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Abstract  

Rice (Oryza Sativa) is an important crop for meeting global food needs; however, one of the main challenges in its cultivation 

is the attack of stem borer pests, which can cause significant damage. This study aims to identify the damage caused by these 

pest attacks using Convolutional Neural Networks (CNN) methods. We developed and trained several CNN architectures, 

including the proposed architecture, MobileNet, and EfficientNetB0, to detect pest attacks on rice. The dataset used consists 

of 700 images per class taken directly from the field, where the images depict rice plants that have been peeled or opened to 

inspect for the presence of pests, specifically stem borer pests. To enhance the quality and diversity of the dataset, we applied 

a rigorous selection process, ensuring that only high-quality images were used. Additionally, augmentation techniques such as 

rotation were employed to expand the dataset to 2000 images per class. Labeling was carried out carefully to ensure that each 

image accurately reflected the condition of the pest attack. The results of the study indicate that the proposed CNN model can 

identify damage with high accuracy, thereby contributing to efforts to increase rice production through early detection of pest 

attacks using computer vision technology. 
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1. Introduction  

Rice (Oryza Sativa) is a plant native to India and 

Indochina [1]. It has become one of the world's staple 

food sources and plays a vital role in meeting global 

food demands, reaching up to 33% of the population in 

various countries [2], [3]. In Indonesia, rice has been 

known since around 1500 BC and the country is 

recognized as having the highest rice consumption rate 

in Asia [1]. According to available data, rice production 

in 2021 was recorded at 54.42 million tons, showing a 

significant decrease compared to rice production in 

2020, which amounted to 54.65 million tons [4]. In 

2022, rice production increased by 0.61% to 54.75 

million tons [5], but again decreased in 2023 to 53.98 

million tons [6]. One of the main factors contributing to 

the decline in rice production is pest and disease attacks, 

which account for 24.6%–40.9% [7]. 

Pests and plant diseases are among the organisms that 

can interfere with crops, causing damage and leading to 

economic losses [8]. Pest attacks on rice plants can 

result in disturbances in plant growth, delays or failures 

in flower formation, disrupted panicle development, 

reduced yields, and even failures to achieve satisfactory 

harvests [9]. 

One of the common pest attacks on rice plants is from 

the rice stem borer [10]. This type of pest attacks rice 

plants from the early seedling phase until just before 

harvest. During the growth stage, the larvae cut through 

the plant's central stem, disrupting nutrient flow and 

causing wilting and death of the plant (sundep). During 

grain formation, the larvae damage the stem, preventing 

nutrients from reaching the rice grains (beluk) [11]. 

Therefore, prevention and management efforts against 

this pest attack are crucial to ensure stable and high-

quality rice production. 
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At present, technology is crucial in managing pest 

infestations in rice plants, particularly through the use 

of computer vision. Computer vision is a field within 

Artificial Intelligence (AI) that allows computers to 

interpret and extract information from images, videos, 

and other visual inputs, enabling them to make 

decisions or offer recommendations based on that data. 

This technology relies on large datasets and powerful 

Machine Learning (ML) algorithms, especially Deep 

Learning methods like Convolutional Neural Networks 

(CNN) [12]. CNN is a type of artificial neural network 

designed to process data in the form of grids, such as 

images, with neurons that have learnable weights and 

biases. Image inputs are passed through these neurons, 

which perform mathematical operations using weights 

and biases, and are then processed with a non-linear 

activation function. The three-dimensional structure of 

CNN, with layers such as convolutional layers, pooling 

layers, and fully connected layers, allows CNN to 

automatically extract features from images [13]. 

Several research efforts have explored this area. In 

2023, a study presented a CNN model that integrates 

elements from both Inception and ResNet architectures 

to detect disease characteristics in rice plants [14]. The 

primary goal of this research was to reduce the error rate 

in identifying diseases by integrating disease 

characteristics with contextual information. The 

enhanced CNN model incorporated the CBAM module 

for more precise feature extraction. Moreover, BiGRU 

was employed to capture relationships between image 

features, improving the model’s ability to understand 

disease structures in rice plants. Experimental findings 

demonstrated the model's effectiveness, achieving 

higher accuracy and lower costs compared to other 

models. In a different study, an algorithm was 

developed to automatically detect various stages of rice 

panicle development (AI-MDSRS), transforming the 

identification process into detecting rice panicles at 

different maturity stages. This model applied several 

optimization techniques, such as replacing VGG16 with 

Inception_ResNet-v2 for feature extraction, using a 

feature pyramid network (FPN) instead of a single-scale 

feature map, and incorporating Distance Intersection 

over Union (DIoU) as a non-maximum suppression 

(NMS) criterion. The results showed an accuracy of 

92.47%, significantly outperforming the original Faster 

R-CNN and YOLOv4 models [15]. 

