagement levels. In addition, previous 

studies utilized various loss functions equipped with class weighting to assign higher importance to the minor classes, which 

are low and very low engagement classes. Most of the state-of-the-art models achieved high accuracy, but the f1-score was 

still low because of the minor class struggle. This research tries to solve engagement level classification on imbalance 

conditions by proposing a normalized loss function weighting based on the Inverse Class Frequency formula based on each 

class’ instances to give more importance and focus to the classes and trained on Vanilla EfficientNet model rather than 

experimenting on more advanced model to keep the efficient and suit the memory constraint on the e-learning implementation. 

Based on the conducted experiments, the normalized ICF obtained the highest accuracy of 51.64% and weighted f1-score of 

50.86%, which is superior to the standard ICF performance, which received 50.32% accuracy and weighted f1-score of 50.49% 

using the same settings. 
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1. Introduction  

Emotion is one of the important aspects in human social 

activities. Emotion combines various feeling, thoughts, 

and also human behaviour. Identification and emotion 

categorization which present and felt by someone can 

be done through emotion recognition. Various domains 

and applications have used emotion recognition as part 

of its process, such as marketing, e-learning, e-health, 

user experience, and even transportation and military 

[1]. In recent years, one of emotion recognition domain, 

namely e-learning, has grown rapidly through the 

presence of Massive Open Online Course which also 

known as MOOC. The growth and interest in this area 

has drawn researchers’ attention to conduct research in 

this area. 

Although there has been several research on e-learning 

topics, such as e-learning recommendation systems in 

[2] and e-learning personalization based on the user’s 

learning style in [3], there are still few studies that 

discussing or classifying the student engagement in e-

learning environment. As in [4], the term ‘engagement’ 

can be defined as how individuals are involved and 

interact with a task that requires attention and emotional 

state. 

Researchers in [5] mentioned that there are three 

dimensions or types of student engagement, namely 

emotional, cognitive, and behavioral engagement. 

Emotional engagement refers to the affective states of 

the students during an activity conducted in the 

classroom. Cognitive engagement measures students’ 

motivation, effort, and strategy when faced with a 

problem or even failure. Behavioral engagement 

focuses on activities, both academic and social, that are 

considered crucial for achieving success in school and 

preventing dropout. 

https://doi.org/10.29207/resti.v9i3.6161
https://creativecommons.org/licenses/by/4.0/
https://www.iaii.or.id/


 

Joseph A. Sugihdharma et al                               Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol. 9 No. 3 (2025) 

 

                                                                                         636 

 

The rapid growth of MOOC is followed by the 

increasing number of new students registering and 

participating in the MOOC. In other side, most of the 

MOOCs have low retention rates followed by high level 

of dropouts, reaching 91-93% on the first assignment 

with the completion rates of 45% on the first assignment 

[6]. The course completion rates itself reaching 40% on 

several courses, but most of them only have less than 

10% of completion rates [7]. Students think that there 

are two common drawbacks found in MOOC, which are 

‘lecture fatigue’ because most of the course content 

dominated by videos and ‘poor course design’ because 

the course is lack of feedback or two-way interactivity 

between the teachers and students. Detecting 

engagement emotion is one of prevention step to tackle 

several academic problems, such as low academic 

performance, feeling of being isolated, and high 

dropout as stated in [8]. 

Two of the most common approach in engagement 

emotion classification are frame-based and sequence-

based or video-level approach. Various models were 

proposed in the state-of-the-art research to solve 

students’ engagement classification in e-learning 

environments, by using Convolutional Neural 

Networks-based model to capture spatial 

representations better or Temporal and Recurrent 

Neural Network-based model to consider the 

relationship between each frames better. In order to 

enhance the performance of those models, several 

researchers tried out different loss weighting function to 

classify better and give a higher attention to the minor 

classes. As in [9], the researchers proposed 3D 

DenseAttNet to solve engagement classification 

problem using sequence of frames. The researchers 

utilized several loss functions, such as Cross Entropy 

loss (CE) and Class Balanced (CB)-based loss function, 

such as CB-Cross Entropy loss (CB-CE), and CB-Focal 

Loss (CB-FL). Another research by [10] proposed a 

Vision Transformer model to solve engagement 

classification problem in single frame scenario. The 

researchers also used the same loss function as [9], such 

as CE, CB-CE, and CB-FL. Additional loss function, 

such as Focal Loss (FL), Cross Entropy (CE) with 

sample weights, and Focal Loss (FL) with sample 

weights were also utilized. 

Based on the confusion matrix results displayed in [9] 

and [10], it can be concluded that each loss function has 

its own characteristics. The suitability of a loss function 

weighting depends on the use case of the weighting 

formula. CB loss, proposed by [11] designed to tackle 

imbalanced data classification problem by re-weighting 

the samples using inverse effective number of samples, 

which trying to ensure that there is no information 

overlap among data as the samples increases. As a 

result, overfitting risk could be reduced and also 

minority cases could be detected and classified 

correctly. However, in this situation, CB-based loss as 

tested in [9] and [10], only classify very low to none 

amount of data (mostly less than 10 instances) to the 

minority classes, which is low engagement. 

Additionally, based on the research conducted by [10], 

the model that enhanced with CB loss weighting which 

achieved the highest performance using patch of 32 

tends to classify most of the data to one of the major 

classes. This causes the increasing amount of false 

positive on other classes. On the other hand, when 

Categorical Cross Entropy (CCE) enhanced with 

Inverse Class Frequency (ICF) sample weight, the 

model obtained lower accuracy but the correctly 

classified data distribution is more balanced using the 

patch of 32. In addition, more minority class samples 

are detected which achieved the highest accuracy rather 

than CB loss. Even though the minority classes samples 

that classified correctly is very low, it can be concluded 

that ICF loss weighting shows a promising opportunity 

to classify the instances better. 

