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Abstract  

Crop Water Stress Index (CWSI), derived from vegetation features (NDVI) and canopy thermal temperature (LST), is an 

effective method to evaluate sugarcane sensitivity to drought using satellite data. However, obtaining CWSI values is 

complicated. This study introduces a novel approach to estimate CWSI using climatological data, including average air 

temperature, humidity, rainfall, sunshine duration, and wind speed features obtained from the local weather station BMKG 

Malang City, East Java, for the period 2021-2023. Before estimating CWSI, we analyzed sugarcane water stress phenology, 

examined the strength of the correlation between climatological features and CWSI, and looked at the potential for adding lag 

features. Our proposed prediction model uses climatological features with additional Lag features in a machine learning 

regression approach and 5-fold cross-validation of the training-testing data split with the help of optimization using 

hyperparameters. Different machine learning regression models are implemented and compared. The evaluation results 

showed that the prediction performance of the SVR model achieved the best accuracy with R2 = 90.45% and MAPE = 9.55%, 

which outperformed other models. These findings indicate that climatological features with lag effects can effectively predict 

water stress conditions in rainfed sugarcane if using an appropriate prediction model. The main contribution of this study is 

the utilization of local climatological data, which is easier to obtain and collect than sophisticated satellite data, to estimate 

CWSI. The application of the results shows that climatological data with lag effects can accurately estimate water stress 

conditions in rainfed sugarcane. In drought-prone areas, this strategy can help sugarcane farmers make better choices about 

land management and irrigation. 
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1. Introduction  

A primary factor contributing to the decline in 

sugarcane productivity in Indonesia is the conversion of 

wet or paddy fields to dry land, driven by competition 

with rice as the predominant food crop [1], [2]. This 

transition necessitates a shift in the sugarcane's 

irrigation regime, compelling it to rely exclusively on 

rain-fed irrigation methods. This stands in contrast to 

the technical irrigation systems employed in wetland 

regions. The annual sugarcane planting cycle is 

synchronized with the harvest season, during which 

there is minimal rainfall, to ensure a high sucrose yield 

quality. Consequently, the commencement of the 

sugarcane planting season follows this pattern. 

Consequently, sugarcane frequently experiences water 

stress, particularly during the germination and tillering 

stages of early growth. Water stress during this critical 

phase has been shown to inhibit growth and 

significantly impact biomass weight at harvest [3]-[5]. 

Sugarcane (Saccharum officinarum) is an anisohydric 

plant, meaning it is able to absorb and store large 

amounts of water from the soil, even when its own 

water content is low. During the dry season, sugarcane 

stomata tend to remain open for extended periods, 

facilitating photosynthesis and maintaining biomass 

production. As a result, sugarcane can thrive in 
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environments with limited water availability; however, 

the plant becomes more susceptible to physiological 

damage when subjected to prolonged drought. In 

response to these challenges, several initiatives have 

been undertaken, including the integration of water-

efficient drip irrigation systems and the development of 

drought-tolerant sugarcane varieties. [6], [7]. 

Nevertheless, the efficacy of these solutions is 

contingent upon the consideration of the initial 

sugarcane planting schedule in the context of the 

shifting patterns of the rainy and dry seasons, as 

influenced by climate change [8]-[10]. The report was 

received from the State Plantation Company (PTPN-X), 

the largest sugarcane plantation operator in East Java, 

Indonesia in Figure 1. The report shows a decline in 

productivity from the first sugarcane planting season 

(ratoon1) 2021-2022 to the second sugarcane planting 

season (ratoon2) 2022-2023. The decline in 

productivity per hectare showed variability across 

planting areas (G30-G36), with the lowest recorded 

decline of 20% and the highest of 37% in G33. Given 

the findings of this report, we hypothesize that the 

significant decline in productivity in G33 is due to water 

stress conditions. Therefore, this study will prioritize 

the evaluation of the water stress index for rainfed 

sugarcane land in G33.  

 

Figure 1. Sugarcane productivity 2021 - 2023 

The assessment of plant responses to water stress serves 

as an early indicator of drought, a task of significant 

value. A comprehensive review of contemporary plant 

water stress monitoring methodologies reveals four 

predominant approaches: first, gravimetry and soil 

moisture sensors, which are based on measuring soil 

water content; second, the soil water balance approach; 

third, measurement based on plant parts (e.g., stomatal 

conductance, leaf water potential, sap flow, stem and 

fruit diameter); and fourth, measurement based on 

remote sensing (e.g., infrared thermometry and 

vegetation spectral index) [11], [12]. 

The Crop Water Stress Index (CWSI) is one of the 

infrared thermometry methods in remote sensing that 

calculates stomatal closure to plant water deficit based 

on the difference between plant canopy temperature and 

air temperature to measure plant water stress. However, 

this CWSI calculation has a weakness where the 

vegetation spectral index derived from satellite image 

extraction is affected by cloud cover noise, which 

means that the availability of clean data is certainly 

small, then requires a different reference baseline for 

wet (Twet) and dry (Tdry) plant surface temperatures 

for different crops [13], and other studies state that 

determining LST requires water vapor data that has a 

very large resolution so it tends to be inaccurate [14]. 

Recent empirical CWSI sensitivity research has been 

conducted on a combination of climatological data 

input features, namely air temperature (Ta), and relative 

humidity (RH) with field data of canopy temperature 

(Tc). However, the research results still show a fairly 

large error in CWSI predictions, namely 52%. This 

shows that data quality is very important for research 

related to CWSI for irrigation scheduling, especially in 

humid climate conditions. 