Additionally, another study centered on identifying rice 

leaf diseases emphasized the effectiveness of Deep 

Learning, especially CNN, in detecting and classifying 

leaf diseases in rice plants. The proposed custom 

VGG16 model exhibited outstanding performance in 

recognizing and categorizing nine types of rice leaf 

diseases, achieving an impressive accuracy of 99.94%. 

Among six models that were chosen and retrained, 

VGG16 excelled in precision, recall, and overall 

accuracy [16]. Furthermore, a study examined various 

CNN-based architectures for classifying diseases in 

rice. This research assessed the effectiveness of the 

original CNN, transfer learning, and ensemble models 

in identifying rice leaf diseases. Six distinct CNN 

models DenseNet121, Inceptionv3, MobileNetV2, 

ResNext101, ResNet152V, and SeresNext101 were 

tested across nine categories of rice diseases using a 

dataset of 14,118 images of rice leaves. DenseNet121 

achieved the highest classification results, reinforcing 

previous findings that emphasize its capability to learn 

from all preceding layers [17]. 

Additionally, recent research in 2024 explored the use 

of the ResNet101-SE-LSTM model for identifying the 

nutritional levels of rice by integrating spatial and 

temporal aspects. The findings of this study indicated 

that the model successfully achieved the highest 

accuracies of 85.88% and 88.38% for HHZ and XS134 

in 2021. Furthermore, the model demonstrated good 

generalization capabilities, achieving accuracies of 

81.25% and 82.50% for HHZ and XS134 in 2022. This 

approach proved to be more efficient than traditional 

methods that rely on destructive detection and can 

provide real-time information to field workers during 

the rice fertilization process to enhance yields [18]. 

Based on the research findings outlined earlier, it is 

evident that numerous studies have successfully 

implemented computer vision technology and 

demonstrated its significant potential in the agricultural 

sector. However, no research has specifically addressed 

rice plant damage caused by stem borer pests, focusing 

on the specific characteristics of rice plant stems. 

Therefore, this study aims to bridge the existing gap in 

detecting rice plant damage caused by stem borer 

infestations by utilizing a specially developed 

Convolutional Neural Network (CNN) method. 

Although models such as YOLO (You Only Look 

Once) and Faster R-CNN have demonstrated success in 

general tasks like disease identification and maturity 

stage detection, they are less effective in detecting 

localized and specific damage. For example, YOLO 

struggles with identifying small objects with irregular 

shapes, often producing inaccurate bounding boxes 

[19].  On the other hand, while Faster R-CNN excels in 

detecting small details, its slow inference speed and 

high computational demands make it unsuitable for 

real-time applications in the field. Damage caused by 

rice stem borer pests has unique characteristics, such as 

small holes or subtle discoloration, which conventional 

object detection models often fail to recognize. To 

address this issue, this study proposes an optimized 

Convolutional Neural Network (CNN) method 

designed to capture these specific visual patterns. The 

proposed CNN architecture offers several advantages, 

including optimized layers that gradually enhance 

convolutional filters to extract complex features from 

stem damage, reduction of overfitting through the use 

of dropout layers and batch normalization techniques to 

improve the model's generalization, and computational 

efficiency that supports real-time applications in field 

settings. 
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The integration of this CNN model into pest 

management strategies enables early detection of stem 

borer infestations, providing significant advantages for 

farmers. In addition to its high accuracy, the 

computational efficiency it offers ensures that this 

method can be widely adopted, even in resource-

constrained agricultural environments, delivering a 

scalable and cost-effective solution to support 

sustainable farming. 