Based on the identified characteristics of each loss 

function weighting in previous research, a new loss 

function weighting is proposed by modifying the ICF 

weighting, named Normalized-ICF weighting. The 

proposed Normalized-ICF weighting normalizes the 

weight of each class by the highest weight from the 

class list. The proposed Normalized-ICF loss function 

weighting aims to improve the model performance on 

classifying the minor classes, which is class 0 (very low 

engagement) and class 1 (low engagement). Several 

tests and experiments also conducted to test the 

performance of the model on different scenarios, 

namely sampling interval test which test the model 

using different number of frames taken from each video 

and image augmentation test which test the model on 

different input image transformation. 

Detecting engagement emotions could tackle several 

academic problems, such as high dropout. Previous 

research in this field has proposed various models and 

enhanced them with various loss function weighting, 

but most have low performance on minor class, such as 

in [10]. Detecting the minor classes, namely very low 

and low engagement classes is important since the 

model will only classify the input image into high or 

very high engagement if the model is unable to detect 

the minor classes at all. This research aims to improve 

the performance of minor class detection by proposing 

a new loss function weighting by normalizing the class 

weights based on the ICF formula using a vanilla 

EfficientNet-B0 model. This model was chosen since 

it’s one of the smallest and most efficient models in 

CNN-based architecture, which is suitable to be 

implemented in real-world devices. Rather than 

experimenting with models’ architecture, one of the 

main focuses in this research is to find and tune the 

supporting components of the model that affect the 

model’s perspective and performance during the 

training flow while keeping the architecture efficient for 

future implementation. Subsequently, several tests such 

as the sampling interval test and image augmentation 

test were also conducted. Sampling interval tests were 

intended to find the optimal interval that may achieve 

the best classification performance and minimize the 

redundancy in data sampling since the DAiSEE dataset 
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has very low movement on each frame and there are no 

certain rules that state the most optimal interval, while 

the image augmentations tests were conducted to find 

which augmentation could bring optimal variations to 

the model to maximize the classification performance. 

2. Methods 

 
Figure 1. Methodology 

Figure 1 shows the proposed methodology for 

engagement classification in this research. First, each 

video in DAiSEE dataset were extracted into single 

frames. Each video yield around 300 frames since it has 

a duration of 10 seconds each and 30 frame per second 

(fps). After each video were extracted, only several 

frames were taken to represent each video based on the 

defined frame-taking interval. Selected frames were 

merged into one big dataset and then shuffled since it is 

a frame-level engagement classification. On each 

frame, augmentations were done to increase variations 

on the dataset and each frame were resized to suitable 

size for the model. Furthermore, the data were 

normalized with ImageNet mean and standard deviation 

for the EfficientNet model and the class weights were 

counted based on the amount of data in each class. The 

class weighs will be used as the loss function weighting 

to give higher attention to the class with less data or 

higher weight. For the label, only engagement level will 

be considered and selected as the final label. After the 

frame and label are preprocessed, both will be passed 

into the chosen model to be trained. Finally, the 

performance of the trained model on each test were 

collected and analyzed to see the pattern and 

characteristics of the proposed loss function weighting. 

The tests are consists of several intervals test and image 

augmentations. The model is evaluated based on the 

accuracy and f1-score from the confusion matrix value 

using the test split provided by the dataset. 

2.1 Dataset 

DAiSEE (Dataset for Affective States in E-

Environments) dataset is used in this study. This dataset 

was proposed by [12] from Indian Institute of 

Technology Hyderabad (IITH) and consists of 9.068 

videos collected from 112 subjects ranging between 18 

to 30 years old. Each video has a duration of 10 seconds 

with 30 frame per second (fps), which produce around 

300 frames in total. The researchers in [12] identified 

several problems in previously available datasets, such 

as no datasets addresses four affective states which are 

necessary in e-learning environment and also most of 

them were taken in a controlled environment. 

Therefore, DAiSEE tried to tackled those problem by 

take the video in an uncontrolled environment or also 

called ‘in-the-wild’ and labelling each video with four 

affective states, namely boredom, engagement, 

confusion, and frustration.  Each affective states have 

four intensity levels, ranging from 0 to 3 representing 

very low, low, high, and very high. 

Table 1. DAiSEE class distribution 

Class Train Split Val. Split Test Split 

Class 0 (Very Low) 34 23 4 

Class 1 (Low) 213 143 84 

Class 2 (High) 2617 813 882 

Class 3 (Very High) 2494 450 814 

Table 1 shows the distribution of each engagement level 

in the DAiSEE dataset on each split. Even though class 

0 has less than 100 instances in total, but this class is 

retained based on their defined characteristics and in 

order to be fairly compared with other state-of-the-art 

researchs. According to [13] and [14], each engagement 

level can be distinguished based on several 

characteristics. Students with very low engagement 

(class 0) tends to tilt their body to the back, the eye gaze 

is not focused on the monitor [14], sometimes the eyes 

are completely closed, and not thinking about the given 

task [13]. Students with low engagement (class 1) 

barely opened their eyes, still not ‘into’ their task [13], 

and sometimes touched their eyelids unnecessarily, 

looking tired and frustrated [14]. Students with high 

engagement (class 2) show a calm expression, eyes 

focused on the monitor, and sit straightly [14]. They 
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don’t need to be reminded to focus on the task [13]. 

Students with very high engagement (class 3) should be 

praised for their engagement in the task [13]. They show 

more seriousness and focused eyes on the screen [14]. 

