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Abstract  

The purpose of this research is to determine whether or not a deep learning model called VGG16 can automatically identify 

bone fractures in X-ray pictures. The dataset, sourced from Kaggle, includes 10,522 images of human hand and foot bones, 

which underwent preprocessing steps such as normalization and resizing to 224x224 pixels to enhance data quality. The study 

utilizes the VGG16 architecture, pre-trained on ImageNet, as a base model, with transfer learning applied to adapt the model 

for fracture detection by fine-tuning its weights. This architecture consists of five blocks of convolutional and max-pooling 

layers to effectively extract and enhance information from the images for precise classification. The training and testing phases 

utilized an 80:20 split of the data, employing binary cross-entropy as the loss function and the Adam optimizer for efficient 

weight updates. The model achieved high performance, with an accuracy of 99.25%, precision of 98.62%, recall of 98.88%, 

and an F1-score of 99.16% over 25 epochs with a batch size of 128. Experimental results indicate that smaller batch sizes 

generally enhance accuracy and reduce loss values, with batch sizes of 128 and 16 yielding optimal performance. The study's 

findings underscore the potential of VGG16 in improving diagnostic accuracy and reliability in medical imaging, providing a 

robust tool for fracture detection. Future research should continue exploring hyperparameter optimization to further enhance 

model performance while balancing computational efficiency. 
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1. Introduction  

A fracture is a medical condition that occurs when the 

continuity of bone is disrupted, usually due to 

significant trauma or injury [1]. Fractures can vary from 

a minor crack to a completely separate bone. This 

condition not only causes severe pain but can also result 

in functional impairment of the affected body part. 

Broken bones often require appropriate medical 

treatment, including immobilization using a cast or 

splint and, in some cases, surgery to ensure optimal 

healing. 

Bone fractures are a common health problem with a 

significant impact on the quality of life of sufferers. In 

addition to intense pain, fractures often lead to 

decreased mobility and body function, hampering daily 

activities [2]. The main causes of fractures include 

direct trauma such as accidents, falls, or hard impacts, 

as well as certain medical conditions such as 

osteoporosis that can increase the risk of fracture. 

Understanding the types of fractures, their symptoms, 

and effective treatment methods is crucial in recovery. 

With prompt and appropriate treatment, the prognosis 

of fracture patients can be improved, minimizing the 

risk of long-term complications and ensuring a return to 

normal function of the injured bone. 

Fractures are usually detected and analyzed through X-

rays, which allows doctors to identify and diagnose 

fractures. Various studies have been developed for early 

fracture detection methods using X-rays to improve the 

accuracy and speed of diagnosis. One such study 

utilized the Deep Neural Network (DNN) method for 

fracture classification and achieved 92.44% accuracy in 

predicting fracture samples on X-ray images [3]. 

Other research also focuses on the application of deep 

learning methods, utilizing the MURA dataset from 

Stanford and the Deep Convolutional Neural Network 

https://doi.org/10.29207/resti.v9i1.6101
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(DCNN) technique with the AlexNet model [4]. This 

research obtained an accuracy of 86.67%, which is 

lower than previous research. However, it provides a 

new picture in conducting fracture research. 

In addition, there is also research that focuses on the 

classification of X-ray images to detect pneumonia [5]. 

This research has similarities with the research 

conducted, which both use the VGG16 model. In the 

study on pneumonia, the VGG16 model achieved an 

accuracy value of 95% in image classification. This 

success shows the significant potential of the VGG16 

model in analyzing and classifying medical images. 

VGG16 is a Convolutional Neural Network (CNN) 

model that plays a key role in deep learning by 

extracting high-level features from images through its 

16-layer architecture. This network has been 

specifically designed to capture intricate details by 

applying convolutional filters across various layers, 

making it highly effective for image classification tasks. 

In a breast cancer classification study using the VGG16 

model as the classification algorithm, an accuracy of 

89.6% was obtained [6]. The use of VGG16 in breast 

cancer classification shows its potential in supporting 

early diagnosis and improving detection accuracy, 

which is crucial for timely treatment and care for 

patients.  The model’s ability to learn hierarchical 

features from raw image data demonstrates its core 

function in CNN-based deep learning. 

Another research study [7] proposed a technique for 

diagnosing bone fractures by leveraging texture 

features based on income inequality and support vector 

machines (SVM). The study was focused on accurately 

and efficiently identifying and categorizing both broken 

and intact bones. The proposed model significantly 

improved the detection performance by using the Gray 

Level Co-occurrence Matrix (GLCM) texture features 

in conjunction with the Gini Index. The results 

indicated that the SVM model achieved an accuracy of 

95% in classifying fractured bones, demonstrating a 

notable improvement over previous methods. 

Recent research into fracture classification using 

artificial intelligence has shown significant progress in 

classification accuracy [8]. This research utilized the 

BoneView algorithm from the GLEAMER company to 

detect fractures [9]. The algorithm achieved an 

accuracy of 97%, the highest value compared to 

previous studies. This result confirms the superiority of 

BoneView in improving fracture detection accuracy, 

making an important contribution to the field of 

diagnostic radiology. 

Various deep learning models have been employed in 

medical imaging, such as Deep Neural Networks 

(DNNs) and Convolutional Neural Networks (CNNs), 

for tasks like fracture classification and disease 

detection. Among these, models like AlexNet, ResNet, 

and EfficientNet have demonstrated high accuracy in 

image classification. Despite the advancements in these 

models, VGG16 was chosen for this study due to its 

simplicity, effectiveness in feature extraction, and 

consistent performance in medical image classification 

tasks. While models like ResNet and EfficientNet are 

known for their superior performance in many 

classification tasks due to their deeper architectures and 

optimization techniques, VGG16 offers a more 

straightforward and interpretable structure, making it 

easier to fine-tune for specific applications such as 

fracture detection. 

This study aims to contribute to two main aspects based 

on previous research. First, this study uses a dataset that 

has gone through a preprocessing stage with a 

normalization approach, aiming to reduce noise and 

improve data quality. Secondly, this study applies the 

VGG16 classification method, which is more accurate 

than previous studies. With this approach, this study 

achieved high accuracy and offered a method that can 

be adopted to improve fracture detection in the future. 

The results from this study show significant potential in 

improving the quality of radiology diagnosis and 

provide a solid foundation for developing more 

effective fracture detection methods. 