2. Research Methods 

To identify the damage caused to rice plants as a result 

of stem borer pest attacks, this study undergoes a series 

of detailed stages can be seen in Figure 1. 

 

Figure 1. Research Method Diagram 

2.1 Dataset Collection 

At this stage, a dataset was collected that includes 

approximately 700 images for each class: "Detected 

Pests" (Fig. 1) and "Not Detected Pests" (Fig. 2). All of 

these images were obtained through a series of image-

capturing processes conducted directly in the field using 

cameras and smartphones. This image acquisition 

process involved physical presence at agricultural sites 

to conduct in-depth observations and thorough 

inspections of the rice plants. 

The purpose of this activity is to identify and classify 

rice plants that have been infected by stem borer pests, 

as well as to distinguish them from rice plants that are 

in normal condition or not affected by pests. This 

classification is crucial for developing effective pest 

management strategies and improving overall crop 

health. 

 

Figure 2. Pest Detected Dataset 

 

Figure 3. Pest Not Detected Dataset 

2.2 Dataset Selection 

During the selection phase, it was found that 

approximately 500 images met the criteria to be retained 

as representatives of the "Detected Pests" class, while 

around 300 images remained to represent the "Not 

Detected Pests" class. This reduction resulted from a 

series of selection processes that involved careful 

evaluation of each collected image. Images assessed to 

be of low quality or not meeting the research criteria 

were discarded, including those with inadequate 

lighting, blurry images, and images that were irrelevant 

to the intended subject. 

The selection process aims to ensure the integrity and 

accuracy of the images used in the subsequent analysis. 

By retaining only high-quality images, it is expected 

that the analysis results can provide more accurate and 

reliable information for pest detection. The use of a 

clean and standardized dataset will strengthen the 

developed model, thereby enhancing its effectiveness in 

identifying and classifying rice plants based on the 

presence of pests. 

2.3. Image Augmentation 

During the image augmentation stage, the total dataset 

was expanded to 2000 images for each class: "Detected 

Pests" and "Not Detected Pests." This augmentation 

process included image rotation techniques, allowing 

images to be altered at various angles to simulate 

different viewpoints that may occur in real-world 

scenarios. The primary goal of this augmentation is to 

ensure a representation that more closely resembles 

actual field conditions, as images of rice plants can vary 
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significantly due to environmental factors such as 

sunlight, humidity, and different growth stages. 

Increasing the number of samples in the dataset not only 

enhances the variety of inputs but also reduces the risk 

of overfitting, ultimately resulting in a more robust and 

generalized model. With this enhanced dataset, the 

developed models are expected to achieve improved 

performance and higher accuracy in detecting the 

presence of pests. This is crucial for effective pest 

management, enabling timely interventions to protect 

rice crops from significant damage. 

2.4 Training the Model 

This study focuses on training four different 

architectures to detect stem borer pests in rice crops: a 

standard Convolutional Neural Network (CNN), a CNN 

with the proposed architecture, the MobileNet 

architecture an efficient, lightweight CNN model 

optimized for use on smartphones and other edge 

devices and the EfficientNetB0 architecture, a scalable 

and efficient series of CNN models [20].  

In the general CNN architecture, the image dataset is 

resized to 216x288 pixels, and the labels are 

transformed into one-hot encoding. The dataset is then 

split into 80% for training and 20% for testing, ensuring 

the model is evaluated on data separate from what it was 

trained on. This basic CNN design includes multiple 

convolutional layers, which utilize filters and the ReLU 

activation function to extract key features from the 

images. 

These convolutional layers are followed by 

MaxPooling layers, which aim to reduce the feature 

dimensions and minimize overfitting by decreasing the 

spatial resolution of the extracted features. This process 

is repeated with several additional convolutional and 

MaxPooling layers to deepen and enrich the features 

extracted from the images. Figure 4 is an overview of 

the CNN architecture: 

 

Figure 4. General CNN architecture 

After extracting features, a flattened layer is applied to 

convert the feature matrix generated by the earlier 

layers into a one-dimensional vector, making it suitable 

for processing by the fully connected layer. This fully 

connected layer is composed of multiple neurons, each 

connected to all neurons in the preceding layer. The 

softmax activation function is then employed in this 

layer to classify the output into two categories: "Pest 

Detected" and "Pest Not Detected." The specifics of 

these layers are outlined in Table 1. 

