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Abstract  

In the digital age, the security of communication technologies is paramount, with cybercrime projected to reach $10.5 trillion 

annually by 2025. While encryption is vital, decrypted data remains vulnerable, prompting the exploration of steganography 

as an additional security layer. Steganography conceals data within digital media, but its misuse for cyberattacks—such as 

embedding malware—has highlighted the need for steganalysis, the detection of hidden data. Despite extensive research, few 

studies have explored lightweight deep-learning models for real-time steganalysis in resource-constrained environments like 

mobile devices. This research evaluates MobileNet, ShuffleNet, and EfficientNet for such tasks, using the BOSSbase-1.01 

dataset. Models were assessed based on accuracy, computational efficiency, and resource usage. MobileNet achieved the 

highest computational speed but with only 63.8% accuracy, falling short of practical application. ShuffleNet and EfficientNet 

performed at random-guessing levels with 50% accuracy, reflecting the challenges of steganalysis on mobile platforms. Future 

work aims to improve accuracy by integrating advanced preprocessing techniques, attention mechanisms, and hybrid 

architectures, as well as leveraging ensemble methods for improved detection. Data augmentation, transfer learning, and 

hyperparameter tuning will also be explored to optimize model performance. This study contributes by identifying these 

challenges and offering insights for future research, focusing on optimizing models and preprocessing techniques to enhance 

detection accuracy in resource-constrained environments. 
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1. Introduction  

In today’s digitally interconnected world, 

communication technologies have become integral to 

daily life, with over 5.48 billion unique mobile users 

globally, accounting for more than 68% of the world’s 

population [1]. This surge in connectivity has led to an 

exponential increase in data transmission, amplifying 

concerns over data security and privacy. While 

encryption remains a fundamental tool for protecting 

data during transmission—utilized by 62% of 

organizations as reported by the Ponemon Institute 

[2]—it has inherent limitations [3]. Encrypted data, 

once decrypted for use, becomes vulnerable to 

unauthorized access, especially during transfers across 

networks susceptible to interception and cyberattacks. 

To mitigate these vulnerabilities, steganography has 

emerged as a complementary security measure. By 

embedding sensitive information within digital media 

like images or audio files, steganography conceals the 

very existence of the data, making it less likely to attract 

unwanted attention [4]. However, this technique is a 

double-edged sword. Cybercriminals have increasingly 

exploited steganography to hide malicious code within 

seemingly benign files, effectively bypassing 

traditional security mechanisms [5], [6]. The ubiquity 

of digital images—over 14 billion uploaded daily across 

social media platforms [7]—makes them ideal carriers 

for such concealed threats. 

Traditional steganalysis methods, such as statistical 

analysis and pattern recognition, face significant 

limitations in detecting sophisticated steganographic 

techniques used by malicious actors. These 

conventional approaches rely heavily on predefined 

features and assumptions about the data, making them 

less adaptable to the complexity and variability of 
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modern steganographic methods. As a result, they often 

struggle to detect hidden information when 

steganographic patterns do not align with expected 

distributions or when data is manipulated in subtle, 

novel ways. Consequently, these methods exhibit lower 

detection accuracy compared to more advanced models, 

as highlighted in studies [8], [9]. 

In contrast, deep learning models offer a dynamic and 

adaptive approach to steganalysis. Unlike traditional 

methods, deep learning algorithms can automatically 

learn intricate patterns and representations from raw 

data without relying on predefined features. This 

flexibility allows deep learning models to generalize 

better across different types of steganography, 

including those employing sophisticated or evolving 

techniques. As a result, deep learning-based 

steganalysis models achieve higher detection accuracy, 

particularly in cases where traditional methods fall 

short, as highlighted in studies [8], [9]. 

In contrast, deep learning models offer a dynamic and 

adaptive approach to steganalysis [10], [11], [12]. 