2. Research Methods 

In the research conducted, there is a flowchart that 

explains each step of problem-solving based on Figure 

1. The first stage is data fetching, collected from 

Kaggle, an open-source website. A total of 10,522 data 

were found in this process. The collected data 

underwent a preprocessing stage to remove and reduce 

the noise. 

The next stage involves creating the VGG16 layer 

model, which will serve as the main algorithm for 

solving this problem. After creating the model and 

processing the data, we divide the data into two parts 

with a ratio of 80:20 for training and testing purposes. 

The training stage utilizes the training data, while the 

prediction stage uses the testing data. Finally, we 

evaluate the model to assess the performance of the 

trained and tested models. The research flowchart 

system will be summarized in Figure 1. 

 

Figure 1. Research Flowchart 

2.1 Dataset 

The data is sourced from the open-access platform 

Kaggle [10], which provides a free collection of X-ray 

data of broken human hand and foot bones. The dataset 

consists of 10,522 images, split into three main parts for 

training, testing, and validation. The split follows a 

common practice in deep learning to reserve a portion 

of the dataset for testing and validation in order to 

measure the model's performance on unseen data. 
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The reason for using an 80:20 data split in this study is 

to balance the need for sufficient training data while 

preserving enough data to accurately test the model’s 

generalization. With a larger training set (80%), the 

model has more data to learn from, which helps improve 

its performance. The 20% testing set is reserved for 

evaluating the model's ability to generalize to new, 

unseen data, ensuring that the results are not overly 

biased toward the training data. 

This split is commonly used in deep learning tasks 

because it offers a good trade-off between training 

accuracy and generalization. However, there is always 

a risk of overfitting, particularly when working with 

complex models like VGG16. Overfitting occurs when 

a model performs well on the training data but poorly 

on the test data, indicating that it has learned noise or 

irrelevant patterns rather than generalizable features. To 

mitigate this, the model was validated using an 

additional validation set consisting of 798 images (337 

fractured and 461 normal), which helps monitor 

performance during training and ensures the model does 

not overfit. 

Additionally, data augmentation techniques such as 

rotation, zooming, and horizontal flipping were applied 

to artificially increase the diversity of the training set. 

These techniques are essential for preventing 

overfitting by exposing the model to a wider variety of 

input conditions, thereby enhancing its ability to 

generalize across different types of X-ray images. The 

dataset used is presented in Figure 2. 

 

Figure 2. (a) Fractured Human Wrist, (b) Normal Human Wrist. 

Figure 2 presents two X-ray images of a human hand, 

providing a detailed comparison between a fractured 

hand and a normal hand. Part (a) of the figure illustrates 

an X-ray of a hand with fractured bones. The image 

reveals a significant disruption in the continuity of the 

bones, indicative of a fracture. This type of injury 

typically results from various forms of trauma, such as 

accidents, falls, or severe impacts [1]. The X-ray clearly 

shows the fractured areas, where the bone has lost its 

structural integrity. These fractures may appear as clean 

breaks, cracks, or even multiple shattered fragments, 

depending on the severity of the injury. The visibility of 

these disruptions is crucial for medical professionals to 

diagnose the exact nature and extent of the fracture, 

which in turn informs the appropriate treatment plan, 

such as casting, splinting, or surgical intervention. 

Part (b), in contrast, depicts an X-ray of a hand with 

normal bones. The bones in this image are intact, with 

no signs of fractures or damage. The smooth, 

continuous outlines of the bones indicate a healthy 

skeletal structure. This intact bone structure is essential 

for normal hand function, providing the necessary 

support for movement, dexterity, and strength. The 

comparison with the fractured hand in part (a) 

underscores the impact that bone integrity has on 

overall hand function and health. The normal X-ray 

serves as a baseline, highlighting what a healthy hand 

should look like, free from any abnormalities or 

injuries. 

By juxtaposing these two images, Figure 2 effectively 

demonstrates the stark differences between a fractured 

and a normal hand. The fractured hand shows clear 

signs of trauma with interrupted bone continuity, while 

the normal hand exhibits a flawless bone structure. This 

visual comparison is instrumental in understanding the 

implications of bone fractures, emphasizing the 

importance of timely and accurate diagnosis and the 

need for proper medical treatment to restore bone 

integrity and functionality. 

2.2 Preprocessing 

The preprocessing phase plays a crucial role in image 

and text data classification. During this phase, we trim 

or transform parts of the data to remove noise that could 

interfere with the model training process [11]. 

Preprocessing employs techniques such as 

normalization, duplication removal, filling missing 

values, and data transformation. Handling large and 

complex data sets requires substantial memory and 

processing time. By performing preprocessing, we can 

reduce the data size, thereby speeding up the training 

time and lessening the load on the computing system 

[12]. 

This research applied several preprocessing steps to the 

dataset to ensure the data was ready for use in the 

VGG16 model. The preprocessing steps included 

shifting samples by 20%, enlarging images by 20%, and 

horizontally flipping images for a portion of the training 

data. Additionally, data normalization was performed to 

ensure that the pixel values of the photos were within a 

uniform range, specifically between -1 and 1 [13]. 

Normalization using the range of -1 to 1 has several 

important advantages, especially in the context of 

training the VGG16 model. Many activation functions 

used in neural networks, such as tanh and ReLU, can 

work more effectively with data within the range of -1 

to 1 [14]. Tanh is a hyperbolic tangent activation 

function that outputs values between -1 and 1. It is 

particularly useful because it centers the data around 

zero, which helps mitigate issues with saturation that 

can occur in deeper networks, thereby improving 
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convergence during training. ReLU, on the other hand, 

outputs the input directly if it is positive; otherwise, it 

outputs zero. This non-linear activation function allows 

models to handle positive values effectively, promoting 

sparse activation and speeding up training. ReLU has 

become popular due to its simplicity and efficiency in 

dealing with the vanishing gradient problem, making it 

suitable for deep networks. Furthermore, data 

normalized within a smaller and symmetrical range can 

accelerate the training process by making gradient 

descent more stable and efficient, providing reassurance 

about the stability and efficiency of our training 

process. 

A formula can be used to find the range value in 

normalization. The formula is called Feature Scaling, 

which is used to change the data value to be in the range 

of 0 to 1. The feature scaling formula is modified to 

achieve the -1 to 1 in normalization. It becomes like the 

following Formula 1 [15]. In this research, the process 

focused on the entire area of the images rather than 

specific regions of interest (ROI). This approach was 

taken to ensure that the model could capture all possible 

features present in the X-ray images, regardless of their 

location within the frame. 