Table 1. Layers of the General CNN Architecture 

Layer Layer Type Output Dimensions Number of Filters Kernel Size Activation Function 

1  Conv2D (None, 214, 286, 10) 10 3x3 ReLU 

2 Conv2D (None, 212, 284, 10) 10 3x3 ReLU 

3 MaxPooling2D (None, 106, 142, 10) - 2x2 - 

4 Conv2D (None, 104, 140, 10) 10 3x3 ReLU 

5 Conv2D (None, 102, 138, 10) 10 3x3 ReLU 

6 MaxPooling2D (None, 51, 69, 10) - 2x2 - 

7 Flatten (None, 35190) - - - 

8 Dense (None, 2) - - Softmax 

The proposed Convolutional Neural Network (CNN) 

architecture is designed with several significant 

enhancements to address the complexity of image 

processing, particularly in detecting subtle damage to 

rice stems caused by stem borer pests. One key aspect 

of this architecture is the use of a 216x288-pixel image 

resolution. This resolution was selected to maintain the 

aspect ratio and ensure optimal visualization of the 

structural details of stem damage. Preliminary 

experiments indicate that this resolution delivers 

superior performance in detecting damage with subtle 

nuances. 

The proposed CNN architecture employs a progressive 

approach by increasing the number of convolutional 

filters from 32 to 128. This enhancement allows the 

model to gradually extract increasingly complex and 

abstract features, thereby enriching the resulting data 

representation. These additional filters enhance the 

model's ability to capture intricate features that are often 

overlooked by conventional architectures. 

To optimize efficiency and prevent overfitting, the 

architecture integrates 2x2 pooling layers, which 

efficiently reduce data dimensions and computational 

load. This step accelerates the training process by 

enhancing convergence and decreasing the number of 

parameters the model needs to learn. Additionally, a 

dropout layer with a 50% ratio is applied after fully 

connected (Dense) layers with 256 and 128 units. This 

dropout layer functions to minimize the risk of 

overfitting and improve the model's generalization, 

particularly when dealing with variations in the training 

data. 

The Dense layers in this architecture play a crucial role 

in learning more complex and abstract features, 
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enabling the model to understand deeper patterns within 

the data. At the output layer, a softmax activation 

function is used to produce reliable class probabilities 

for classification tasks. With this approach, the 

proposed CNN not only achieves high accuracy in 

predicting target classes but also provides strong 

confidence levels for each prediction, making it highly 

effective in precisely detecting pest damage in 

agricultural settings. Table 2 outlines the specific layers 

used in the proposed CNN architecture:

Table 2. Layers of the Proposed CNN Architecture 

Layer Layer Type Output Dimensions Number of Filters Kernel Size Activation Function 

1  Conv2D (None, 214, 286, 32) 32 3x3 ReLU 

2 Conv2D (None, 212, 284, 32) 32 3x3 ReLU 

3 MaxPooling2D (None, 106, 142, 32) - 2x2 - 

4 Conv2D (None, 104, 140, 64) 64 3x3 ReLU 

5 Conv2D (None, 102, 138, 64) 64 3x3 ReLU 

6 MaxPooling2D (None, 51, 69, 64) - 2x2 - 

7 Conv2D (None, 49, 67, 128) 128 3x3 ReLU 

8 Conv2D (None, 47, 65, 128) 128 3x3 ReLU 

9 MaxPooling2D (None, 23, 32, 128) - 2x2 - 

10 Flatten (None, 94208) - - - 

11 Dense (None, 256) - - ReLU 

12 Dropout (None, 256) - - - 

13 Dense (None, 128) - - ReLU 

14 Dropout (None, 128) - - - 

15 Dense (None, 2) - - Softmax 

The MobileNet architecture is designed for efficiency 

on resource-constrained devices, such as smartphones 

and edge devices. In its implementation, input images 

are resized to 224x224 pixels. This resolution strikes an 

optimal balance between preserving image details and 

reducing computational complexity, ensuring 

efficiency without compromising the model's ability to 

extract critical features. Additionally, converting labels 

to one-hot encoding facilitates a more effective training 

process. 