Unlike traditional methods, deep learning algorithms 

can automatically learn intricate patterns and 

representations from raw data without relying on 

predefined features. This flexibility allows deep 

learning models to generalize better across different 

types of steganography, including those employing 

sophisticated or evolving techniques. As a result, deep 

learning-based steganalysis models achieve higher 

detection accuracy, particularly in cases where 

traditional methods fall short, as highlighted in studies 

[8], [9]. Despite their detection capabilities, most deep 

learning models are resource-intensive, making them 

unsuitable for real-time use on devices with limited 

processing capacity, such as mobile phones. This gap is 

critical because mobile devices are especially 

vulnerable to steganographic threats [13], necessitating 

solutions that can operate efficiently with minimal 

resource consumption to detect hidden data in real-time 

[14]. 

To address this challenge, we focus on integrating 

lightweight deep learning architectures—specifically 

MobileNet, ShuffleNet, and EfficientNet—into 

steganalysis systems. These models were chosen for 

their design, which optimizes performance while 

minimizing computational requirements. MobileNet 

employs depthwise separable convolutions to reduce 

the number of parameters and computational cost [15]. 

ShuffleNet introduces pointwise group convolution and 

channel shuffle operations to further enhance efficiency 

[16]. EfficientNet utilizes a compound scaling method 

that uniformly scales network dimensions, achieving 

better accuracy with fewer parameters [17]. By 

leveraging these architectures, we aim to develop a 

steganalysis system capable of operating effectively in 

resource-constrained environments without 

compromising detection accuracy. 

Furthermore, these architectures provide significant 

advantages in resource-constrained environments due 

to their low computational complexity, memory 

efficiency, and reduced power consumption [15], [16], 

[17]. Their architectural innovations, such as depthwise 

separable convolutions, group convolutions, and 

compound scaling, minimize FLOP counts and 

parameter sizes, allowing for real-time processing even 

on devices with limited hardware. Moreover, the 

reduced computational demand translates to lower 

power consumption, which is critical for battery-

powered devices, such as smartphones or drones, 

involved in continuous steganalysis operations. Despite 

their lightweight design, these models maintain high 

levels of accuracy, which is essential for the precise 

detection of hidden information in steganalysis tasks. 

Our research addresses the gap between advanced 

steganalysis capabilities and the limitations of resource-

constrained devices by proposing a lightweight yet 

accurate system for real-time detection of hidden 

information within digital images on mobile platforms. 

This solution enhances security against steganography-

based attacks, providing a practical approach to 

safeguarding data in an era where mobile 

communication is ubiquitous and increasingly targeted 

by cyber threats. By incorporating mobile-friendly deep 

learning models such as MobileNet, ShuffleNet, and 

EfficientNet—designed to operate with fewer 

parameters and faster inference times—our steganalysis 

system is optimized for mobile and resource-

constrained platforms, ensuring effective real-time 

detection of steganographic content. 

Steganography, the art of concealing information within 

digital media, is a technique designed to keep sensitive 

data hidden from detection [18]. This concept differs 

from encryption, where data is scrambled into 

unreadable formats, as steganography seeks to make the 

data itself undetectable. One of the most popular 

methods is the Least Significant Bit (LSB) technique, 

which embeds hidden information by altering the least 

significant bits of image pixels, causing changes that are 

imperceptible to the human eye [19], [20]. According to 

[21], LSB methods are simple but prone to detection by 

statistical methods. More advanced techniques, such as 

Discrete Cosine Transform (DCT) and Discrete 

Wavelet Transform (DWT), operate in the frequency 

domain, embedding data into more resilient parts of the 

media [22]. Steganography plays a dual role: it 

enhances privacy and security, but also raises ethical 

concerns, particularly when misused for illegal 

purposes like data exfiltration or terrorism [23]. This 

dual nature presents a challenge in balancing security, 

capacity, and imperceptibility, especially when faced 

with increasing detection techniques. 