2.2 Frame interval selections 

There has been only few research that conduct 

engagement classification using frame-based approach. 

Just like in sequence-based approach, there has been no 

certain strict rules on how many frames taken for 

training or testing the classifier. Gupta et al. [12] as the 

baseline research used interval of 4 frames. In the other 

side, Mandia et al. [10] used interval of 30 frames, 

taking 10 frames to represent each videos. In the 

sequence-based or video-level approach, the 

researchers in [9] sampled the video using interval of 10 

frames to classify the engagement level, while in [15] 

the researchers experimenting with 20, 40, 60, and 80 

frames for each video snippet. In the baseline research, 

Gupta et al. [12] stated that there’s no effect on accuracy 

when selecting different interval during the data 

sampling process. In order to prove this hypothesis and 

giving quantitative insights, 15 different intervals were 

tested in this research using systematic sampling 

strategy as shown in Equation 1. 

𝑘 =
𝑁

𝑛
                (1) 

The 𝑘 variable represent the sample that will be selected 

from each video, while 𝑁 represents the total frame in 

the video, and 𝑛 is the sampling interval which will take 

a frame every 𝑛-th frame. The intervals or 𝑛 were 

selected based on the multiplicative factor of 300 

frames, which is the total amount of frames in a video. 

The selected intervals are sampled every 1, 2, 3, 4, 5, 6, 

10, 15, 20, 30, 50, 60, 100, 150, and 300 frames from 

each video. Based on the selected interval value, 

number of samples 𝑘 representing each video clip 

would be 300, 150, 100, 75, 60, 50, 30, 20, 10, 6, 5, 3, 

2, and 1 respectively. The different sampling interval 

were done in the training set, while the test set used 30 

frames sampling interval to match the number of the 

instances in Mandia et al. [10] for a fair comparison. 

Using all the frames in the dataset or sampling the 

frames consecutively may bring data redundancy since 

there are very little movement in each DAiSEE dataset 

video. Therefore, to introduce more generalization to 

the model, the frames were selected every 𝑛-th frame. 

Besides, sampling the data can reduce the 

computational cost rather than using all of the data. 

2.3 Image augmentation combinations 

Image augmentation tests were conducted in order to 

understand the model behavior and performance using 

different augmentation combinations. According to 

[16], image augmentations can be considered as data-

level approach to tackle imbalance problem in the 

dataset. Two main types in data augmentations are data 

warping which transforms the image ‘on the fly’ and 

oversampling which create synthetic data based on the 

available dataset. Oversampling can increase the final 

dataset depending on how many factors that the data is 

oversampled. Based on the research that has been done 

by [17], it can be concluded that augmentation in data-

space such as data warping transformation produces 

better performance as long as the chosen transformation 

is able to maintain the original label. Therefore, data 

warping approach were used in this study. During the 

data warping process, each image was transformed and 

augmented ‘on the fly’ during the training process, 

resulting in variations of the data to be seen by the 

model at each epoch during the training phase, but the 

actual stored dataset size and instances remain the same.  

As in [16], there are various augmentations types that 

can be chosen to tackle this problem from basic image 

augmentations up to deep learning approaches. Deep 

learning approaches covers adversarial training, neural 

style transfer, and Generative Adversarial Networks 

(GAN) which can generate new synthetic examples, but 

this approach is cost expensive and requires high 

computational power [18]. On the other side, basic 

image manipulations, such as geometric transformation, 

color transformations, random erasing, kernel filters, 

and mixing image are easier to implement. However, its 

suitability is domain-dependent and need a careful 

consideration regarding the ‘safety’ of the 

augmentation. 

In the engagement classification context, not all of the 

mentioned approach might improve the classification 

performance, for example mixing images might make 

the final output have a little sense from human 

perspectives, random erasing potentially erases the 

important part of the picture such as faces, while color 

transformation might change the brightness of the 

environment even though the original pictures already 

captured in dark environments. Therefore, basic image 

transformations such as scaling, cropping, flipping, 

rotation, and shearing might become the most suitable 

image augmentation approach. In this research, only 

scaling, cropping, and flipping which are selected as 

image augmentation transformations, since rotation and 

shearing might make biases to the model during the 

prediction phase since the body posture affect the 

engagement level according to [14]. 

Based on the selected image augmentation 

transformations, there are five combinations used in this 

research to create variations of the data to the model 

during training, namely resize (scaling), random resized 

crop (scaling and cropping), resize + horizontal flip 

(scaling and flipping), random resized crop + horizontal 

flip (scaling, cropping, and flipping), and horizontal flip 

+ random resized crop (scaling, cropping, and flipping). 

Two operations look identic to each other, namely 

‘random resized crop + horizontal flip’ and ‘horizontal 

flip + random resized crop’, but two of them are 

different in implementation. They differ in the order in 

which the transformations are applied. In the random 

resized crop + horizontal flip operation, the image is 

randomly cropped, resized to a suitable input size for 

the model, and then flipped. In contrast, the horizontal 

flip + random resized crop transformations will flip the 
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image first, then crop a random area on the image, and 

finally resize the image. 

2.4 State-of-the-art loss function weighting 

There has been various approach in engagement 

emotion classification. Two of the most common 

approach in engagement emotion classification are 

frame-based and sequence-based approach. Currently, 

there are two state-of-the-art research besides the 

baseline research by Gupta et al. [12] that classified the 

engagement emotion using a frame-based approach, 

namely Mandia, Singh, and Mitharwal research in [9] 

as well as Adyapady and Annappa research [19]. On the 

other hand, there have been several research that 

classifying the engagement level using temporal 

approach, such as 3D based approach as in [9], Long 

Recurrent Convolutional Network (LRCN) as in [12], 

enhancing CNN based model with LSTM or TCN as in 

[20], or even passing images in the sequence one by one 

as in [15]. Based on the state-of-the-art research, there 

are two commonly used loss function weighting, 

namely ICF and CB. 