The dataset is divided into two parts, with 80% 

allocated for training and 20% for testing, ensuring that 

the model is evaluated on unseen data. This is crucial 

for accurately assessing the model's generalization 

capability. MobileNet features several convolutional 

layers with progressively increasing filter sizes of 32, 

64, and 128, followed by pooling layers to reduce 

feature dimensions. This reduction enhances efficiency 

in capturing essential characteristics from the images. 

After the feature extraction process, a flattening layer is 

applied to convert the feature matrix into a one-

dimensional vector, which is then processed by a dense 

layer with 128 units and a ReLU activation function. 

The output layer employs a softmax activation function 

for classification based on the number of classes in the 

dataset. 

The lightweight and optimized MobileNet architecture, 

designed for 224x224 input size, enables fast inference, 

making it ideal for real-time applications and mobile 

devices. Despite its efficiency, the model strikes a good 

balance between speed and accuracy, allowing for 

practical deployment in various resource-constrained 

environments. Table 3 summarises the details of the 

layers in the MobileNet architecture: 

Table 3. Layers of the MobileNet Architecture 

Layer Layer Type Output Dimensions Number of Filters Kernel Size Activation Function 

1  Conv2D (None, 222, 222, 32) 32 3x3 ReLU 

2 MaxPooling2D (None, 111, 111, 32) - 2x2 - 

3 Conv2D (None, 109, 109, 64) 64 3x3 ReLU 

4 MaxPooling2D (None, 54, 54, 64) - 2x2 - 

5 Conv2D (None, 52, 52, 128) 128 3x3 ReLU 

6 MaxPooling2D (None, 26, 26, 128) - 2x2 - 

7 Flatten (None, 86528) - - - 

8 Dense (None, 128) - - ReLU 

9 Dense (None, 128) - - Softmax 

In implementing the EfficientNetB0 architecture, input 

images are resized to 100x100 pixels and converted 

from grayscale to RGB. This resolution is designed to 

maximize computational efficiency while preserving 

the model's capability to extract critical features, 

leveraging pre-trained base layers from the ImageNet 

dataset. This approach allows for a significant reduction 

in computational load while maintaining high accuracy 

levels.  

The dataset is split into three parts: 60% for training, 

20% for validation, and 20% for testing. This division 

is crucial to evaluate the model on previously unseen 

data, supporting an accurate assessment of its 

generalization ability. Additionally, the validation 
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process during training ensures optimal model 

performance by fine-tuning parameters, achieving the 

best results. 

The EfficientNetB0 architecture utilizes a scalable base 

model with compound scaling designed to balance 

computational efficiency and accuracy. It incorporates 

additional layers such as GlobalAveragePooling2D to 

reduce feature dimensions, BatchNormalization to 

stabilize and accelerate training, and Dense layers with 

varying units and activation functions. To mitigate 

overfitting, Dropout layers are also employed, creating 

a sophisticated and efficient architecture. This 

combination of elements makes EfficientNetB0 an 

optimal choice for resource-constrained environments, 

maintaining high performance in feature extraction 

even at smaller resolutions. Table 4 outlines the layers 

of the EfficientNetB0 architecture. 

Table 4. Layers of the EfficientNetB0 Architecture 

Layer Layer Type Output Dimensions Number of Filters Kernel Size Activation Function 

1  EfficientNetB0 (Base) (None, 4, 4, 1280) - - ReLU 

2 GlobalAveragePooling2D (None, 1280) - - ReLU 

3 BatchNormalization (None, 1280) - - - 

4 Dense (None, 256) - - ReLU 

5 Dropout (None, 256) - - ReLU 

6 Dense (None, 128) - - - 

7 Dropout (None, 128) - - - 

8 Dense (None, 1) - - Softmax 

2.5 Model Validation and Evaluation 

After training four different architectures and 

determining which one achieved the highest accuracy, 

the next step is to validate and evaluate these models. 

This phase aims to ensure that the developed models 

perform effectively and can adapt well when applied to 

new, unseen data. During the model validation and 

evaluation process, a Confusion Matrix is utilized to 

gain a deeper insight into the model's performance, 

particularly in classification tasks. This matrix provides 

information on precision, recall, and accuracy values. 