In this study, we use time series data from vegetation 

spectral feature extraction on Landsat 8 imagery as the 

basis of truth, especially vegetation properties, from 

Landsat imagery [15] that can reveal plant reactions to 

water stress. We propose a new approach to predict 

sugarcane CWSI using climatological time series data, 

including air temperature, humidity, rainfall, sunshine 

duration, and wind speed with Machine learning 

regression model approach, using a selection of 

algorithms Ada Boost Regressor (ABR), Decision Tree 

Regressor (DTR), k-Nearest Neighbors Regressor 

(KNNR), Light GBM Regressor (LGBMR), Random 

Forest Regressor (RFR), Support Vector Regressor 

(SVR), and XGBoost Regressor. Model performance is 

evaluated using the coefficient of determination (R2) 

and mean absolute percentage error (MAPE).  

2. Research Methods 

This study to estimate CWSI using climatological data 

includes limitations related to the study location, data, 

and specific machine learning regression approaches to 

be used. In addition, external factors such as soil 

quality, agricultural practices, and plant genetics are not 

discussed in this study. Likewise, the irrigation regime, 

according to field information, adheres to a rainfed 

system, which relies on natural rainfall as the main 

source of water for sugarcane growth without using an 

artificial irrigation system.  

2.1 Research location 

The observed research location is an agro-industrial 

sugarcane plantation (G33), as shown in Figure 2(a), 

which is marked in red on the sugarcane plantation plot 

in Figure 2(b), managed by the State Plantation PTPN 

Plosoklaten, Kediri Regency, East Java, Republic of 

Indonesia. 

The coordinates of the observation location are at 

Latitude 112.16467404367307 and Longitude -

7.904521068941556. The area of the observed 

plantation plot is 11,234 Ha of the total sugarcane 

plantation area of 4,900 Ha2. 
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The soil category is flat regosol at an altitude of between 

292 and 323 meters above sea level. The slope of the 

land surface is relatively flat between 1% and 4%. The 

soil in this area has light surface erosion, moderate 

surface flow, rather slow permeability, and moderate 

drainage. 

 

Figure 2. The observed research locations are (a) Map of East Java with three Landsat satellite image capture lines, (b) Plan of sugarcane 

plantation area owned by the National Plantation in Kediri Regency, East Java Province, Indonesia. 

2.2 Research Data 

The report of the results of observations by officers in 

the field showed that there was stunted growth in the 

sugarcane stem segments, which indicated water stress 

at the beginning of growth. Other data provided were in 

the form of a vector map (shp) of sugarcane land at 

PTPN-X and the Sugarcane Planting Schedule (PTPN-

X) for the 2021-2023 Period, as shown in Table 1. 

Table 1. Sugarcane Planting Schedule for G33 2021-2023 

Ratoon Period 
Ger Till GG MR H 

(0 - 45) (45 - 120) (120 - 250) (250 - 365) (365 - ) 

2021 - 2022 06A - 08A 08A - 10A 10A - 02A 02A - 06A 06A - 07A 

2022 - 2023 07B - 09B 09B - 11B 11B - 03B 03B - 07B 07B - 08B 

The description Ger is the germination phase, Till is the 

tillering phase, GG is the sugarcane's peak growth 

period, MR is the mature and ripening phase, and H is 

the harvesting phase. With schedule notation, A 

represents the first two weeks of each month, and B 

represents the latter two weeks of each month. 

Landsat 8 satellite imagery for the 2021-2023 period is 

sourced from the USGS.gov.id site with properties in 

Table 2, then extracted on the Google Earth Engine 

platform, which obtains indications of vegetation 

features. Meanwhile, data processing, analysis, and 

predictive modeling are carried out on the Google Colab 

platform with Python 3.10. 

Table 2. Landsat Data Properties 

Attribute Detail 

Landsat 8 

Landsat 9 

LANDSAT/LC08/C02/T1_TOA 

LANDSAT/LC09/C02/T1_TOA 

Period 2021 to 2023 

Region of 

Interest 

(ROI)  

PTPN X Kediri East Jawa Indonesia  

Latitude: 112.16467404367307,  

Longitude: -7.904521068941556 

Scale  30m to 15m 

Cloud cover free 30% 

Path/Row LC08-(118-65, 118-66, 119-65) 

Bands Bands (2,3,4,5,6,8,10) 

 

Climatology data is used to predict water stress features 

as CWSI targets. Climatology data, including air 

temperature, air humidity, rainfall, sunshine duration, 

and wind speed features, were obtained from the 

Meteorology, Climatology, and Geophysics Agency 

(BMKG) of Malang City, East Java, Indonesia, for the 

2019-2023 period. 

2.3 Research Method 

We apply the concept that plant water stress is the 

impact of the influence of abiotic environmental 

variables [11]. We partially observe and test changes in 

climate features as part of abiotic environmental 

variables on their contribution to sugarcane water stress 

specifically. Our research limitations are determined 

according to the observed sugarcane planting cycle [8], 

[9]. Climatology data from BMKG is used according to 

the observation period within a 2-year span, from 2021 

to 2023. Assuming 1 year is 365 days, the number of 

daily data for 2 years is around 730. However, this 

number is then reduced again according to the available 

satellite imagery data, which is only 102 satellite 

imagery data that are clean from maximum cloud cover 

of 30%. It should be noted that Landsat 8 satellite data 

is obtained with a frequency of once every 16 days in 

the same region of interest (roi), even if the conditions 

are without cloud cover [14], [16].  