𝑥′ = 2 ×  (
𝑥𝑖−min (𝑥)

max(𝑥)−min (𝑥)
) − 1                (1) 

Based on Formula 1 [15], the normalization value is 

calculated by converting the existing data values into a 

range of 0 to 1. This process is done by subtracting the 

𝑥𝑖  value with min(𝑥) and then dividing it by the 

difference between max(𝑥) and min(𝑥). After that, the 

result will be multiplied by two and reduced by one to 

get a value from -1 to 1. In this instance, 𝑥𝑖 represents 

the initial data value, while min(𝑥) and max(𝑥) denote 

the smallest and largest values within the dataset, 

respectively. 

This preprocessing stage includes only a few steps as 

the dataset used has gone through several preprocessing 

stages before. The dataset has undergone image 

rotations with rotations ranging from 15% to 90%, 

which increased the amount of data to about 10,522 

images. Therefore, in this study, the preprocessing stage 

focused more on normalizing and adjusting the images 

to fit the model to be used. 

In addition to normalization, the data samples were also 

converted to a length and width of 224 pixels to match 

the input required by the VGG16 model. This process 

ensures that all images in the dataset have a consistent 

size, which facilitates the model training process. With 

this combination of steps, data preprocessing aims to 

improve data quality and support optimal model 

performance [16]. 

2.3 VGG16 Layer Modeling 

Advanced deep-learning models in medical imaging 

have revolutionized diagnostic accuracy and efficiency. 

The VGG16 convolutional neural network, in 

particular, has shown great promise in various 

classification tasks. This study specifically focuses on 

using the VGG16 model to classify fractured bones. By 

leveraging the model's ability to capture detailed 

features in medical images, we strive to enhance the 

diagnostic process for detecting fractures. This 

approach has the potential to improve accuracy and 

offer a reliable tool for medical practitioners, resulting 

in superior patient outcomes and more streamlined 

clinical workflows [17]. 

The deep learning model employed in this study focuses 

on the VGG16 architecture, which comprises several 

blocks [18]. The model includes five blocks designed to 

process the input shape defined by the image matrix 

vector size. These layers progressively extract and 

refine features from the input images, facilitating 

accurate classification of fractured bones. Table 1 

summarizes the detailed composition of these blocks. 

This structured approach enhances the model's ability to 

learn intricate patterns and ensures robust performance 

across different datasets, establishing it as a dependable 

resource for medical diagnostics. 

Table 1. VGG16 Architecture Model 

Block Layer Type 
Number of 

Filters 

Filter 

Size 

Activation 

Function 

Block 

1 

Convolutional 

Layer 
64 3x3 ReLU 

Convolutional 

Layer 
64 3x3 ReLU 

Max-Pooling 

Layer 
- 2x2 - 

Block 

2 

Convolutional 

Layer 
128 3x3 ReLU 

Convolutional 

Layer 
128 3x3 ReLU 

Max-Pooling 

Layer 
- 2x2 - 

Block 

3 

Convolutional 

Layer 
256 3x3 ReLU 

Convolutional 

Layer 
256 3x3 ReLU 

Convolutional 

Layer 
256 3x3 ReLU 

Max-Pooling 

Layer 
- 2x2 - 

Block 

4 

Convolutional 

Layer 
512 3x3 ReLU 

Convolutional 

Layer 
512 3x3 ReLU 

Convolutional 

Layer 
512 3x3 ReLU 

Max-Pooling 

Layer 
- 2x2 - 

Block 

5 

Convolutional 

Layer 
512 3x3 ReLU 

Convolutional 

Layer 
512 3x3 ReLU 

Convolutional 

Layer 
512 3x3 ReLU 

Max-Pooling 

Layer 
- 2x2 - 

Based on Table 1, The first block begins the feature 

extraction by applying two convolutional layers, each 

with 64 filters and a small receptive field, aimed at 

identifying fundamental image characteristics like 

edges and textures. Following these layers, a max-

pooling layer diminishes the spatial dimensions of the 
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feature maps, thus lowering the computational burden 

and introducing translational invariance [19]. 

In the second block, feature extraction's complexity 

increases with convolutional layers containing 128 

filters. Like the first block, two convolutional layers are 

applied sequentially, and then a max-pooling layer is 

utilized. This architecture enables the model to identify 

more detailed patterns and characteristics from the input 

images [20]. 

The third block extends the feature extraction capability 

by employing three convolutional layers, each with 256 

filters. The additional convolutional layer in this block 

enhances the model's ability to learn more complex and 

abstract representations of the input data [21]. The max-

pooling layer at the end of this block continues to reduce 

the spatial dimensions while preserving the learned 

features. 

The fourth block follows a similar pattern but with 

increased filters in the convolutional layers, set to 512. 

This increment allows the model to capture finer details 

and more complex patterns within the images. The 

arrangement of three convolutional layers, succeeded 

by a max-pooling layer, guarantees that the extracted 

features are comprehensive and hierarchically 

organized. 

Finally, the fifth block mirrors the structure of the fourth 

block, utilizing three convolutional layers with 512 

filters each. This block further refines the feature maps, 

capturing the most intricate details necessary for 

accurate classification. The concluding max-pooling 

layer reduces the feature map dimensions, preparing the 

refined features for subsequent stages of the model, 

such as fully connected layers and classification tasks 

[22]. 

In each convolutional layer, there is a general formula 

used to calculate the parameters of the layer. First, the 

convolutional layer needs to determine the value of the 

width. The width in a convolutional layer is a concept 

that describes the layer's capacity to process and 

represent information from the input data. Determining 

the width value first is crucial because it influences 

many aspects of the network's operation and 

performance. The search for the width value can be 

detailed using Formula 2 [23]. 

𝑤𝑖𝑑𝑡ℎ =  
𝑐𝑖𝑘𝑖

2

𝑔𝑖
                (2) 

In Formula 2[23], the value of the number of input 

channels is denoted by 𝑐𝑖, which indicates the depth of 

the input feature map. 𝑐𝑖 signifies the amount of 

information that can be processed by the layer. Next, 𝑘𝑖 

represents the kernel size of the convolutional 

operation, such as 3x3, 5x5, and others. The kernel size 

determines the spatial area of the input that will be 

processed by each neuron in the output layer. Larger 

kernels can capture more spatial details from the input. 