Here, precision indicates how accurately the model 

identifies the positive class, while recall reflects its 

ability to capture instances of the positive class. 

Accuracy measures how correctly the model predicts all 

classes. Typically, the values in the Confusion Matrix 

are presented as percentages (%) [21] to provide a 

clearer picture of the model's predictive quality. The 

calculations are as seen in Formulas 1 – 3. 

The formula for determining accuracy: 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
𝑥 100%             (1) 

The formula for determining precision: 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑥 100%             (2) 

The formula for determining recall: 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑥 100%              (3) 

Next, the comparison between the average precision 

and recall values obtained is referred to as the F1-Score. 

The calculation is shown in Formula 4. 

The formula for determining F1-Score: 

F1 – Score = 
2 𝑋 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙
             (4) 

TP (True Positive) represents the count of positive 

images that the model accurately identified; TN (True 

Negative) denotes the count of negative images that 

were correctly recognized by the model; FP (False 

Positive) refers to the number of images that are 

actually negative but were mistakenly classified as 

positive by the model; and FN (False Negative) 

indicates the number of images that are truly positive 

but were incorrectly categorized as negative by the 

model [22].  

3. Results and Discussions 

In this study, rice plant images were analyzed to detect 

the presence of stem borer pests using four 

architectures: a general Convolutional Neural Network 

(CNN), a proposed CNN, MobileNet, and 

EfficientNetB0. The performance of these architectures 

was evaluated based on several metrics, including 

accuracy, precision, recall, F1 score, and computation 

time. This evaluation aimed to provide a comprehensive 

overview of the effectiveness of each architecture in 

detecting pests, which is crucial for sustainable rice 

crop management.  

The results of the performance comparison between 

these four architectures using 100 epochs with a batch 

size of 32 are presented below. These results 

demonstrate how each architecture contributes to the 

model's performance in pest detection and helps 

identify the most effective architecture for practical 

field applications. The data from this evaluation will 

serve as a foundation for further development and 

refinement of the pest detection methods used in this 

research.  

Based on Table 5 and Figure 5, the MobileNet 

architecture demonstrated significantly lower 

performance compared to the other three architectures, 

with an accuracy of 47.2%, precision of 47.2%, recall 

of 100%, and an F1 score of 64.1%. Its computation 

time was only 6.63 seconds. Although this computation 

time is relatively fast compared to the other 
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architectures, its overall performance is considerably 

poor, making it unsuitable for this research. The low 

performance of MobileNet can be attributed to its 

design philosophy and inherent limitations. MobileNet 

is optimized for power-constrained environments, 

prioritizing computational efficiency over high 

accuracy. The use of depthwise separable convolutions 

reduces the number of parameters and computational 

load, but it also limits the model's ability to extract 

complex features, such as the intricate structural 

damage caused by stem borer pests on rice plants 

Table 5. Results of Performance Comparison Among Architectures 

Type of Architecture Accuracy Precision Recall F1 Score Computation Time (seconds) 

General CNN 0.961 0.944 0.976 0.960 395.85976672172546 

Proposed CNN  0.998 0.997 1.0 0.998 14.193211078643799 

MobileNet  0.472 0.472 1.0 0.641 6.655308246612549 

EfficientNetB0  0.996 0.992 1.0 0.996 688.3367702960968 

 

Figure 5. Performance Comparison Among Architectures 

The subtle visual differences between damaged and 

healthy rice stems require deep and comprehensive 

feature extraction. The shallow architecture of 

MobileNet struggles with this complexity, resulting in 

high recall (100%) but low precision, as it tends to 

overclassify images as pest-damaged to maximize 

sensitivity. Additionally, MobileNet's reliance on a 

224x224 resolution, while efficient, may miss finer 

details critical for detecting pest damage, further 

diminishing its performance in this specific application. 

In contrast, the general CNN architecture demonstrated 

commendable performance with an accuracy of 96.1%, 

precision of 94.4%, recall of 97.6%, and a computation 

time of 395.85 seconds. However, a notable drawback 

of this architecture is its long computation time, which 

may limit its practicality in time-sensitive or resource-

constrained applications. 