Therefore, the temporal granularity of our climatology 

data is adjusted to the monthly frequency of vegetation 
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index data. This was chosen because it is more 

appropriate for long-term trends that affect the model's 

ability to capture temporal patterns, such as seasonal 

trends or short-term fluctuations. The potential impact 

of cloud cover filtering (30%) on data quality can result 

in the loss of important data on certain days, especially 

during the rainy season or in areas with high cloud 

cover. Therefore, time identity is very important in this 

spatial data so as not to cause bias towards other periods 

so that the analysis carried out may not represent the 

actual conditions in the field.  

The research stages are explained in Figure 3. Starting 

from the first step, collecting data and information from 

various sources regarding the research object. The 

second step is data preparation, which consists of data 

cleaning and feature engineering. The third stage is 

sugarcane phenology analysis. The fourth stage is 

comparing the intensity of climatological variables with 

the sugarcane water stress index through cross-

correlation. The fifth step is to create a prediction model 

based on machine learning regression. The last stage is 

to determine the optimal prediction model. 

The sugarcane water stress prediction model proposed 

in Figure 4 is based on machine learning regression. The 

selected models include Ada Boost Regressor (ABR), 

Decision Tree Regressor (DTR), k-Nearest Neighbors 

Regressor (KNNR), Light GBM Regressor (LGBMR), 

Random Forest Regressor (RFR), Support Vector 

Regressor (SVR), and XGBoost Regressor.  

 

Figure 3. Proposed workflow method

 

Figure 4. The proposed prediction model 

2.4 Pre-Process 

The preprocessing steps performed include the 

following aspects of data cleaning and feature 

engineering. 

Data Cleaning includes Linear Interpolation, Rolling 

Average, and Row or Column Deletion. Linear 

Interpolation is done as an attempt to fill in missing 

values, this step cleans the data because the focus is on 

fixing or completing missing data to maintain the 

integrity of the data set. Use of Rolling Average (for 

missing data imputation). This rolling average is used 

to fill in missing values without adding new 

information. Row or Column Deletion for many 

missing values is a data-cleaning step because it is a 
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way to handle data that cannot be used in the 

configuration to be analyzed. 

Feature engineering at the preprocessing stage of model 

development is very important, and it includes 

normalization or standardization, rolling average, 

harmonic series, and lag feature engineering. 

Normalization or Standardization functions as a 

standardization of vegetation and climatology indices 

on a range scale (-1, 1) without changing the actual 

value, so that it is more relevant in improving model 

performance. In this study, we standardize the 

climatology feature values. Rolling averages are usually 

used to smooth the distribution of time series data and 

also support the creation of new features (not just to fill 

in missing values). We apply the Harmonic Series to 

maintain seasonal patterns in vegetation indices. This is 

also expected to capture water stress patterns in 

sugarcane. Lag Feature Engineering applied to 

climatology Features show the time delay in influencing 

water stress conditions. For example, rainfall on the 

previous day (lag 1) can affect soil moisture levels on 

the following day, which in turn affects water stress 

levels [17]. 

The delay pattern for climatology variables varies. For 

example, air temperature may have an immediate effect 

(0-1 day lag), while variables such as rainfall and 

humidity have a slower effect (2-5 day lag). Including 

too much lag data can increase dimensionality and 

cause overfitting, so only significant lags (2-5 days) are 

considered to maintain a balance between model 

accuracy and efficiency. The lag test results strongly 

suggest that climatological features play an important 

role in influencing plant water stress conditions. 

Therefore, lag engineering and rolling mean features 

are essential to capture these temporal relationships in 

modeling, which improves the predictive ability of the 

model in reflecting water stress indices. 

The Normalized Difference Vegetation Index (NDVI) 

is an index used to measure photosynthetic activity and 

vegetation health conditions in a particular area or 

region as shown in Equation 1 [18], [19]. 

NDVI = (NIR – Red) / (NIR + Red)              (1) 

NIR: near-infrared light reflectance (Band 5), and Red: 

red light reflectance (Band 4). NDVI has a range of 

values between -1 and +1. High NDVI values (close to 

+1) indicate the presence of healthy and abundant 

vegetation, while low values(close to -1) indicate non-

vegetation areas such as water or buildings. Negative 

NDVI values usually occur on water surfaces or other 

non-vegetation objects. 

Land Surface Temperature (LST) is the temperature 

measured directly from the ground surface, without 

taking into account the influence of the atmosphere. 

LST is very important in climate monitoring, 

hydrology, agriculture, and environmental science, as 

shown in Equation 2 [20], [21]. 

LST = [BT / (1 + Lλ(BT/p) * ln(ελ)]             (2) 

BT variable is Top of Atmosphere (ToA) Brightness 

Temperature (oC); Lλ is ToA Radiant Spectral Value; 

ελ is the Emissivity of the ground surface and p is the 

radiation function (1.438x10-2 mK). 

The Crops Water Stress Index (CWSI) is used to 

measure and monitor the level of drought in crops or 

agricultural plants. The Crop Water Stress Index 

(CWSI) was first introduced by Jackson et al. in 1981 

[22]. The general formula for CWSI is based on the 

latest developments by Veysi et al. In 2017, as shown 

in Equation 3 [13]. 