Steganalysis is the countermeasure to steganography, 

developed to detect hidden information within digital 

files [24]. Traditional steganalysis approaches rely on 

statistical techniques that exploit inconsistencies in 

pixel patterns or noise created by hidden data [25]. [26] 
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pioneered the use of statistical methods, which 

identified deviations in pixel distributions in LSB-based 

images. Feature extraction techniques, such as the 

subtractive pixel adjacency matrix, have been widely 

applied to steganalysis [27]. However, these traditional 

techniques struggle with detecting modern 

steganographic methods that introduce minimal 

detectable changes, especially as adversaries have 

refined their algorithms. As [28] argues, traditional 

steganalysis is becoming increasingly ineffective 

against newer adaptive embedding techniques, 

prompting a shift towards machine learning approaches 

based on clustering, which can detect more complex 

patterns. 

Deep learning represents a significant leap in the 

capabilities of steganalysis, providing more powerful 

tools for both feature extraction and classification. 

Convolutional Neural Networks (CNNs) are 

particularly well-suited to image-based tasks because of 

their ability to automatically extract features from raw 

data [29]. According to [30] proposed a deep learning 

model, SRNet, which demonstrated an unprecedented 

detection accuracy of 90% for low embedding rates in 

the BOSSbase dataset, far exceeding earlier methods. 

Such advancements underscore deep learning’s 

capability to tackle increasingly complex 

steganography detection tasks. This transition away 

from traditional machine learning approaches toward 

deep learning-based models reflects the growing 

complexity of modern steganography. 

Recent developments in deep learning in steganalysis 

initially focused on heavy models like GoogleNet, a 

CNN architecture known for its high image 

classification performance and the efficient extraction 

of multi-dimensional features [11]. He introduced an 

enhanced GoogleNet-based model, referred to as EGN, 

aimed at improving image steganalysis accuracy. The 

EGN model uses a high-pass filter (HPF) to enhance 

noise, which is crucial for detecting hidden data, as the 

hidden information in steganographic images often 

resembles noise. The integrated GoogleNet model, 

combined with its variants, leverages ensemble learning 

to reduce bias in classification, significantly improving 

detection accuracy. Zhang’s experiments demonstrated 

that the EGN model achieved a detection accuracy of 

96.18% for images embedded with the S-UNIWARD 

algorithm at an embedding rate of 0.4 bits per pixel 

(bpp), outperforming traditional models by a wide 

margin. By using ensemble variants of GoogleNet, 

Zhang’s approach mitigated the high computational 

demands typically associated with deep CNN models 

while maintaining high accuracy, addressing some 

limitations of early heavy models like GoogleNet. 

The increasing demand for real-time steganalysis, 

particularly on mobile platforms, has led to a focus on 

lightweight deep learning architectures. Models like 

MobileNet, ShuffleNet, and EfficientNet have been 

developed to operate efficiently in resource-constrained 

environments, striking a balance between performance 

and computational cost [15], [16], [17]. [15] introduced 

MobileNet, which employs depthwise separable 

convolutions to reduce the number of parameters and 

computational load, achieving competitive accuracy 

while reducing the parameter compared to standard 

CNN architectures. While MobileNet has been 

primarily used for tasks like image classification, its 

efficiency makes it a promising candidate for 

steganalysis, particularly in real-time scenarios where 

computational resources are limited. However, as noted 

by Zhang et al. (2018), one of MobileNet’s limitations 

is its lower accuracy in tasks that require high precision, 

such as detecting subtle hidden patterns in stego images 

[16]. 

ShuffleNet, another lightweight architecture, offers a 

solution through grouped convolutions and channel 

shuffling, which reduce computational complexity 

while maintaining accuracy [16]. Although ShuffleNet 

has not yet been extensively tested in steganalysis, its 

efficiency in handling high-dimensional data suggests it 

may be highly suitable for this task, especially in 

resource-limited environments. Future research could 

explore applying ShuffleNet to steganalysis tasks, 

particularly in mobile environments where 

computational power and memory are constrained. 