Finally, 𝑔𝑖 represents the number of groups in each 

convolutional operation. Group convolutions divide the 

input channels into several smaller groups, where each 

group is processed independently. After calculating the 

width using Formula 2 [23], this value is then inserted 

into Formula 3 [23], which explains how a neural 

network will be processed within the convolutional 

layer. 

𝐻𝐿 =  log(𝑟𝐿+1
2 𝑐𝐿+1) − ∑ log(

𝑐𝑖𝑘𝑖
2

𝑔𝑖
)𝐿

𝑖=1              (3) 

Formula 3 [23] consists of two main parts used to 

measure the entropy or expressive capacity of a 

convolutional network. The first part, log(𝑟𝐿+1
2 𝐶𝐿+1), 

describes the total amount of information that can be 

represented by the feature map in the final output layer, 

where 𝑟𝐿+1 is the spatial resolution and 𝑐𝐿+1 is the 

number of output channels. The second part, 

∑ log(
𝑐𝑖𝑘𝑖

2

𝑔𝑖
)𝐿

𝑖=1 , is the summation of the logarithms of 

each convolutional layer, where 𝑐𝑖 is the number of 

input channels, 𝑘𝑖 is the kernel size, and 𝑔𝑖 is the 

number of groups.  

The ReLU activation function is employed in this layer 

to incorporate non-linearity into the model [24]. 

Without non-linear activation functions, the neural 

network would only be capable of performing linear 

operations, which means the network's ability to learn 

and model complex data would be highly limited. ReLU 

helps the network learn more complex representations 

[25]. 

However, alternative activation functions also 

contribute uniquely to the performance of neural 

networks. For example, Tanh, the hyperbolic tangent 

function scales inputs to a range of -1 to 1, which helps 

center the data and can lead to faster convergence 

compared to ReLU in some cases [26]. However, it may 

still suffer from the vanishing gradient problem for 

extreme input values. Another function is are sigmoid, 

the sigmoid function outputs values between 0 and 1, 

making it suitable for binary classification tasks [26]. 

However, like Tanh, it can lead to vanishing gradients, 

particularly in deeper networks, making it less 

favorable for hidden layers in modern architectures. 

The ReLU function is adjusted by introducing 

additional parameters, allowing further tuning of the 

standard activation function [27]. The ReLU activation 

function formula is given in Formula 4 [28]. Based on 

this formula, gamma and beta can simplify the function 

to a more conventional form. 

𝜎(𝑥) = (𝛼 ∙ max{0, 𝜓} +  𝛾, 𝛽 ∙ max{0, 𝜑(−𝑥)} +  𝛿)                (4) 

Based on Formula 4 [28], the value of 𝛼 is a parameter 

that scales the positive part of the input after applying 

the function 𝜓. The value of 𝛽 scales the negative part 

of the input after applying the function 𝜑. The 

parameter 𝛾 acts as a bias added to the positive part of 

the input. Similarly, 𝛿 functions like 𝛾; it is a bias added 

to the negative part of the input after being inverted by 

𝜑. 
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The function is split into two primary sections, each 

designed to improve the neural network's flexibility and 

ability to learn data representations effectively. The first 

part will handle the computation of positive values, as 

detailed in Formula 5 [28]. The second part will handle 

the computation of negative values, as detailed in 

Formula 5 [28]. 

(𝛼 ∙ max{0, 𝜓} +  𝛾)              (5) 

The first part in Formula 5 [28] is responsible for 

processing the positive input, controlling the scale with 

𝛼, and adding bias with 𝛾. It handles the positive portion 

of the input 𝑥. The function max{0, 𝜓} ensures that only 

the positive values of the input are passed through, 

while the negative values are set to zero. The parameter 

𝛼 determines the magnitude of the output from the 

positive portion. By multiplying the result of max{0, 𝜓} 

by 𝛼, we can control the sensitivity or influence of the 

positive input on the final output. 

Then, the parameter γ is added as an additional bias that 

can shift the positive output upward or downward. This 

can help further adjust the output value and provide 

additional flexibility for model tuning. After 

understanding what the ReLU function does in the first 

part, the second part will be detailed in Formula 6 [28]. 

(𝛽 ∙ max{0, 𝜑(−𝑥)} +  𝛿)              (6) 

The second part of the ReLU function in Formula 6 [28] 

is responsible for processing the negative portion of the 

input 𝑥. The function max{0, 𝜑(−𝑥)} ensures that only 

the negative values of the input, inverted to positive, are 

passed through, while the positive values are set to zero. 

The parameter 𝛽 determines the magnitude of the 

output from the negative portion. By multiplying the 

result of max{0, 𝜑(−𝑥)} by 𝛽, we can control the 

sensitivity or influence of the negative input on the final 

output.  

Next, adding bias using the parameter 𝛿 will serve as an 

additional bias that can shift the negative output upward 

or downward. This provides further flexibility in 

adjusting the output value. By setting 𝜑 and 𝛿 to zero, 

the function becomes more straightforward and more 

similar to the conventional ReLU function while still 

maintaining additional flexibility for scaling 

adjustments through 𝜑 and 𝛽.  

There is a simplification in the use of these two 

functions by setting 𝛾 and 𝛿 to zero. This simplification 

transforms the complex ReLU activation function into 

a more conventional form. Formula 7 [28] will display 

the decomposition of this simplified function. 

𝜎(𝑥) = (𝛼 ∙ max{0, 𝑥} , 𝛽 ∙ max{0, (−𝑥)})               (7) 

Based on Formula 7 [28] compared to the previous 

Formula 4 [28], it is found that the values 𝜓(𝑥) and 

𝜓(−𝑥) are chosen as identity mappings to 𝑥. After this 

mapping, each part operates as follows: 𝛼 ∙ max{0, 𝑥} 

multiplies the positive input 𝑥 by α. If 𝑥 is greater than 

0, the output is 𝛼𝑥. If 𝑥 is less than or equal to 0, the 

output is 0. Then, the second part acts as an inverted 

ReLU function that multiplies the negative input 𝑥 by 

𝛽. If 𝑥 is less than 0, the output is 𝛽(−𝑥). If 𝑥 is greater 

than or equal to 0, the output is 0. 