CWSI = (Ts – Tcold) /(Thot – Tcold)             (3) 

Ts is the leaf temperature converted to LST; Tcold is 

the ambient air temperature converted to LSTmin, and 

Thot is the maximum temperature that can be achieved 

by the plant in a non-drought converted to LSTmax. 

Meanwhile, data cleaning on climatology data 

comprises screening for abnormalities and eliminating 

layers that do not fit the typical baseline. Also, check 

for missing values and remove non-numeric data 

(NaN). The feature engineering process for climatology 

data involves arranging the data by date, standardizing 

the value scale, filling in missing values with linear 

interpolation, preserving seasonal patterns with 

harmonic sine series (4), and smoothing the time series 

distribution with rolling window statistical techniques. 

The harmonic series Equation 4 that we use in this study 

is as follows [23]. 

𝑓(𝑡) =
𝑎0

2
+∑ (𝑎𝑛 cos(𝑛𝜔𝑡)) + 𝑏𝑛

∞
𝑛=1 sin(𝑛𝜔𝑡)      (4) 

The frequency, or period value, of the sinusoidal wave 

in the series is denoted by f(t). Periodic, on the other 

hand, is the cycle length that denotes the separation 

between the function’s two repeating points. The unit of 

measurement known as ”omega” (ω) is radians per unit 

time (2π) of a regular frequency rotation. It is 

commonly utilized in relation to Fourier and harmonic 

series. Meanwhile, the series amplitude of sinusoidal 

waves at various frequencies is given by the coefficients 

a0, an, and bn. 

2.5 Analyzing Sugarcane Phenology 

Phenology analysis helps us to understand the state of 

vegetation [24]. Matching vegetation characteristic data 

to planting schedule time in observed sugarcane fields 

is known as phenology space. In this study, the 

vegetation characteristics evaluated to estimate water 

stress conditions are CWSI and NDVI, which reflect the 

current vegetation.  

The time-series statistical line created in the phenology 

space between CWSI and NDVI is particularly visible 

during the early growth phase, which is considered a 

key period of the sugarcane plant against water stress 

circumstances. With a typical baseline for NDVI 

ranging from 0.4 to +1, the baseline for CWSI is more 
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than 0.5, indicating that the vegetation is suffering water 

drought stress [25]. 

2.6 Check the strength of correlation  

At this stage, the pattern consistency in each 

characteristic, as well as the strength of the association 

between climatological factors and sugarcane water 

stress indicators as goals, will be investigated. The 

cross-correlation test is a statistical method used to 

measure the extent to which two time-series variables 

are related to each other. It is very useful for finding 

relationships between two data sets that may not be 

obvious in the initial analysis. 

After further development after conducting the cross-

correlation test, we measure the extent to which climate 

features affect the CWSI by shifting one-time series to 

real-time. The time unit we use is t days, with data at 

time t+k in the second series, where k is the lag. In this 

study, we apply k values according to the observation 

results on Lag Cross-Correlation. 

2.7 Prediction Model Based on Machine Learning 

Regression 

The selection of the model used is adjusted to the type 

of data processed and the objectives to be achieved, 

where the data processed is in the form of a numerical 

time series as a representation of spatial-temporal data 

that has a strong seasonal pattern. The purpose of this 

modeling is to estimate the value of the vegetation index 

based on climatological data. Therefore, the selection of 

the model is directed at a combination of regression-

based, ensemble, and non-linear methods. 

There are several candidate algorithm options, 

including Ada Boost Regressor (ABR), Decision Tree 

Regressor (DTR), k-nearest Neighbors Regressor 

(KNNR), Light GBM Regressor (LGBMR), Random 

Forest Regressor (RFR), Support Vector Regressor 

(SVR), and XGBoost Regressor (XGBR). The machine 

learning regression model is used to predict the 

sugarcane worker stress index because these models are 

relevant for predicting time series data trends. On the 

other hand, we did not choose the CatBoost algorithm 

because of its advantages for categorical data, so it is 

not relevant to the numerical dataset used and its 

application to time series. 

Next, each basic algorithm is given a component in the 

form of hyperparameters to achieve optimal prediction 

results (see Table 3). Choosing the right method and 

configuring hyperparameters are essential for 

developing an efficient prediction model. Each machine 

learning regression algorithm offers advantages for 

processing temporal data, such as less overfitting, 

competitive results, and faster processing time. 

AdaBoost Regressor (ABR) This model is more focused 

on the prior prediction inaccuracy, with the goal of 

fixing it in the next model [26]. Hyperparameters that 

can be configured in (ABR): n_estimators (nested) 

Learning_rate specifies how many estimators (weak 

models) will be added and how much each estimator 

contributes to the final model. Low values enable the 

model to learn slowly but steadily. The loss function 

chosen, such as 'linear', 'quadratic', or 'exponential', 

might impact error management. 