EfficientNet, introduced by [17], further advances the 

field by optimizing the balance between depth, width, 

and resolution. EfficientNet scales these dimensions 

systematically, achieving state-of-the-art accuracy on 

the ImageNet dataset while using fewer parameters and 

FLOPs compared to previous CNN architectures. Given 

its scalability and efficiency, EfficientNet offers 

considerable potential for steganalysis, particularly in 

scenarios where both high accuracy and low 

computational costs are critical. While research on 

EfficientNet in the context of steganalysis is still 

limited, its success in other image-based tasks makes it 

a promising candidate for future studies. 

When evaluating the performance of deep learning-

based steganalysis models, two key metrics emerge: 

detection accuracy and computational efficiency. 

Accuracy metrics, including detection rate, false 

positives, and true positives, are critical for determining 

a model’s effectiveness in correctly identifying hidden 

information. The BOSSbase-1.01 dataset, a benchmark 

dataset widely used in steganalysis research, serves as a 

standard for testing the performance of steganalysis 

models [31], [32]. In addition to accuracy, 

computational efficiency plays a crucial role in real-

time or mobile applications. Factors like memory usage, 

latency, and power consumption are essential 

considerations for deploying steganalysis models on 

mobile devices. 

Despite these advancements, significant gaps remain in 

the current literature, particularly regarding the 

optimization of steganalysis models for mobile 

environments. Most existing model, such as GoogleNet, 

are too resource-intensive for deployment on mobile 
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devices or in real-time applications. While lightweight 

architectures like MobileNet, ShuffleNet, and 

EfficientNet offer promising solutions, their application 

to steganalysis has not been fully explored. 

Furthermore, balancing detection accuracy with 

computational efficiency continues to be a major 

challenge, particularly as steganographic methods 

evolve and become more sophisticated. The need for 

lightweight, real-time steganalysis models that can 

perform well in resource-constrained environments is 

increasingly pressing as mobile devices become more 

prevalent in security applications. 

In conclusion, while deep learning has brought 

significant improvements to the field of steganalysis, 

much work remains, particularly in developing models 

that can operate efficiently in real-world, resource-

constrained environments. Recent CNN models like 

GoogleNet demonstrated the power of deep learning for 

detecting hidden information but highlighted the need 

for more scalable solutions. Lightweight architectures 

like MobileNet, ShuffleNet, and EfficientNet provide a 

promising foundation for future research, offering the 

potential to develop efficient, accurate steganalysis 

models that can be deployed in real-time, mobile 

environments. This research seeks to bridge the gap in 

the literature by optimizing these lightweight models 

for steganalysis, with the goal of achieving high 

detection accuracy without overwhelming 

computational resources. 

2. Research Methods 

This section outlines the methodology used in this 

research, which focuses on the implementation of 

MobileNet, ShuffleNet, and EfficientNet models for 

steganalysis on the BOSSbase-1.01 dataset. The 

methodology covers key stages including data 

preprocessing, model training, cross-validation, 

evaluation, and model comparison based on accuracy, 

computational efficiency, and resource usage. 

2.1 Proposed Deep Learning Models 

The core of this research revolves around using state-

of-the-art deep learning models—MobileNet, 

ShuffleNet, and EfficientNet—which are designed for 

efficient operation in resource-constrained 

environments, such as mobile devices.  

These models were selected due to their ability to 

perform well on image classification tasks while 

maintaining low computational overhead. In order to 

achieve optimal performance, the models were trained 

and evaluated using consistent training parameters, 

ensuring a fair and robust comparison. 

2.2 Research Workflow 

The research workflow was structured around a series 

of systematic steps to ensure consistency, accuracy, and 

efficiency in the training and evaluation of the models. 

Figure 1 depicts research workflow. 

 
Figure 1. Research workflow 

Data Preprocessing: The first step involved data 

preprocessing, where the pixel values of the images 

were normalized. Normalization scales the pixel values 

between 0 and 1, which facilitates faster and more stable 

computations during training. This step also helps 

prevent gradient overflow, a phenomenon where the 

model’s gradients become excessively large, leading to 

unstable updates that can hinder the training process. 