Then, In Formula 4  [28], the values of  𝛾 and 𝛿 are set 

to zero, resulting in no additional bias shift. This makes 

the function more straightforward and more similar to 

the conventional ReLU. However, there is additional 

flexibility through 𝛼 and 𝛽, which allows for the 

adjustment of sensitivity to positive and negative inputs 

separately.  

Every block in the model contains a Max-Pooling layer 

that reduces the feature map dimensions by half, 

affecting both its width and height [29]. Additionally, 

max pooling helps the network become more robust to 

shifts in the position of features within the image. The 

operation of the max pooling layer in altering 

dimensions is governed by Formula 8 [19], which 

determines the output value for each position in the 

resultant feature map. 

𝑦𝑘𝑖𝑗 = max(𝑝,𝑞)∈𝑅𝑖𝑗
𝑥𝑘𝑝𝑞                (8) 

Formula 8 [19] presented indicates that the output value 

𝑦𝑘𝑖𝑗 at position (𝑖, 𝑗) of the k-th feature map is obtained 

by taking the maximum value of the elements 𝑥𝑘𝑝𝑞 

within the pooling region 𝑅𝑖𝑗. More specifically, the 

expression max(𝑝,𝑞)∈𝑅𝑖𝑗
𝑥𝑘𝑝𝑞 shows that for each 

position (𝑖, 𝑗), there is a pooling region 𝑅𝑖𝑗 

encompassing several elements in the original feature 

map. Among the elements in this pooling region, the 

highest value is selected as the output value 𝑦𝑘𝑖𝑗. This 

process aims to reduce the dimensionality of the feature 

map while retaining the most significant features. Max 

pooling helps convolutional neural networks become 

more robust to shifts in the position of features within 

the image, and it also reduces the number of parameters 

and computational requirements in the network. 

The model's compilation process utilizes the Adam 

optimizer for its efficiency and adaptability in training 

deep-learning models [30]. Adam, or Adaptive Moment 

Estimation, is a popular algorithm known for handling 

gradient changes swiftly and efficiently [31]. It 

combines the benefits of AdaGrad and RMSProp by 

updating weights using two types of momentum: the 

first measures the exponential average of the gradients, 

and the second measures the exponential average of the 

squared gradients. To ensure accuracy, Adam applies 

bias correction to both momenta. This process allows 

for more stable and faster convergence. Before updating 

weights with Adam, we calculate the first and second 

moving momenta using Formulas 9 and 10 [32]. 

𝑚𝑡 = (1 − 𝛽1) ∑ 𝛽1
𝑡−𝑖𝑔𝑖

𝑡
𝑖=0               (9) 

𝑣𝑡 = (1 − 𝛽2) ∑ 𝛽2
𝑡−𝑖𝑔𝑖

2𝑡
𝑖=0             (10) 

Formula 9 [32] calculates the first moving momentum, 

𝑚𝑡, where 𝛽1 is the exponential decay rate for the first 

moment, and 𝑔𝑖 represents the gradient at each time step 
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𝑖. This smooths the gradient estimates, helping to 

stabilize the training process. The second moving 

momentum at Formula 10 [32] spilled, 𝑣𝑡, captures the 

exponential average of the squared gradients. Here, 𝛽2 

is the exponential decay rate for the second moment. 

This second moment helps to scale the gradients, 

allowing the optimizer to adjust the learning rate 

adaptively for each parameter, ensuring more efficient 

convergence. After knowing the values of 𝑚𝑡 and 𝑣𝑡, 

the bias correction of the momentums can now be 

calculated at Formula 11 [32] and Formula 12 [32]. 

�̂�𝑡 =
𝑚𝑡

1− 𝛽1
𝑡              (11) 

�̂�𝑡 =
𝑣𝑡

1− 𝛽2
𝑡              (12) 

Using the values of 𝑚𝑡 and 𝑣𝑡 from the previous 

momentum calculations, the bias correction for the first 

momentum, given by Formula 11 [32], and for the 

second momentum by the Formula 12 [32]. Here, 𝛽1 

and 𝛽2 are the exponential decay rates used in the initial 

momentum calculations. This bias correction facilitates 

the creation of more accurate estimates of the 

exponential averages of gradients and squared 

gradients, promoting a more stable and efficient weight 

update process. After all the values were calculated 

now, the updated weight can be calculated at Formula 

13 [32]. 

𝑤𝑡 =  𝑤𝑡−1𝑛
�̂�𝑡

√�̂�𝑡+𝜀
             (13) 

In Formula 13 [32], the value of 𝑤𝑡−1 is the previous 

weight, n is the learning rate, �̂�𝑡  is the bias-corrected 

first momentum, �̂�𝑡 is the bias-corrected second 

momentum, and 𝜀 is a small constant added to prevent 

division by zero. This formula ensures that the weight 

updates are scaled appropriately by the first and second-

moment estimates, enabling the optimizer to handle 

gradient changes more efficiently and ensuring a stable 

convergence process. 

The loss function employed is binary cross-entropy, 

which is particularly suitable for binary classification 

tasks such as this one [33]. Additionally, the model's 

performance is evaluated based on accuracy metrics, 

providing a clear measure of its classification 

effectiveness [34]. This combination of optimization, 

loss function, and performance metrics ensures that the 

model is both well-tuned and capable of delivering 

reliable diagnostic results. 

2.3 Evaluation 

To assess the performance of the VGG16 model in 

classifying bone fractures, a confusion matrix has been 

utilized to evaluate the model after training. The 

confusion matrix provides a comprehensive breakdown 

of the model’s predictions versus the actual 

classifications [35]. It is a tabular representation that 

allows us to visualize the performance of a 

classification algorithm by detailing the counts of true 

positives (TP), false positives (FP), true negatives (TN), 

and false negatives (FN). The confusion matrix will be 

elaborated upon in Table 2. 