ICF is one of the most common loss function weighting 

used in several state-of-the-art research. The ICF loss 

prevents the minority class samples to be classified into 

the majority classes [20] due to the imbalanced data 

distribution by giving a higher importance to the 

minority classes samples by assigning higher weights. 

𝛼𝑖 =
1

𝐾𝑜
∗

𝐾

𝑂
               (2) 

As in [10], the standard ICF weighting formula is shown 

in Equation 2, where 𝛼𝑜 represents the weighting in a 

loss function for class 𝑜, 𝐾𝑜 represents the number of 

samples in class 𝑜, 𝐾 represents total number of 

samples, and 𝑂 represents total number of samples. The 

ICF weight is determined based on the proportions of 

samples in a certain class to all the samples across all 

classes. The weights of ICF commonly multiplied with 

the CCE loss. 

As in [10], researchers utilized standard ICF as one of 

the loss function weightings for the proposed Vision 

Transformer model to classify student engagement 

level. The proposed Vision Transformer model 

achieved 49.86% accuracy when CCE with ICF sample 

weights is used and 54.87% accuracy without using 

sample weights using patch of 32, while lower accuracy 

of 52.16% and 46.49% obtained using CCE without 

sample weight and CCE with ICF sample weight 

respectively using patch of 64. Based on the provided 

confusion matrix, CCE without sample weight failed to 

classify any of the minority classes samples from class 

0  or class 1 using the patch of 32, but the CCE equipped 

with ICF sample weights could classify 13 samples that 

belongs to class 1. 

Class Balanced (CB) loss is also one of the loss function 

weightings commonly found in the state-of-the-art 

research on engagement level classification. CB loss 

was proposed by [11] and designed to tackle the 

imbalanced data problem by assigning a weighting 

factor that inversely proportional to the effective 

number of samples. Effective number of samples can be 

defined as volumes of samples which approximately 

enough to train the model and minimize the data usage 

with similar or overlapping features at a time. 

𝐸𝑛 =
1−𝛽𝑛

1−𝛽
, 𝑤ℎ𝑒𝑟𝑒 𝛽 =

(𝑁−1)

𝑁
             (3) 

𝐶𝐵(𝑝, 𝑦) =
1

𝐸𝑛𝑦

𝐿(𝑝, 𝑦) =
1−𝛽

1−𝛽𝑛𝑦 𝐿(𝑝, 𝑦)            (4) 

The effective number of samples formula is shown in 

Equation 3. The 𝑛 variable represents the amount of 

samples and 𝛽 is a hyperparameter which has element 

value between 0 and 1 (𝛽 ∈ [0,1]). The CB loss formula 

was formed by performing inverse on the effective 

number of samples as shown in Equation 4, where 

𝐿(𝑝, 𝑦) is an independent loss function which can be 

added to the CB loss function, while 𝑝 is the probability 

of predicted class and 𝑦 is the ground truth class label 

from the predicted sample. 𝑛𝑦 represents the amount of 

samples 𝑛 which has label of 𝑦. 

𝐶𝐵𝑠𝑜𝑓𝑡𝑚𝑎𝑥−𝐶𝐶𝐸 = −
1−𝛽

1−𝛽𝑛𝑦 log(
𝑒𝑧𝑦

∑ 𝑒
𝑧𝑗𝐶

𝑗=1

)            (5) 

𝐶𝐵𝐹𝐿 = −
1−𝛽

1−𝛽𝑛𝑦
∑ (1 − 𝑝𝑖

𝑡)𝛾log (𝑝𝑖
𝑡)𝐶

𝑖=1             (6) 

CB Loss commonly paired with loss function such as 

CCE to form CB-CCE as shown in Equation 5 or FL to 

form CB-FL as shown in Equation 6. In CB-CCE 

formula, the class balanced weighting is multiplied by 

the value of softmax CCE formula, while in the CB-FL 

formula the weighting is multiplied with the modulating 

factor of (1 − 𝑝𝑖
𝑡)𝛾 and the sigmoid CCE formula. The 

𝑝𝑖
𝑡 variable represent the logits from the sigmoid 

activation function. 

As in [10], researchers also utilized CB loss weighting 

besides standard ICF for the proposed Vision 

Transformer model to classify student engagement 

level. The proposed Vision Transformer model 

achieved highest accuracy of 55.18% in patch of 32 

using CB-CCE loss and 52.44% when CB-FL is used. 

Using patch of 64, the accuracy dropped to 51.32% 

when using CB-CCE and 45.95% using CB-FL. 

However, when CB is used, the accuracy is 3%-6% 

higher using patch of 32 compared to weighted CCE 

using ICF loss weighting, but the minority class 

detection in CB-FL and CB-CCE is lower than ICF, 

achieving true positive value of 6 and 0 in class 1 

respectively. 

2.5 Normalized loss function weighting 

In this research, the proposed loss function weighting 

modifies the weighting formula used by [10], which is 

standard ICF formula. Weight normalization was 

performed in order to help the model become more 

sensitive to classify the minor classes and also put the 

weighting range between 0 and 1. Normalizing the 

value also helps to speed up the learning phase of the 

model [21]. The proposed formula for loss function 

weighting normalization is shown in Equation 7. In this 
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formula, the weight of the loss function which 

originally calculated with standard ICF formula will 

divided by the maximum number of the calculated 

weights between all classes. Therefore, the resulting 

weights will have value of 1 for the class with the 

highest weights, and anywhere between 0 and 1 for the 

rest of the class which originally have lower weights. 