The EfficientNetB0 architecture demonstrated strong 

performance with an accuracy of 99.6%, precision of 

99.2%, recall of 100%, and an F1 score of 99.6%. 

However, its training time was significantly longer than 

the other three architectures, at 688.33 seconds. The 

slow computation time of EfficientNetB0 can be 

attributed to several factors. First, the model employs 

compound scaling, which simultaneously increases 

image resolution, model depth, and network width in a 

balanced manner. While this scaling enhances 

accuracy, it also adds computational complexity. 

Additionally, the use of pre-trained base layers from 

ImageNet requires careful fine-tuning, which can slow 

down the training process. Although the input image 

size was reduced to 100x100 pixels, smaller than the 

standard for the model, this still required additional 

adaptation, further extending computation time. These 

factors suggest that while EfficientNetB0 delivers 

exceptional accuracy, its application may be limited in 

scenarios where computational time is a critical factor. 

On the other hand, the proposed CNN architecture 

achieved the best performance, with an accuracy of 

99.8%, precision of 99.7%, recall of 100%, and an F1 

score of 99.8%. Furthermore, the training time for this 

model was relatively short, at just 14.19 seconds, 

demonstrating that the model is both highly accurate in 

classification and efficient in training duration. The 

proposed CNN achieved these impressive results due to 

several key design improvements. The increase in the 

number of convolutional filters (from 32 to 128) 

allowed the model to capture increasingly complex and 

abstract features, which proved highly effective for 

detecting subtle structural differences in rice stems. 
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Additionally, the dropout layer (50%) mitigated 

overfitting by randomly deactivating neurons during 

training, ensuring the model generalized well to unseen 

data. Unlike MobileNet, the proposed CNN maintained 

a resolution that preserved critical structural details in 

the images. This resolution was empirically determined 

to provide a balance between computational efficiency 

and feature retention. The architecture also incorporated 

pooling layers to reduce dimensionality while 

preserving essential features, resulting in efficient 

computation (training time: 14.19 seconds) and superior 

accuracy. Figure 6 is a graph illustrating the variation in 

accuracy across given epochs, along with the loss 

metrics of the proposed CNN architecture: 

 

Figure 6. Visualization of Model Accuracy During Training Process 

The visualization results indicate that the proposed 

Convolutional Neural Network (CNN) performs 

effectively throughout the training process. During the 

initial epochs (1-5), accuracy rises sharply, with 

training accuracy increasing from approximately 0.65 

to 0.85 and testing accuracy from 0.70 to 0.85. This 

upward trend continues until epoch 10, where training 

accuracy reaches about 0.95 and testing accuracy 

hovers around 0.90, despite some minor fluctuations. 

After epoch 10 and up to around epoch 30, the model's 

accuracy remains highly stable, with training accuracy 

fluctuating between 0.95 and 1.00, while testing 

accuracy stabilizes at about 0.95, albeit with consistent 

small variations. From epochs 30 to 100, both training 

and testing accuracy continue to stabilize in a similar 

pattern, suggesting that the model retains its 

performance without significant overfitting. The 

minimal difference in accuracy between training and 

testing indicates strong and consistent performance on 

unseen data. 

The visualization results in Figure 7 illustrate the graph 

depicting the changes in the model's loss for both 

training and testing data. In the first epoch, the training 

data loss began at a high value of approximately 2.5 and 

dropped sharply to nearly 0.3. Similarly, the loss of the 

testing data also experienced a significant reduction 

during the first epoch. Following this initial phase, the 

loss continued to decrease gradually and eventually 

stabilized at a very low level. From epoch 5 onward, 

both training and testing loss remained around 0.1 or 

lower, with minor fluctuations. These fluctuations 

reflect slight variations in the model's performance from 

one epoch to the next; however, overall, the loss 

remained consistently low. The substantial decrease in 

loss during the early epochs, along with its subsequent 

stability, suggests that the architecture is learning 

effectively and maintaining performance without 

evident overfitting. Additionally, the low and stable loss 

values for the testing data indicate that the architecture 

can deliver reliable and consistent results on unseen 

data (testing data), demonstrating that the model not 

only learns well from the training data but also 

effectively applies its acquired knowledge to new 

situations. 