Table 3. Models Architecture for Prediction 

No. 
Machine Learning 

Regression 

Hyperparameter 

Tuning 

1 Ada Boost 

Regressor (ABR) 

learning_rate: 0.001, nest: 150 

2 Decision Tree 

Regressor (DTR) 

Max_depth: 2, 

min_samples_leaf: 2, 

min_samples_split: 2 

3 k-Nearest 

Neighbors 

Regressor (KNNR) 

Algorithm: auto, neighbors: 9, 

weights: uniform 

4 Light GBM 

Regressor 

(LGBMR) 

Auto-choosing-row-wise multi-

threading 

5 Random Forest 

Regressor (RFR) 

Max_depth: 25, max_features: 5 

min_samples_leaf: 3, 

min_samples_split: 3, 

n_estimators: 200 

6 Support Vector 

Regressor (SVR) 

C: 1, epsilon: 0.1, kernel: rbf 

7 XGBoost Regressor 

(XGBR) 

learning_rate: 0.001, 

max_depth: 25, n_estimators: 

750 

Decision Tree Regressor (DTR) predicts target values 

using a tree structure [27]. Each node splits the input 

based on the most valuable feature. The following 

hyperparameters can be set: The maximum depth of the 

tree is denoted by max_depth (md), while 

min_samples_split (mss) is the minimal number of 

samples necessary to split a node. min_samples_leaf 

(msl) is the minimum number of samples necessary to 

become a leaf node. The max_features (mf) defines the 

maximum number of features utilized in each split. 

k-Nearest Neighbors Regressor (kNNR) forecasts a 

target value using the average of the k nearest neighbors 

[28]. This model is built on the closeness of data points 

in the feature space. Hyperparameters that may be set 

include n_neighbors, which is the number of nearest 

neighbors evaluated, and weight, which is the weight 

given to the neighbors, such as 'uniform' (for all data to 

be considered identically) or 'distance' (based on data 

distance). The notation 'p' shows the kind of distance 

used to calculate the distance between neighbors (for 

example, 1 for Manhattan distance and 2 for Euclidean 

distance). 

Light GBM Regressor (LGBMR) The Light GBM 

Regressor (LGBMR) is a gradient-based boosting 

strategy that values speed and efficiency [29]. Light 

GBM uses histogram binning to swiftly process vast 

quantities of data. Hyperparameters can be configured 

as follows: num_leaves is the maximum number of 

leaves in each tree; learning_rate determines the step 

size while updating the model; n_estimators (nest) is the 

number of trees to create; max_depth (md) is the 
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maximum depth of each tree; and boosting_type, which 

determines the kind of boost. 

Random Forest Regressor (RFR) is an ensemble 

approach that generates many decision trees and 

combines their predictions to improve accuracy while 

reducing overfitting [30], [31]. The RFR 

hyperparameters that may be specified are the same as 

for the Decision Tree, including n_estimators (nest), 

which is the number of trees in the forest, max_depth 

(md), and min_samples_split (mss), as well as 

max_features (mf), which is the maximum amount of 

features used for each split. 

The Support Vector Regressor (SVR) is a regression-

specific form of SVM in which the model looks for the 

best-fit hyperplane among margins [32]. The SVR 

hyperparameters that can be set include the notation 

‘C’, which governs the trade-off between margin size 

and error, the type of kernel used (linear, polynomial, 

RBF, etc.), and epsilon, which is the margin around the 

hyperplane used to set the threshold of tolerated error. 

In addition to classification, the application of reduced 

kernel tricks for regression and dimensionality 

reduction in the MapReduce framework has good 

potential to solve large-scale nonlinear support vector 

machines that are reduced to an important technique in 

the Big Data era [33]. 

XGBoost Regressor (XGBR) is a high-performance 

gradient-boosting algorithm [34]. To avoid overfitting, 

this approach utilizes early stopping and L1/L2 

regularization. The following hyperparameters can be 

set: n_estimators (nest), which is the number of trees in 

the model, learning_rate, which is the learning stride to 

update the weights, max_depth (ms), which is the 

maximum depth of the tree, gamma, which is an early 

pruning controller to reduce model complexity, and 

lambda (λ) and alpha (α), which are L2 and L1 

regularization features to prevent overfitting. 

2.8. The Optimal Prediction Model 

The process of finding the best prediction model begins 

with assessing the performance of the CWSI prediction 

model with the k-fold cross-validation approach. K-fold 

validation is used to enhance model accuracy [35]. The 

data set's time series is separated into three sets: 

training, validation, and testing. Training and validation 

take up 80% of the data set, while testing takes 20%. 

Equation 5 evaluates the performance of the machine 

learning regression prediction model using numerous 

evaluation measures typically used for regression 

issues. R-squared (R2) (5) indicates the model's capacity 

to explain the variability of the target variable. R-

squared values vary from 0 to 100%, with higher values 

indicating greater model performance [36]. 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−ӯ𝑖)
2𝑛

𝑖=1
               (5) 

n represents the number of samples,   

yi is the observed value from the i-th sample,  

ŷi represents the expected value for the i-th sample,  

and ӯ𝑖 is the average of observed values. Meanwhile, 

the performance error assessment was evaluated using 

the absolute error percentage (MAPE) (6) to confirm the 

prediction model's correctness [37]. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐸𝑡−𝐴𝑡

𝐴𝑡
|

𝑛

𝑡=1
               (6) 

In Equation 6, Et represents the predicted value for t-th, 

whereas At represents the actual value for t-th. 

3.  Results and Discussions 

This section contains the results and discussion 

according to the proposed process, from data collection 

to performance assessment of the most appropriate 

regression machine learning model for predicting 

sugarcane water stress. 