𝛼𝑖 =

1

𝐾𝑜
∗

𝐾

𝑂

𝑚𝑎𝑥(
1

𝐾𝑜
∗

𝐾

𝑂
)
               (7) 

There have been several methods on how to normalize 

the value of a data list, such as normalizing a feature 

value using Min-Max normalization as shown in 

Equation 8. As in [21], the researchers compared 

several normalization method, namely Zero-Mean 

normalization, Sigmoidal normalization, Softmax 

normalization, and Min-Max normalization. The results 

obtained in [21] showed that Min-Max normalization 

has better performance and calculation time compared 

to other normalization method. 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
              (8) 

Min-Max normalization works by substracting the 

current data 𝑋 with the minimum value in the list then 

divided by the substraction between maximum value 

and minimum value in the list. The proposed 

normalized ICF weighting modifies the original Min-

Max normalization. The approach of substracting 

current value and maximum value with the minimum 

value was not adopted in the proposed loss function 

shown in Equation 7. The removal of minimum value 

substraction prevent the class weight which has 

minimum value to be normalized to zero. When a class 

weight has value of zero, it might affect the whole loss 

calculation process and give zero importance on the 

corresponding class. Using the proposed normalized 

ICF formula, the weights of each class is normalized as 

shown in Table 2. 

Table 2. Standard and normalized ICF weight 

Class Standard ICF 

Weight 

Proposed Normalized 

ICF Weight 

Class 0 (Very Low) 39.3485 1.0000 

Class 1 (Low) 6.3076 0.1603 

Class 2 (High) 0.5117 0.0130 

Class 3 (Very High) 0.5371 0.0136 

2.6 Evaluation metrics 

In order to evaluate the classification performance from 

each model, several metrics were calculated based on 

the confusion matrix value. True positive (TP), false 

positive (FP), false negative (FN), and true negative 

(TN) were used to calculate accuracy, precision, recall, 

and f1-score. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
              (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
            (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (11) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
           (12) 

Accuracy can be calculated by dividing all true 

predicted instances with all of the data using the 

formula shown in Equation 9 to find out how many 

samples were correctly classified. Equation 10 shows 

the formula of precision which used to calculate how 

many positive samples were correctly classified among 

all of the samples that were predicted as positive. Recall 

can be calculated using the formula shown in Equation 

11 to count how many positive samples were correctly 

classified among all the samples that belong to the 

corresponding class. f1-score can be measured using 

Equation 12, which calculates the harmonic mean of 

precision and recall. Based on the known evaluation 

metrics value, namelyprecision, recall, and f1-score, 

macro averaging and weighted averaging were 

calculated for the final value which represent the 

performance of all-class classification. 

𝑀𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝐶
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝐶
𝑖=1           (13) 

𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

𝐶
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝐶
𝑖=1            (14) 

𝑀𝑎𝑐𝑟𝑜 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
1

𝐶
∑ 𝐹1𝑖

𝐶
𝑖=1            (15) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ 𝑤𝑖 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
𝐶
𝑖=1      (16) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙 = ∑ 𝑤𝑖 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝐶
𝑖=1           (17) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑤𝑖 × 𝐹1𝑖
𝐶
𝑖=1           (18) 

The formulas in Equations 13 through 15 are used to 

calculate macro precision, macro recall, and macro f1-

score respectively. The 𝐶 variable represents the total 

class in the dataset. The macro-averaging sums up each 

value in the calculated evaluation metrics value from 

each class, then divides it by the total number of classes. 

The macro-averaging treats all classes equally, 

regardless of class frequency. The formulas in 

Equations 16 through 18 are used to calculate weighted 

precision, weighted recall, and weighted f1-score 

respectively. The 𝑤𝑖 variable represents the proportion 

of the class frequency or true samples in each class 

divided by all of the samples in the dataset. In contrast 

to macro-averaging, weighted-averaging calculates the 

final value based on the proportion of each class 

frequency, rather than averaging them equally. 

Besides macro-averaging, micro-averaging computes a 

global average f1-score by calculating the sum or total 

of the true positive (TP), false negative (FN), and false 

positive (FP) values across all classes. In other words, 

micro-averaging essentially computes the proportion of 

correctly classified samples out of all samples and this 

condition has the same behavior as calculating overall 

accuracy. In a case where the final classification is a 

single label, the micro precision, micro recall, and 

micro f1-score will have the same value with accuracy. 

Therefore, a single accuracy value is sufficient, since it 

is equivalent and could represent micro precision, micro 

recall, and micro f1-score in a single-label 

classification. 
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3. Results and Discussions 

In this research, the performance of two loss function 

weighting were compared, namely state-of-the-art 

Mandia loss function weighting as defined in [9] and the 

proposed normalized loss function weighting. Several 

tests were carried out in different scenarios as defined 

in the previous section in order to understand and gain 

optimal performance for both of the loss function 

weighting, which are interval tests and augmentation 

test. Each test for both loss function weighting was done 

using default or vanilla EfficientNet-B0 model which is 

the smallest variant of EfficientNet model proposed by 

[22]. 

Table 3 shows the initial test result from both loss 

function weighting. Each loss function weighting was 

applied to EfficientNet model that was trained using 

frames interval of 30, resize + horizontal flip image 

augmentations, 10 epochs, batch size of 50, learning 

rate of 0.001 with gamma of 0.5 and step size of 5 which 

will cut the learning rate by 50% every 5 epochs. Based 

on the obtained results, it can be seen that our proposed 

normalized loss function weighting is superior in all 

evaluation metrics. It obtained accuracy of 51.64%, 

macro f1-score of 30.67%, and weighted f1-score of 

50.86%. 