A high-pass filter (HPF) was applied to the input images 

to enhance high-frequency components, such as edges 

and subtle noise patterns, which are often indicative of 

hidden steganographic information. The HPF 

configuration uses a fixed 5×5 matrix as specified in 

[11], based on prior research demonstrating its 

effectiveness in image steganalysis. This matrix 

strengthens pixel intensity differences, especially at 

edges, amplifying high-frequency details that are 

critical for detecting the minor modifications associated 

with steganographic embedding. 

The HPF matrix is defined as follows: 

𝐹 =
1

12

[
 
 
 
 
−1 2 −2 2 −1
2 −6 8 −6 2

−2 8 −12 8 −2
2 −6 8 −6 2

−1 2 −2 2 −1]
 
 
 
 

             (1) 

By using this fixed configuration, the filter enhances 

noise-like features consistently across all images. This 

choice of preprocessing technique follows established 

research that has shown improved detection accuracy 

when applying similar HPF configurations in 

steganalysis models [11]. Therefore, the HPF step was 

included as a proven method to assist the model in 

focusing on essential high-frequency features without 

requiring additional tuning during our experiments. 
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Dataset Partitioning: The dataset was divided into two 

parts: 80% of the images were used for training, and 

20% were reserved for testing. This partitioning 

ensured that the models were trained on the majority of 

the dataset while being evaluated on unseen data to 

assess their generalization capabilities. Additionally, a 

5-fold cross-validation approach was applied to the 

training set, with 80% of the data used for training in 

each fold and 20% for validation. This cross-validation 

method helps improve the robustness of the models by 

evaluating them on multiple subsets of the data. 

Model Training: During the training phase, the three 

models—MobileNet, ShuffleNet, and EfficientNet—

were trained on the prepared training dataset. Training 

took place over 20 epochs with a batch size of 32, and 

the models were optimized using the Adam optimizer 

with exponential learning rate decay. The performance 

of the models was continuously monitored using the 

validation set to ensure that they were learning 

effectively and to detect potential overfitting. The 

cross-entropy loss function was used to guide the 

training process by penalizing incorrect predictions, 

helping the models refine their feature extraction 

capabilities. 

Model Storage: After training, each model was saved 

for future use. Model storage is critical for deploying 

these models in real-world applications or for further 

testing phase. The stored models can be later retrieved 

for evaluation or integration into mobile applications 

designed for steganalysis. 

Model Evaluation: The models were evaluated on the 

testing dataset, which was not used during training to 

provide an unbiased assessment of their performance on 

unseen data. This evaluation was crucial to assess the 

generalization capabilities of the models, especially 

their ability to detect stego images. The evaluation was 

based on several key metrics, including accuracy, time 

computation, and resource efficiency (measured in 

terms of the number of trainable parameters). 

Prediction on Test Data: After training and evaluating 

the models, the final phase involved predicting the test 

data. Each model was tasked with classifying images as 

either cover or stego, and their predictions were 

compared against the ground truth to compute the 

accuracy. In addition, the time taken by each model to 

make predictions was recorded, as well as the resource 

usage in terms of trainable parameters. This evaluation 

process helped identify the best-performing model in 

terms of both accuracy and efficiency. 

The research produced two primary outputs: A mobile-

friendly deep learning model for stego image detection; 

A detailed evaluation report that provides insights into 

model performance, including accuracy, computational 

efficiency, and resource usage. 

2.3. Models and Training Parameters 

For model training, we adopted the Adam optimizer, a 

popular choice for deep learning models because of its 

adaptive learning rate and momentum features, which 

help the model converge faster and more efficiently. In 

addition, we implemented a learning rate schedule 

using an Exponential Decay function. The initial 

learning rate was set at 0.001, which is a standard 

starting point for training deep learning models. Over 

time, the learning rate decayed at a rate of 0.9 after 

every 10,000 steps. This decay mechanism allows the 

learning process to start with relatively large updates 

and gradually reduce them as the model approaches 

convergence, preventing overshooting and improving 

the overall stability of the training process. 