3.1 Analyzing Sugarcane Phenology 

After obtaining the NDVI, LST and CWSI time series 

data as reference data or ground truth. Furthermore, 

phenology analysis can be carried out and the results are 

shown in Figure 5. Cross-correlation of the CWSI water 

stress index (red dotted line) with the NDVI feature 

(green solid line) and LST sugarcane canopy 

temperature (blue dotted line). The highlighted phase is 

the gray shaded area depicting the germination-

processing phase also called the beginning of the 

planting season (SoS) with a pattern of two planting 

seasons ratoon-1 and ratoon-2 which are susceptible to 

dry conditions. Based on Figure 5, the gray area shows 

that the NDVI value is lower than the CWSI, with an 

index range of < 0.4 while the LST and CWSI values 

are > 0.5 together. These data indicate that sugarcane 

vegetation is experiencing moderate water stress [13]. 

Figure 6 shows a comparison of the seasonal time series 

data pattern between the actual monthly mean CWSI 

values represented by the red dotted line with the 

climate features (a) air temperature, (b) air humidity, (c) 

rainfall, (d) sunshine, and (e) wind speed represented by 

the solid blue line. 

This provides a good insight into the pattern of climate 

influence on sugarcane water stress. The shaded areas 

in Figure 6 represent the beginning of growing season 1 

(ratoon-1) and growing season 2 (ratoon-2). 

3.2 Check the strength of the correlation  

Figure 7 presents the results of the pairwise correlation 

test to determine the strength of the relationship 

between the CWSI target features and the climate data 

predictor features. The distribution of cross-correlation 

data in Figures 7(a), 7(b), and 7(c) shows that the 

average air temperature, air humidity, and rainfall are 

weakly negatively correlated with CWSI. Figures 7(d) 

and 7(e) show that solar radiation and wind speed are 

weakly positively correlated with CWSI.  
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Figure 5.  Sugarcane Phenology with NDVI, LST and CWS 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 
Figure 6.  Sugarcane phenology CWSI with climatological features: (a) Air-Temperature, (b) Humidity, (c) Rainfall, (d) Solar-

Radiation, (e) Wind-Speed 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 7.   Cross-correlation of CWSI versus Climate features in the scattering distribution: (a) Air Temperature (b), Humidity, 

(c) Precipitation, (d) Solar Radiation, (e) Wind Speed. 

 
          (a)  

            (b) 

 
         (c) 

 
           (d) 

 
           (e) 

Figure 8.  Cross-Lag-correlation of CWSI versus Climate features in Time Lags distribution: (a) Air Temperature (b), Humidity, 

(c) Rainfall, (d) Solar Radiation, (e) Wind Speed. 
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The weak relationship is evidenced by the correlation 

coefficient value 𝑅2 below 0.5 (50%). However, the 

value of the correlation determinant coefficient R2 (5) 

shows a weak value, far below 0.5. Therefore, we took 

the initiative to form a new variation of climatological 

characteristics with a time lag effect ranging from 1 to 

5 days in the future affecting the CWSI. 

Based on the correlation coefficient value and the 5% 

confidence interval limit in Figure 8, it can be seen that 

the results of the cross-correlation test with a time lag 

indicate that climatological characteristics have a less 

strong influence, either positive or negative, on 

sugarcane water stress (CWSI). This is as evidenced by 

the peak value of the cross-correlation coefficient which 

is less than the confidence limit range (+/- 0.5). The 

position of the peak value of the correlation coefficient 

on the time lag axis indicates when the climatological 

characteristics affect the CWSI, either in the past (-), 

present (0), or future (+) direction. Figure 8(a) shows 

that the average air temperature feature has a weak 

negative correlation with the CWSI, with a correlation 

coefficient value of (-0.44) at a time lag of zero (0) days, 

which indicates a direct influence of the average air 

temperature feature on the CWSI. This is then the 

specific reason for the average air temperature feature, 

the addition of the lag feature is not proposed. Figure 

8(b) illustrates that humidity is weakly negatively 

correlated with a correlation coefficient value of (-0.37) 

and the influence of a lag of around +5 days in the future 

affects the CWSI. Figure 8(c) shows a weak negative 

relationship of rainfall feature, with a correlation 

coefficient value (-0.45) affecting CWSI after 2 to 3 

days. Figure 8(d) shows a positive correlation of solar 

radiation to CWSI with a correlation coefficient value 

(+0.43) and a lag time effect of around +5 days. Figure 

8(e) illustrates a positive correlation for wind speed 

with a correlation coefficient value of (+0.41), and a lag 

time effect of around 5 days on CWSI. The results of 

the Cross-Correlation Lag Test observations show the 

potential for 26 new features that can be formed from 

the lag time effect process which includes 20 lag 

features: lag_cwsi, lag_rh, lag_rr, lag_ss, lag_ffavg and 

5 new rolling_mean features and 1 'month' time feature 

from the Lag and Rolling means processes as seen in 

Table 4.  