Table 3. Initial test results 

Intervals Standard 

ICF 

Normalized ICF 

(Proposed) 

Accuracy 50.32% 51.64% 

Macro Precision 29.89% 31.09% 

Macro Recall 30.5% 32.14% 

Macro F1-Score 30.14% 30.67% 

Weighted Precision 30.72% 52.75% 

Weighted Recall 50.33% 51.64% 

Weighted F1-Score  50.49% 50.86% 

Fifteen sampling intervals are defined and tested on 

both EfficientNet model with standard ICF loss 

weighting and proposed normalized ICF loss weighting. 

Different intervals were selected to understand the 

performance of each loss function weighting when 

trained with different amount of data. The model was 

trained using 10 epochs, batch size of 50, and Resize + 

Random Horizontal Flip augmentation. The accuracy 

and f1-score of the model on different interval scenario 

shown in Table 4. 

Based on the obtained weighted f1-score, it can be seen 

that both model performs well when trained and tested 

using interval of 30, which consists of 10 frames that 

represent each video, achieving 50.49% using standard 

ICF loss function weighting and 50.86% using 

normalized ICF loss function weighting. From 15 tested 

interval, model with normalized ICF loss weighting 

superior in 9 intervals, while standard ICF only achieve 

higher accuracy in 6 intervals. On some intervals, 

there’s a big difference in performance value between 

both of the loss function weightings. Based on the state-

of-the-art research, the intervals used in [10] is interval 

of 30 and [12] sampled every 4th frame when utilizing 

EmotionNet to analyze DAiSEE. Therefore, a deeper 

look is done based on the confusion matrix of both 

intervals. 

Table 4. Interval test accuracy 

Intervals 

(frame) 

Standard ICF Normalized ICF 

Acc Weigh. F1 Acc Weigh. F1 

1 45.92% 45.79% 47.73% 46.88% 

2 45.15% 44.28% 47.16% 46.42% 

3 50.12% 49.1% 47.62% 46.35% 

4 48.75% 45.92% 51.85% 50.27% 

5 46.8% 45.68% 49.3% 48.54% 

6 50.1% 47.62% 52.17% 49.75% 

10 49.83% 48.56% 49.1% 46.98% 

15 48.98% 47.49% 50.14% 49.2% 

20 47.71% 47.22% 48.94% 48.26% 

30 50.32% 50.49% 51.64% 50.86% 

60 47.72% 47.3% 47.52% 47.29% 

75 50.31% 50.11% 50.44% 49.51% 

100 50.46% 50.09% 48.2% 48.01% 

150 44.52% 43.91% 44.2% 43.62% 

300  46.7% 44.83% 46.75% 45.08% 

    

            (a)     (b) 

Figure 2. Interval of 30’s confusion matrix (a) using standard ICF 

and (b) using normalized ICF 

Figure 2 shows the results of the interval of 30 on both 

loss weightings. It can be seen that normalized ICF 

achieve higher true positive on class 1, which correctly 

classified 197 samples on the minority class. When 

majority class samples taken into considerations, model 

with standard ICF achieve more balanced distribution 

between class 2 and 3, while normalized ICF suffering 

similar phenomenon as the highest performing loss 

weighting in [10] which tends to classify most of the 

majority samples into class 2. 

Sampling every 4th frame results the confusion matrix 

as shown in Figure 3. Generally, the true positive of the 

minority class decreased significantly on both loss 

weightings. The true positive value of class 1 using the 

normalized ICF is higher than using standard ICF, 

namely 34 samples were correctly classified into class 

1. Besides, the total of false positive on the class 1 is 

also lower on model with normalized ICF weighting. 

On the majority samples of class 2 and 3, the true 

positive distribution is also more balanced on the model 

with normalized ICF rather than standard ICF. 

Generally, it can be concluded that the selection of 

intervals can affect the model’s performance 

significantly, especially when detecting minority 

samples. Interval of 30 achieve better performance on 

both models since it takes 10 frames to represents each 

video, which a moderate number of frames to prevent 

frame similarity since there’s very minimum movement 

on each frame. Since interval of 30 achieve the highest 

f1-score, this interval is brought into the next test, which 

is image augmentation test. 
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                             (a)                                                      (b) 

Figure 3. Interval of 4’s confusion matrix (a) using standard ICF and 

(b) using normalized ICF 

Table 5. Image augmentation test accuracy 

LR Image 

Augmentation 

Standard 

ICF 

Normalized ICF 

(Proposed) 

0.001 Resize 52.01% 46.15% 

0.001 Random 

Resized Crop 

48.28% 46.15% 

0.001 Resize + 

Horizontal Flip 

50.32% 51.64% 

0.001 Random 

Resized Crop + 

Horizontal Flip 

44.71% 42.17% 

0.001 Horizontal Flip 

+ Random 

Resized Crop 

45.83% 50.04% 

0.0001 Resize 45.24% 45.25% 

0.0001 Random 

Resized Crop 

42.06% 42.03% 

0.0001 Resize + 

Horizontal Flip 

46.55% 46.58% 

0.0001 Random 

Resized Crop + 

Horizontal Flip 

42.8% 42.8% 

0.0001 Horizontal Flip 

+ Random 

Resized Crop 

43.92% 43.89% 

Table 5 and Table 6 shows the accuracy and weighted 

f1-score of image augmentations test on both loss 

weightings respectively. There are five combinations of 

augmentations, each tested on two different learning 

rates, namely 0.001 and 0.0001. Generally, most of the 

defined augmentations yield similar results in terms of 

accuracy and f1-score when the models compared to 

each other, but not all of them obtained similar 

confusion matrix value. For example, the Resize + 

Horizontal Flip using 0.001 learning rate obtained 

different minority class true positive value on both 

models as shown in Figure 2. Therefore, a deeper look 

on the confusion matrix value is needed. 