Table 2. Confusion Matrix 

Actual 

 Prediction 

 Positive Negative 

Positive TP FN 

Negative FP TN 

From Table 2, we can calculate several important metrics 

to evaluate the model’s performance: accuracy, 

precision, recall, and F1 score. First, we will explain 

accuracy, which measures how accurately the model 

predicts the correct data points. It reflects the overall 

effectiveness of the model in classifying instances. In 

contrast, precision assesses the proportion of true positive 

predictions among all positive predictions made by the 

model, indicating the reliability of the positive class 

predictions. Accuracy will be detailed in Formula 14 

[35]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
             (14) 

Precision is a critical metric in the evaluation of 

classification models, particularly in fields where 

accurate predictions are vital, such as medical 

diagnostics. Precision quantifies the accuracy of the 

model's positive predictions by determining the 

proportion of predicted positive instances that are 

indeed positive. Formally, it addresses the question: "Of 

all instances classified as positive, how many are truly 

positive?" A high precision value indicates that the 

model is proficient at minimizing false positives, 

thereby enhancing its reliability. Precision is calculated 

using the formula shown in Formula 15 [35]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
             (15) 

Recall is another essential metric for evaluating the 

performance of a classification model. Often referred to 

as sensitivity or the true positive rate, recall quantifies 

the model's ability to correctly identify all relevant 

positive instances within a dataset. Specifically, it 

addresses the question: "Of all actual positive instances, 

how many did the model correctly identify?". Recall is 

mathematically represented by Formula 16 [35]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (16) 

F1 Score is a vital metric that combines both precision 

and recall to provide a single performance measure for 

classification models. The F1 Score is particularly 

useful in scenarios where there is an imbalance between 

the positive and negative classes, as it seeks to find the 

balance between the two metrics. This measure is 

defined mathematically as the harmonic mean of 

precision and recall, calculated using Formula 17 [35]. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
            (17) 

In conclusion, the evaluation of the VGG16 model for 

classifying bone fractures through the use of a 

confusion matrix has provided valuable insights into its 
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performance metrics. By detailing true positives, false 

positives, true negatives, and false negatives, the 

confusion matrix has enabled a comprehensive analysis 

of the model's classification abilities. The calculated 

metrics of accuracy, precision, recall, and F1 score 

serve as critical indicators of the model's effectiveness. 

Accuracy reflects the overall correctness of predictions, 

while precision and recall assess the reliability and 

sensitivity of the positive classifications, respectively. 

3. Results and Discussions 

This section presents the model's classification results 

from the previously designed model for analysis and 

discussion. The results include the confusion matrix, 

training history, and experiments conducted using 

various batch sizes. These findings give a thorough 

insight into the model's accuracy and proficiency in 

identifying fractured bones.  

3.1 Results 

The effectiveness of the VGG16 model in medical 

image classification, particularly for detecting fractures, 

hinges on its robust training process and performance 

metrics. By meticulously analyzing the model's training 

outcomes, we gain valuable insights into its capability 

to classify bone fractures accurately. The results of this 

training phase are crucial for understanding how well 

the model can generalize to new, unseen data, thereby 

providing a reliable tool for medical diagnostics. 

At this stage, we analyze the implementation of the 

VGG16 layer model for fracture classification. The 

research involves training the model for ten epochs with 

a batch size of 128, resulting in a notable classification 

accuracy of 99.25% and a precision of 98.62%. We 

obtained this accuracy using a test dataset of 4,083 

samples of 3,366 regular and 267 fracture data points. 

We will also evaluate the training results using a 

confusion matrix, as illustrated in Table 3. 

Table 3. Training Result Matrix 

Actual 

 Prediction 

 Fracture Normal 

Fracture 237 1 

Normal 1 267 

Table 3 illustrates the classification results of the model 

on the test data, which consists of two classes: Fractured 

and Normal. The confusion matrix reveals that the 

model correctly identified 237 samples as Fractured, 

meaning the model accurately classified 234 indeed 

fractured samples. Additionally, the model correctly 

identified 267 samples as Normal, indicating the model 

accurately classified 267 samples without fractures. 

However, the model misclassified one sample that was 

actually Normal as Fractured. Conversely, the model 

misclassified one sample that was actually Fractured as 

Normal. 

The model training process also records the values of 

accuracy, validation accuracy, loss, and validation loss 

throughout the training. During the training using ten 

batches, the model stores these values in a variable 

named history. Subsequently, the history will be 

summarized in Figure 3 to visualize these values. This 

monitoring aims to observe the model's adjustment to 

the data during training and evaluate its effectiveness in 

preventing overfitting and underfitting issues. 

 

Figure 3. Training History Epochs 1-25 

Based on the Figure 3, the initial epoch of the model 

recorded an accuracy of 66.29% with a loss of 1.4037, 

highlighting the initial inaccuracies as it began its 

learning process. Notably, the validation accuracy was 

higher at 88.85%, accompanied by a validation loss of 

0.3058, suggesting some capacity for generalization to 

unseen data from the outset. As training advanced, 

considerable improvements were observed in the 

second epoch, where training accuracy surged to 

96.11% and the loss decreased to 0.1631. Validation 

accuracy also improved to 94.36%, with a validation 

loss of 0.1527, indicating effective learning and 

enhanced predictive accuracy. 

By the third epoch, the model attained an accuracy of 

98.32%, with a further reduction in loss to 0.0805. The 

validation accuracy reached 95.86%, and the loss fell to 

0.1124, reflecting ongoing improvement and accuracy 

in predictions. In the fourth epoch, training accuracy 

peaked at 99.17%, accompanied by a low loss of 

0.0536. The validation accuracy reached 97.37%, with 



 Resky Adhyaksa, Bedy Purnama 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)  

 

This is an open access article under the CC BY-4.0 license                                                                                 126 

 

a corresponding loss of 0.0879, suggesting that the 

model was increasingly reliable in its predictions. 

During the fifth and sixth epochs, both training and 

validation accuracies continued to rise. In the sixth 

epoch, training accuracy was reported at 99.49%, with 

a loss of 0.0294, while validation accuracy climbed to 

98.25%, with a loss of 0.0581. These findings illustrate 

the model's growing effectiveness and consistency. By 

the eighth epoch, training accuracy hit 99.81%, 

accompanied by a minimal loss of 0.0160, while 

validation accuracy was at 98.62%, with a loss of 

0.0529. Such high accuracy indicates that the model had 

learned to generalize effectively. 

In the ninth and tenth epochs, the model achieved 

remarkable training accuracies of 99.78% and 99.89%, 

respectively, with training loss values dropping to 

0.0132 and 0.0103. The validation accuracy remained 

high at 99.25% in both epochs, and loss values 

stabilized around 0.0349, suggesting that the model had 

attained high precision and consistent performance. 