Table 4. New features parameter from time Lag climate effect 

New Parameter Description 

lag_cwsi1 cwsi value on the previous 1-day time shift 

lag_cwsi2 cwsi value on the previous 2-day time shift 

lag_cwsi3 cwsi value on the previous 3-day time shift 

lag_cwsi4 cwsi value on the previous 4-day time shift 

month calculation internal range 

lag_rh1 humidity value on the previous 1-day time 

shift 

lag_rh2 humidity value on the previous 2-day time 

shift 

lag_rh3 humidity value on the previous 3-day time 

shift 

lag_rh4 humidity value on the previous 4-day time 

shift 

New Parameter Description 

lag_rr1 rainfall value on the previous 1-day time 

shift 

lag_rr2 rainfall value on the previous 2-day time 

shift 

lag_rr3 rainfall value on the previous 3-day time 

shift 

lag_rr4 rainfall value on the previous 4-day time 

shift 

lag_ss1 duration of sunlight value on the previous 

1-day time shift 

lag_ss2 duration of sunlight value on the previous 

2-day time shift 

lag_ss3 duration of sunlight value on the previous 

3-day time shift 

lag_ss4 duration of sunlight value on the previous 

4-day time shift 

lag_ffavg1 win speed average value on the previous 1-

day time shift 

lag_ffavg2 win speed average value on the previous 2-

day time shift 

lag_ffavg3 win speed average value on the previous 3-

day time shift 

lag_ffavg4 win speed average value on the previous 4-

day time shift 

rolling_mean_rh the average value of all lags in humidity 

rolling_mean_rr the average value of all lags in rainfall 

rolling_mean_ss the average value of all lags in the duration 

of sunlight 

rolling_mean_ffavg the average value of all lags in wind speed 

3.3 Prediction Models 

The sugarcane stress prediction models will use the 

following machine learning regression algorithms: Ada 

Boost Regressor (ABR), Decision Tree Regressor 

(DTR), k-Nearest Neighbors Regressor (KNNR), Light 

GBM Regressor (LGBMR), Random Forest Regressor 

(RFR), Support Vector Regressor (SVR), and XGBoost 

Regressor (XGBR). Both the base models and models 

with hyperparameter tuning were tested.  

Table 5 shows the performance of models with and 

without hyperparameter tuning (BM only and BM + 

Hyperparameter) for seven machine learning 

algorithms. Several evaluation metrics are used, such as 

accuracy correlation determinant coefficient R2 (5), 

which is the percentage of correct predictions. 

Avg_Error: Average prediction error. MAPE (Mean 

Absolute Percentage Error) (6): Average absolute error 

percentage. Model Improvement: Performance 

improvement after hyperparameter tuning compared to 

the base model.  

3.4 Error Analysis 

Based on Table 5, the results of each machine learning 

regression model approach can be seen, which shows 

that the SVR model has the most significant 

performance improvement after hyperparameter tuning, 

followed by DTR. The RFR and SVR models have the 

best performance in terms of MAPE and Avg_Error. On 

the other hand, models such as LGBMR and XGBR 

show that tuning does not have a significant impact on 

improving their performance. In Figure 9 the time-

series data plot the actual CWSI values are represented 

by the solid green line and the predicted CWSI values 

are represented by the dashed red line which provides 
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good insight into the model performance on each model 

approach.  

(a)         

(b)         

(c)         

(d)         

(e)         

(f)         

(g)         

Figure 9. Visualization for performance Sugarcane CWSI prediction based on climatological data model using the  regression learning 

machine: (a) ABR, (b) DTR, (c) KNNR, (d) LGBMR, (e) RFR, (f) SVR, (g) XGBR 
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Table 5. Model Performance for Prediction 

No. 

Base Model 

(BM) 

Prediction 

BM only BM + Hyperparameter 

MAPE 
Model 

improvement Accuracy Avg_Error Accuracy Avg_Error 

1 ABR 87,90 0,0511 87,94 0,0511 12,06 0,05 

2 DTR 78,89 0,0893 81,57 0,0814 18,43 3,40 

3 KNNR 87,09 0,0563 87,75 0,0528 12,00 0,76 

4 LGBMR 86,90 0,0539 87,26 0,0533 12,74 0,42 

5 RFR 88,87 0,0468 89,19 0,0456 11,21 0,36 

6 SVR 85,75 0,0636 90,45 0,0413 9,55 5,48 

7 XGBR 87,26 0,0525 87,28 0,0527 12,72 0,02 

3.5 Feature importance ranking for each model 

Furthermore, to complete the explanation and add 

insight into the prediction results of each approach 

model, the Feature Importance is sought for each model. 

The visualization in Figure 10 shows which features in 

the SVR contribute the most to influencing the 

prediction of the vegetation water stress index, for other 

models, we present them in Table 6.  

 

Figure 10. Features importance of prediction model using SVR 

The Importance Feature can be explained by which 

features contribute significantly to the prediction of the 

water stress index (CWSI) in sugarcane plants. The 

contribution of features that have a strong influence 

with an important threshold value limit > 0.1 is 

generally based on the default attributes in ensemble 

algorithms such as ABR, DTR, LGBM-R, RF-R, 

XGBoost (feature_importances_) or SHAP (Shapley 

Additive Explanations) with an important threshold 

value limit > 0.004 to display the contribution of 

features to the KNN-R and SV-R prediction models. 

 

  

3.6 Contribution of feature 

Based on Table 6, the "month" feature shows that 

seasonality has a big influence on predictions, using 

time to identify seasonal trends. The "lag_cwsi1" 

feature (previous CWSI value) highlights the 

importance of historical data in predicting current 

values. Rainfall-related features ("rolling_mean_rr" and 

"lag_rr3") show that accumulated rainfall significantly 

impacts plant water stress. Sunshine duration features 

("lag_ss4" and "ss") indicate that sunlight affects plant 

stress, but plants are generally safe from drought. The 

"Tavg" feature (average temperature) has a moderate 

impact, with extreme temperatures causing more water 

stress, though it's less involved in model construction 

due to immediate effects with no lag variation. 

3.7 Computational Cost Analysis Based on Model 

Complexity 

In the context of energy efficiency, at the end of this 

study, we also review the computational costs for 

training and implementing the model, especially for 

settings related to resource constraints, presented in 

Table 7. 