Confusion matrix in Figure 4 shows the results on both 

model when the data is transformed using horizontal 

flip and random resized crop. Based on the confusion 

matrix value, it can be seen that the true positive of class 

1 using standard ICF is higher than normalized ICF, but 

the false positive of class 2 sample being classified as 

class 1 is reaching more than 1000 samples. On the 

majority class, it seems that higher number of samples 

is classified correctly using normalized ICF, resulting 

in higher accuracy of 50.04% with 50.06% f1-score. 

The imbalanced in majority class prediction using 

standard ICF is mainly caused by the high false negative 

rates of class 3 which is classified as class 2 samples. 

 

 

Table 6. Image augmentation test weighted f1-score 

LR Image 

Augmentation 

Standard 

ICF 

Normalized ICF 

(Proposed) 

0.001 Resize 51.38% 47.15% 

0.001 Random 

Resized Crop 

49.03% 48.37% 

0.001 Resize + 

Horizontal Flip 

50.49% 50.86% 

0.001 Random 

Resized Crop + 

Horizontal Flip 

44.82% 42.99% 

0.001 Horizontal Flip 

+ Random 

Resized Crop 

47.4% 50.06% 

0.0001 Resize 44.71% 44.71% 

0.0001 Random 

Resized Crop 

39.28% 39.25% 

0.0001 Resize + 

Horizontal Flip 

46.39% 46.42% 

0.0001 Random 

Resized Crop + 

Horizontal Flip 

39.41% 39.42% 

0.0001 Horizontal Flip 

+ Random 

Resized Crop 

40.93% 40.89% 

 

                             (a)                                                  (b) 

Figure 4. Horizontal flip + random resized crop augmentation with 

0.001 learning rate (a) using standard ICF and (b) using normalized 

ICF 

 

                             (a)                                                  (b) 

Figure 5. Resize augmentation with 0.001 learning rate (a) using 

standard ICF and (b) using normalized ICF 

Another confusion matrix as shown in Figure 5 is taken 

into deeper analysis. The confusion matrix in Figure 5 

is the results obtained using resize augmentation and 

has opposite performance with the previous confusion 

matrix, where standard ICF shows higher performance 

rather than normalized ICF. From the minority class 

true positive, it can be seen that normalized ICF still 

dominating the results, classifying 151 class 1 samples 

correctly. Based on the majority class samples 

classification, it can be seen that normalized ICF 

prediction is lower than standard ICF, but obtained 

more balanced distribution.  A cross-comparison can be 

done by comparing normalized ICF weighting when 

trained using resize augmentation with standard ICF 

weighting when trained using random resized crop + 

horizontal flip since it achieved similar performance on 

accuracy and also f1-score. Minority class which 

classified correctly seems similar between both model, 

but normalized ICF performed better classification 
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since the number of false positive on samples predicted 

as class 1 is much lower than standard ICF. 

Additional observations can be seen on the confusion 

matrix of each model which obtained highest weighted 

f1-score using a certain image augmentation. Model 

with standard ICF achieved highest weighted f1-score 

of 51.38% using resize augmentation and 0.001 

learning rate, resulting confusion matrix as shown in 

Figure 5(a). On the other hand, model with proposed 

normalized ICF achieved highest weighted f1-score of 

50.86% using resize + horizontal flip and 0.001 learning 

rate, resulting confusion matrix as shown in Figure 2(b). 

While the weighted f1-score of normalized ICF model 

is a bit lower rather than standard ICF model, but the 

correctly classified instances of class 1 samples are 

higher, namely 197 instances compared with the 

standard ICF model which correctly classified only 114 

class 1 instances. Based on the observations of the 

model through several testing, it can be concluded that 

various sampling interval and various image 

augmentations may perform differently on the model 

final performance. The model may perform well with a 

certain sampling and augmentation, but also may 

perform lower when different sampling or 

augmentations applied. While sampling interval and 

image augmentations techniques can help improving 

overall classification performance in highly imbalanced 

dataset such as DAiSEE, there are some trade-offs that 

have to be taken into consideration based on the main 

purpose of the research, such as the true positive in 

certain class, accuracy, and f1-score. In order to observe 

each model deeper, Gradient-weighted Class Activation 

Maps (GradCAM) is utilized to understand the region 

that gains the models’ attention the most. Two images 

from different video clip randomly taken and shown in 

Figure 6 and Figure 7. 

     

                         (a)          (b) 

Figure 6. GradCAM result of video 8264120127.avi at the 150th 

frame: (a) using standard ICF weighting and (b) using proposed 

normalized ICF weighting 

Based on the GradCAM results as shown in Figure 6, it 

can be seen that the model with standard ICF marks 

unnecessary area on the bottom left corner which 

marked with red colour as an important part that 

determine the levels of engagement. Oppositely, model 

with normalized ICF marks those area as less important. 

Another example of GradCAM evaluation on both loss 

function weighting shown in Figure 7. Although both of 

them looks similar, but it can be seen that standard ICF 

give attention to a wider area on the cupboard behind 

the subject, while proposed ICF give less or thinner 

attention on the cupboard and on the space between the 

mirror and the subject. Similar phenomenon can be seen 

on the blank space between the subject’s head and the 

mirror behind the subject. 