From the eleventh to the twenty-fifth epochs, the model 

consistently maintained high accuracy levels with 

minimal fluctuations. Training accuracy hovered 

between 98% and 99%, while validation accuracy 

remained stable at 99.25%, with a low validation loss of 

approximately 0.0349. These final epochs demonstrate 

the model's robustness and reliability in predicting 

fracture classifications, indicating a strong ability to 

generalize to unseen data with minimal errors. 

These training results demonstrate that the model has 

achieved very high accuracy and minimal error in the 

training and validation data. The model can generalize 

patterns from the training data to the validation data, as 

reflected by the high and consistent validation accuracy 

and low loss values. The classification report will be 

summarized in Table 4. 

Table 4. Bone Fracture Classification Report 

Class Precision Recall F1-

Score 

Accuracy 

Fractured 1.00 0.98 0.99 0.99 

Normal 0.99 1.00 0.99 0.99 

Table 4 presents the performance metrics for the 

classification model in distinguishing between fractured 

and normal cases. The metrics used to evaluate the 

model include Precision, Recall, F1-Score, and 

Accuracy, each for both the Fractured and Normal 

classes. For the Fractured class, the model achieved a 

perfect Precision of 1.00, indicating that all instances 

identified as fractured were indeed fractured. This 

exceptional performance can be attributed to the high-

quality dataset of 10,522 X-ray images, which provided 

a diverse set of examples for the model to learn from, 

thus enhancing its ability to accurately classify 

instances. The Recall rate for the Fractured class was 

0.98, meaning the model correctly identified 98% of the 

actual fractured cases.  

The VGG16 architecture's strength in feature extraction 

played a crucial role here; its deep convolutional layers 

are adept at identifying complex patterns in images, 

enabling the model to distinguish between fractured and 

normal bones effectively. The F1-Score, which is the 

harmonic mean of Precision and Recall, was 0.99 for 

this class, reflecting a balanced performance. The 

Accuracy for the Fractured class was also 0.99, 

suggesting that 99% of the total instances were correctly 

classified as either fractured or not fractured. 

In the case of the Normal class, the model achieved a 

Precision of 0.99, showing that 99% of the instances 

identified as normal were truly normal. The Recall rate 

was perfect at 1.00, indicating that the model identified 

all the normal instances correctly. The F1-Score for the 

Normal class was 0.99, indicating a high level of 

precision and recall. Similarly, the Accuracy for the 

Normal class was 0.99, which means the model 

correctly classified 99% of the instances as either 

normal or not normal. Overall, the model's performance 

metrics show high precision, recall, F1-score, and 

accuracy across both classes, demonstrating its 

effectiveness and reliability in distinguishing between 

fractured and normal cases. 

3.2 Experimental 

To enhance the performance of the fracture 

classification model employing the VGG16 

architecture, a number of experiments were done at this 

stage, involving various hyperparameter adjustments. 

The hyperparameters that were modified include batch 

size and the number of epochs. Each experiment was 

conducted meticulously to ensure that the results 

obtained provide a clear picture of how changes in 

hyperparameters affect the model's performance. The 

outcomes of the five tests carried out are consolidated 

in Table 5, providing a comprehensive overview of the 

accuracy and loss values attained for each set of 

hyperparameters. 

Table 5. Experimental Hyperparameter Batch Size 

Epochs Batch Size Accuracy Loss 

25 

256 0.9872 0.0536 

128 0.9925 0.0135 

64 0.986 0.0805 

32 0.9899 0.0433 

16 0.9900 0.0241 

In the original experiment, a total of 256 batches were 

utilized, and the specimen underwent training for ten 

epochs. The results showed an accuracy of 98.32% with 

a loss value of 0.0536. The second experiment used the 

same number of epochs but with a smaller batch size of 

128. The accuracy increased to 99.25% with a lower 

loss value of 0.0135, indicating that reducing the batch 

size can enhance the model's performance.  

In the third attempt, the sample size was reduced to 64, 

yielding a success rate of 98.69% and an error value of 

0.0805. Although the accuracy remained high, the 

higher loss value suggests that this batch size may not 

be optimal for training the model. For the fourth trial, 
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the batch size was decreased to 32, resulting in a success 

rate of 98.99% and an error value of 0.0433.  

For the fifth experiment, a sample size of 16 was 

utilized, yielding a success rate of 99.00% and an 

incorrect value of 0.0241. From these experiments, 

smaller batch sizes improve model accuracy and reduce 

loss values. However, a batch size that is too small can 

lead to significantly higher loss values, as seen with the 

batch size of 64. Therefore, a batch size of 128 or 16 

batch sized for achieving a balance between high 

accuracy and low loss values. 

Based on the analysis of training data across various 

batch sizes, a clear pattern emerges regarding the 

impact of batch size on accuracy and loss. The batch 

size of 128 yields the highest accuracy (0.9901) and the 

lowest loss (0.0232), suggesting that this size may be 

the optimal choice in this context. Meanwhile, although 

a batch size of 16 also achieves an excellent accuracy 

(0.9900) and a low loss (0.0241), larger batch sizes, 

such as 256, tend to show less satisfactory accuracy and 

higher loss (0.9872 and 0.0536, respectively). These 

findings align with previous research indicating that 

smaller batch sizes can aid in achieving better 

generalization, whereas larger batch sizes may expedite 

training but risk diminishing accuracy if not properly 

calibrated [36]. This underscores the importance of 

hyperparameter tuning in deep learning models to 

achieve optimal performance. 

In addition to employing VGG16, this study also 

compares its performance against other deep learning 

architectures such as AlexNet, DenseNet121, 

DenseNet169, and DenseNet201. These models were 

selected based on their established success in image 

classification tasks, with each offering unique strengths. 

AlexNet is recognized for pioneering the use of deep 

convolutional networks, while the DenseNet 

architectures (121, 169, and 201) are appreciated for 

their efficient feature reuse through densely connected 

layers, which help mitigate the vanishing gradient 

problem in deep networks. The testing results for these 

alternative architectures are presented in Table 6. 