Based on the results of model performance in Table 5 

and the results of the computational cost analysis in 

Table 7, the selected models for sugarcane water stress 

prediction, such as Random Forest or SVR, have high 

training costs. This can be overcome by limiting or 

reducing the number of trees or limiting the number of 

kernel iterations as an effort to reduce computing time. 

3.8 Comparison Between Models 

SVR (Support Vector Regression) shows the best 

performance with the highest accuracy (90.45%), 

lowest average error (0.0413), and lowest MAPE 

(9.55), benefiting greatly from tuning. ABR (AdaBoost 

Regression) and RFR (Random Forest Regression) are 

the most stable models, showing consistent 

performance with or without hyperparameter tuning. 

SVR and DTR (Decision Tree Regression) show 

significant improvements after tuning, indicating high 

dependence on hyperparameters. While complex 

models like SVR and RFR provide excellent 

performance, they require more computational 

resources than simpler models like DTR. SVR is 

recommended for its ability to capture complex patterns 
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and handle non-linear relationships [33]. For model 

stability without intensive tuning, ABR and RFR are 

suitable options. Additionally, adding more data and 

model combinations like ensembles can further 

improve performance. However, if model stability is 

required without intensive tuning, ABR and RFR can be 

considered. The tuning function is more suitable for 

improving performance for models such as SVR and 

DTR. On the other hand, there is still the possibility of 

adding additional data and model combinations, such as 

ensembles, to further reduce MAPE. 

Table 6. Features Importance of Each Approach Model 

No. Machine Learning Regression Feature Importance n-Features 

1 Ada Boost Regressor (ABR) month, lag_cwsi1, rolling_mean_rr, lag_rr3, lag_rr2, lag_ss4, Tavg, 

lag_rr4, ss 

9 

2 Decession Tree Regressor (DTR) month, rolling_mean_rr, lag_cwsi2, lag_ss4, lag_rr2 5 

3 k-Nearest Neighbors Regressor 

(KNNR) 

month, lag_rr1, RR, Tavg, lag_rr2, lag_rh1, lag_ss4, lag_rh2, lag_rh4, 

ff_avg, ss, RH_avg, lag_rr4, lag_rh3, lag_rr3, lag_ss1, lag_ss2, lag_ffavg1, 

lag_ffavg2, lag_ffavg3 

20 

4 Light GBM Regressor (LGBMR) month, rolling_mean_rr, lag_rr3 3 

5 Random Forest Regressor (RFR) rolling_mean_rr, month, lag_cwsi1, lag_rr3, lag_ss4, lag_rr2, lag_rr1, 

Tavg, rolling_mean_rh, rolling_mean_ss, RR, lag_cwsi4 

12 

6 Support Vector Regressor (SVR) month, Tavg, lag_rr1, lag_rr2, RR, lag_rh3, lagss4, lag_ss2, lag_ss3, 

lag_ffavg3, lag_rh1, rolling_mean_rr, lag_rh2, lag_rr3, lag_ffavg4, 

lag_rh4, lag_ffavg1, lag_rr4, RH_avg, rolling_mean_rh 

20 

7 XGBoost Regressor (XGBR) month, rolling_mean_rr, lag_ss4, lag_rr2, lag_rr4, RR, lag_cwsi2, 

lag_ffavg1, lag_ss1, ff_avg 

10 

Table 7. Computational Cost Analysis Based on Model Complexity 

Model 
Training 

Complexity 

Implementation 

Complexity 
Computational Cost 

AdaBoost 

Regressor 

(ABR) 

Moderate Low 

Requires many 

iterations for training 

but is quite efficient 

when predicting. 

Decision 

Tree 

Regressor 

(DTR) 

Low Low 

Fast in training and 

deployment, suitable 

for limited resource 

settings. 

k-Nearest 

Neighbors 

(KNNR) 

Low High 

Requires a lot of 

memory to store data 

and is expensive when 

searching for nearest 

neighbors. 

LightGBM 

Regressor 

(LGBMR) 

Moderate Low 

Designed for 

efficiency, training 

and prediction is 

relatively resource-

saving. 

Random 

Forest 

Regressor 

(RFR) 

High Moderate 

It takes a long time 

due to the large 

number of trees, but 

the implementation is 

quite efficient. 

Support 

Vector 

Regressor 

(SVR) 

High High 

Using kernels makes it 

computationally 

expensive for training 

and prediction. 

XGBoost 

Regressor 

(XGBR) 

High Low 

Very efficient for 

distribution setup, but 

requires large 

resources initially. 

4.  Conclusions 

The difficulty in measuring the water stress index in 

sugarcane led to using climatological data with time lag 

features for estimation. Although the correlation 

analysis was not very strong, phenological observations 

suggested seasonal patterns of water stress related to 

climatological features like temperature, humidity, and 

rainfall. Machine learning regression models, including 

SVR, ABR, DTR, KNNR, LGBMR, RFR, and XGBR, 

were used for estimation. SVR showed the best 

performance, significantly improving after 

hyperparameter tuning. The "month" feature had the 

highest contribution, indicating the significant 

influence of seasonality. These findings suggest that 

local climatological data can be a viable alternative to 

satellite data for predicting water stress, emphasizing 

the importance of local data in agricultural research and 

water resource management. Further challenges include 

developing model scales for wider areas and integrating 

climatological variables into larger datasets.  
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