 
(a) 

 
(b) 

Figure 7. GradCAM result of video 5100342042.avi at the 150th 

frame: (a) using standard ICF weighting and (b) using proposed 

normalized ICF weighting 

Table 7. State-of-the-art (Frame Level) 

Methods Accuracy Weighted 

F1-Score 

InceptionV3 [12] 47.10% Unknown 

Facial Engagement Analysis Net 

(FEA-Net) [19] 

62.16% 39.54% 

Vision Transformer [10] 55.18% 49.41% 

EfficientNet-B0 with normalized ICF 

loss weighting (proposed) 

51.64% 50.86% 

Table 7 shows the accuracy and f1-score between the 

proposed method, namely EfficientNet-B0 with 

normalized loss function weighting compared to the 

previous state-of-the-art level in frame-based 

engagement classification. The original research of the 

dataset written by [12], obtained a baseline accuracy of 

47.10%, while the f1-score is unknown since the 

confusion matrix value wasn’t provided by the 

researchers. As in [19], the researchers utilized two data 

types extracted from a single image, namely image and 

facial features extracted using MTCNN, such as facial 

landmarks, head pose estimation, eye gaze estimation, 

and facial action unit. An accuracy of 62.16% was 

obtained and it was the highest accuracy among other 

frame-level research, but only achieved a weighted f1-

score value of 39.54%. A more advanced model utilized 

by [10] to solve this problem, namely the Vision 

Transformer. However, the model only achieved 

55.18% accuracy and a weighted f1-score of 49.41%. 

The model still struggling to achieve better evaluation 

metrics value. The proposed model in this research 

utilized the smallest variant of EfficientNet, which is 

EfficientNet-B0. The proposed model achieved the 

highest accuracy of 50.49% and a weighted f1-score of 

50.86%. Numerically, the performance of EfficientNet 

in this research slightly overpass the performance of 

Vision Transformer in [10] in terms of weighted f1-

score metrics, which is 1.45% higher, but those 

numbers become more significant if the model 

efficiency is taken into consideration. 

As shown in Table 8, the proposed EfficientNet-B0 

becomes really efficient in terms of parameters amount, 

Giga Floating Operations (GFlops), and the model size 

compared to the previous models. The value of each 
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aspect was collected from PyTorch documentation of 

each model. The proposed model has 3 million fewer 

parameters and two times smaller GFlops than the 

InceptionV3 model but can achieve 7% higher 

accuracy. EfficientNet-B0 is also 20 times smaller than 

Vision Transformer, but able to achieve a 3% higher 

weighted f1-score. EfficientNet-B0 was chosen in this 

research since it’s the smallest variant and one of the 

smallest architectures compared with other CNN 

models, such as InceptionV3 or ResNet. Rather than 

experimenting with models’ architecture, one of the 

main focuses in this research is to find and tune the 

supporting components of the model that affect the 

model’s perspective and performance during the 

training flow. 

Table 8. State-of-the-art Model Efficiency (Frame Level) 

Methods Params GFlops Size 

InceptionV3 [12] 27.1M 5.71 103.9MB 

Vision Transformer [10] 85.6M 17.56 330.3MB 

EfficientNet-B0 with 

normalized ICF loss 

weighting (proposed) 

24.1M 2.34 16MB 

Because of its efficiency and small model size, 

EfficientNet-B0 is more suitable to be embedded or 

integrated into the e-learning platform to provide real-

time frame-based engagement level classification. If a 

resource constraint made the real-time classification 

heavy, the interval of students’ face capturing can be 

adjusted, for example, the image of the students will be 

captured every 5 seconds or even a longer interval. 

Research with sequence-based or video-level approach 

such as [9], considers the decision of engagement levels 

based on several frames. This approach could be more 

accurate in terms of reducing the bias that occurred in 

single-frame cases, such as students classified with high 

engagement levels but accidentally closed their eyes or 

blinking in the observed timeframe. On the other hand, 

the sequence-based or video-level approach needs to 

stack several frames to the memory before a final 

decision is made, which means if there are resources or 

memory constraints, this approach is less suitable for 

this case. Therefore, further research at the frame level 

must be conducted since this approach is more suitable 

if the resources are limited in the end systems and also 

because this approach is less considered to be conducted 

since it’s challenging and difficult to improve the model 

performance. 

4. Conclusions 

Inverse Class Frequency is one of the loss function 

weightings which commonly used in engagement level 

classification and performed pretty well on classifying 

samples especially in minority classes. In this research, 

a new normalized ICF is proposed to be more sensitive 

and performed better especially on minor classes. When 

applied to the real-world applications, this approach 

could prevent the model to classify the engagement only 

to class 2 (high engagement) and class 3 (very high 

engagement). Based on the conducted experiments, it 

can be seen that normalized ICF could reach the best 

performance using resize + horizontal flip 

augmentation, resulting 51.64% in accuracy and 

50.86% in f1-score. Besides, normalized ICF also 

dominating in reaching higher f1-score on 9 different 

intervals, which is higher than standard ICF. It can be 

concluded that normalized ICF performed generally 

better rather than standard ICF in engagement level 

classification using DAiSEE dataset. The main focus 

and contribution of this research is finding how to keep 

the model small and efficient while also maintaining 

and achieving higher classification performance. This 

unique approach is used as a new perspective to explore 

the supporting component of the model which affects 

the training flow performance rather than 

experimenting on advanced and bigger model 

architecture. 

In future research, more testing on the proposed 

normalized loss function weighting needs to be 

conducted to understand how robust or general the 

weighting is across various datasets and models. 

Modification of the formula or combination with other 

types of loss weighting such as Class Balanced (CB) 

also possible to be conducted in further research. After 

a sufficient and reasonable range of accuracy is 

achieved, implementation and integration in the end 

systems and devices can be performed to determine the 

model performance and behavior in real-environment 

testing. 
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