Table 6. Experiments Using Other Model Architectures 

Model Name Accuracy Loss 

VGG16 0.9925 0.0135 

AlexNet 0.8794 0.2930 

DenseNet121 0.9139 0.2187 

DenseNet169 0.9899 0.0433 

DenseNet201 0.9601 0.0241 

Table 6 presents a comparison of five deep learning 

models: VGG16, AlexNet, DenseNet121, 

DenseNet169, and DenseNet201, evaluating their 

performance based on accuracy and loss. VGG16 

achieves the highest performance, with an accuracy of 

99.01% and a minimal loss of 0.0175, highlighting its 

strong generalization ability. DenseNet169 closely 

follows with a high accuracy of 98.99% and a slightly 

higher loss of 0.0433. DenseNet201 also demonstrates 

solid results, achieving a 96.01% accuracy and a loss of 

0.0241, although it falls slightly behind the top-

performing models. 

Conversely, AlexNet records the lowest accuracy of 

87.94% and the highest loss at 0.2930, indicating 

weaker performance compared to the other models. 

DenseNet121 surpasses AlexNet with an accuracy of 

91.39% and a loss of 0.2187, but it does not perform as 

well as the more complex DenseNet169. Overall, 

DenseNet models, especially DenseNet169, strike a 

strong balance between accuracy and loss, 

outperforming AlexNet while approaching VGG16's 

performance levels. 

3.3 Discussion 

The objective of this work was to improve the accuracy 

of a fracture classification model by utilizing the 

VGG16 architecture and conducting a series of tests 

with different hyperparameters. The experiments 

highlighted the significant impact of batch size on the 

model's performance, demonstrating that smaller batch 

sizes generally improve accuracy and reduce loss 

values. Specifically, batch sizes of 128 and 16 proved 

the most effective, achieving an optimal balance 

between high accuracy and low loss. 

The dataset was divided for experimentation using an 

80:20 split, with 80% of the data used for training and 

20% for testing. The splitting was conducted based on 

the researcher's own requirements, incorporating 

experimental setups that included data augmentation 

techniques. Data augmentation, such as rotation, 

zooming, and flipping, was applied to increase the 

diversity of training samples and avoid overfitting. 

Additionally, specific regions of the X-ray images 

(normal versus fracture) were considered to ensure a 

balanced representation of classes. This method helped 

maintain consistency between normal and fractured 

bone categories and allowed for more robust testing of 

the model's ability to generalize across unseen data.  

Within the framework of the VGG16 model, the 

analysis report indicated excellent reliability, recall, and 

F1-score for both classes. Specifically, the fractured 

class achieved a precision of 100%, a recall of 98%, and 

an F1 score of 99%. The average class also exhibited 

impressive performance metrics. The model achieved a 

precision of 99%, indicating a high accuracy in 

identifying the correct class labels. The recall was 

perfect at 100%, demonstrating that the model 

successfully identified all instances of the class. 

Additionally, the F1 score was 99%, reflecting a 

balanced and robust performance in both precision and 

recall. These results underscore the model's robust 

capability to accurately distinguish between fractured 

and regular instances, as evidenced by the overall 

accuracy of 99%. 

However, there are several challenges and trade-offs 

associated with the use of VGG16. First, the model is 

computationally expensive due to its depth and the large 

number of parameters. This often leads to slower 
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training times, particularly when working with high-

resolution medical images. Additionally, while smaller 

batch sizes improved performance, a batch size of 64 

led to higher loss values, suggesting that there is a 

threshold beyond which further reduction in batch size 

may not yield additional benefits. This highlights the 

challenge of balancing hyperparameter tuning with 

computational efficiency. 

Comparing the other research [3] using Deep Neural 

Networks (DNN) achieves 95% accuracy at 10% of test 

data and 93% at 15% of test data. Other research [4] 

using the Deep Convolutional Neural Network (DCNN) 

technique with the AlexNet model, achieved 86.67% 

accuracy for gaining the testing data. Lastly, research 

[7] using the Gray Level Co-occurrence Matrix gained 

an accuracy of 95%. These comparisons will be 

presented in Table 7. 

Table 7. Comparisons Between Latest Research 

Model Name Accuracy 

DNN [3] 0.8794 

DCNN [4] 0.9139 

GLCM [7] 0.9899 

VGG16 0.9925 

However, it is essential to note that while smaller batch 

sizes generally improve model performance, petite 

batch sizes like 64 led to higher loss values despite 

maintaining high accuracy. This indicates a threshold 

below which further reduction in batch size may not 

yield additional benefits and may degrade the model's 

performance. 

In conclusion, this study's findings provide valuable 

insights into the optimal configuration of 

hyperparameters for training deep-learning models in 

medical image classification. The VGG16 model, when 

fine-tuned with appropriate batch sizes, demonstrates 

exceptional accuracy and robustness in fracture 

detection. Future research should explore the balance 

between batch size and other hyperparameters to 

enhance model performance further while mitigating 

computational costs and training time. 

4. Conclusions 

This study successfully demonstrated the application of 

the VGG16 architecture for the automatic detection of 

bone fractures in X-ray images. The model achieved 

high performance, with an accuracy of 99%, precision 

of 98.32%, recall of 98%, and an F1-score of 98.16%. 

These results confirm the potential of deep learning 

models, particularly VGG16, in enhancing diagnostic 

accuracy in medical imaging. Additionally, 

comparative experiments with other models like 

AlexNet and DenseNet architectures provided valuable 

insights into how different architectures perform in the 

context of medical image classification. However, 

despite these promising results, several limitations must 

be acknowledged. First, the dataset, while extensive, 

may not fully capture the diversity of real-world clinical 

scenarios, such as variations in imaging equipment or 

patient demographics. This could limit the model's 

generalizability when applied to different clinical 

settings. Another limitation is the use of transfer 

learning, which, while effective, might not be fully 

optimized for this specific task. Future research should 

explore custom architectures or domain-specific pre-

trained models to further enhance performance. 

Moreover, while the VGG16 model demonstrated 

strong accuracy, the computational cost and memory 

requirements of deep networks remain a challenge. This 

study did not address these issues in depth, and future 

work could investigate more efficient models or 

techniques like model pruning and quantization to 

reduce the computational overhead. Finally, the study 

primarily focused on fracture detection but did not 

explore other important clinical aspects, such as the 

severity or type of fracture. Expanding the model to 

provide more nuanced diagnostic insights could 

significantly increase its clinical utility. In conclusion, 

while the VGG16 model offers a robust solution for 

fracture detection, future research should address these 

limitations by improving model generalizability, 

reducing computational complexity, and expanding the 

scope of clinical applications. 
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