 

Figure 7. Visualization of Model Loss During the Training Process 

Next, predictions were made on the test data and 

compared with the original labels to create a Confusion 

Matrix. This matrix offers a clear overview of the 

correct and incorrect predictions, which is then 

visualized for additional analysis. Figure 8 shows the 

results from the visualization of the Confusion Matrix: 

 

Figure 8. Visualization of the Confusion Matrix Results 

The confusion matrix visualization highlights the 

excellent performance of the proposed Convolutional 
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Neural Network (CNN) architecture. A high number of 

true positives and true negatives indicates the model’s 

strong capability to accurately detect pests in rice crops, 

as well as to correctly identify pest-free plants. The low 

occurrence of false positives and false negatives further 

shows that the model rarely makes errors in its 

predictions, minimizing both Type I errors (FP) and 

Type II errors (FN). 

However, despite the proposed CNN model achieving 

an almost perfect accuracy of 99.8%, further 

examination of misclassified images revealed several 

key causes. One notable error was false positives, where 

healthy rice stems were classified as damaged by pests. 

This mistake often stemmed from environmental 

factors such as shadows, soil patches, or water 

reflections that resembled pest damage patterns. In field 

applications, false positives could lead to unnecessary 

pest control actions, increasing costs and the risk of 

excessive pesticide use, which could harm the 

environment. To address this, several mitigation 

strategies can be employed. Expanding the dataset by 

adding more images captured under similar 

environmental conditions can help the model 

distinguish between actual pest damage and 

environmental artifacts. Additionally, post-processing 

techniques, such as secondary validation using temporal 

image sequences or cross-referencing with sensor data, 

can improve the accuracy of pest detection by ensuring 

more reliable pest presence verification. 

Another type of error observed was false negatives, 

where rice stems damaged by pests were classified as 

healthy or pest-free. This error primarily occurred when 

pest damage was in its early stages or minimal, making 

the visual signs difficult to detect. The consequence of 

failing to detect pest attacks early can delay necessary 

intervention, potentially leading to more widespread 

crop damage and significant economic losses. To 

mitigate this issue, the model architecture needs to be 

refined by enhancing feature extraction layers to 

become more sensitive to subtle changes, such as minor 

discoloration or small anomalies on the rice stems. 

Additionally, incorporating multi-modal inputs, such as 

combining image data with supporting information like 

temperature or humidity levels that correlate with pest 

activity, could further improve detection accuracy and 

reduce the likelihood of false negatives. 

The practical application of the proposed CNN 

architecture in the field also depends on its ability to 

address real-world challenges. Environmental 

variability, such as changes in lighting, weather 

conditions, and different growth stages of rice, can 

introduce variability that affects the model's 

performance. Additionally, power and connectivity 

constraints in remote agricultural areas, where access to 

electricity and internet may be limited, pose significant 

challenges. Deploying the model on battery-powered 

devices with offline inference capabilities ensures 

consistent functionality, even in areas with limited 

infrastructure, making it suitable for field applications. 

4. Conclusions 

This study demonstrates that the proposed 

Convolutional Neural Network (CNN) architecture 

outperforms other models, such as general CNN, 

MobileNet, and EfficientNetB0, in detecting stem borer 

damage in rice plants. With an accuracy of 99.8%, 

precision of 99.7%, recall of 100%, an almost perfect 

F1 score, and a training time of only 14.19 seconds, this 

model is highly efficient and suitable for low-power 

devices like smartphones, even in remote areas with 

limited internet access. However, error analysis 

highlights challenges such as false positives caused by 

environmental factors like shadows or water reflections, 

and false negatives where damage goes undetected. 

These issues can be addressed by expanding the dataset 

and refining the model architecture to detect more 

subtle signs of damage. This model not only supports 

more effective pest control but also contributes to 

sustainable agricultural practices by reducing excessive 

pesticide use. Its flexibility allows adaptation for other 

pests or crops through transfer learning. Furthermore, 

integration with IoT technologies, such as drones and 

remote sensors, opens opportunities for automated and 

large-scale field monitoring, enhancing precision 

agriculture practices. By enabling early pest detection 

and timely control, this model is expected to improve 

crop yields, minimize losses from infestations, and 

revolutionize pest management with an efficient and 

sustainable approach. 
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