The loss function used was Categorical Cross-Entropy, 

which is suitable for multi-class classification tasks like 

ours, where the objective is to correctly classify images 

as either "cover" (no hidden data) or "stego" (contains 

hidden data). Cross-entropy loss penalizes incorrect 

predictions more significantly, encouraging the model 

to learn more discriminative features. Training was 

conducted over 20 epochs, a reasonable number that 

balances between sufficient training iterations and 

avoiding overfitting. A batch size of 32 was chosen, 

ensuring efficient use of GPU memory without causing 

performance bottlenecks. The use of smaller batch sizes 

helps to update the model more frequently, promoting 

faster convergence and capturing finer details in the 

data. 

The choice of models—MobileNet, ShuffleNet, and 

EfficientNet—was driven by their efficiency in 

handling high-dimensional image data while 

maintaining a low parameter count. MobileNet employs 

depthwise separable convolutions, drastically reducing 

the number of parameters and computational load 

compared to standard convolutional neural networks 

(CNNs). ShuffleNet further optimizes the architecture 

by using grouped convolutions and channel shuffling, 

which enhance efficiency without sacrificing accuracy. 

EfficientNet scales the depth, width, and resolution of 

the model systematically, achieving state-of-the-art 

accuracy with fewer parameters and lower 

computational requirements. These models were 

selected for their balance between performance and 

computational efficiency, making them suitable for 

real-time steganalysis on mobile devices. 

2.4 Dataset 

The BOSSbase-1.01 dataset, created using the S-

UNIWARD algorithm with a 0.4 bpp embedding rate, 

was used for the steganalysis task. The dataset consists 

of 20,000 grayscale images, evenly divided between 

two labels: cover (no hidden data) and stego (contains 

hidden data). This dataset was originally designed for 

the BOSS competition and is available for access via 

GitHub. The dataset was partitioned into 80% for 

training and 20% for testing. Additionally, 5-fold cross-

validation was applied to ensure robust model 

evaluation. Table 1 summarizes the dataset partitioning: 
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Table 1. Software and supporting hardware 

Label 
Train Data  

(80%) 

Test Data 

(20%) 

Stego 9000 1000 

Cover 9000 1000 

Total 18000 (shuffled) 2000 

K-Fold Cross Validation 

K-Fold 

(k=5) 
Train Data 

Validation  

Data 

Test  

Data 

Fold 1-5 14400 3600 2000 

2.5 Evaluation Metrics 

The performance of the models was evaluated using 

three key metrics: 

Accuracy: This is the primary metric for evaluating how 

well the models correctly classify images as cover or 

stego. It is the ratio of correctly predicted images to the 

total number of images in the testing set. 

Computation Time: This metric measures the time 

taken by each model to make predictions. For real-time 

applications, such as mobile steganalysis, fast 

computation is crucial. 

Resource Efficiency: This metric considers the number 

of trainable parameters in each model, which reflects 

the computational resources required. Lower parameter 

counts are favorable for deployment on resource-

constrained devices like mobile phones. 

ROC (Receiver Operating Characteristic) and AUC 

(Area Under the Curve): The ROC curve is a graphical 

representation of a model’s ability to discriminate 

between the two classes—cover and stego. It plots the 

True Positive Rate (TPR) against the False Positive 

Rate (FPR) at various threshold settings. The ROC 

curve gives insights into the trade-offs between 

sensitivity (ability to correctly classify stego images) 

and specificity (ability to correctly classify cover 

images). 

By evaluating the models on these metrics—accuracy, 

ROC-AUC, computation time, and resource 

efficiency—the study aims to identify the best-

performing model that not only achieves high detection 

accuracy but also operates efficiently on mobile or other 

resource-constrained platforms. 

3. Results and Discussions 

The goal of this research was to evaluate the 

performance of three lightweight deep learning 

models—MobileNet, ShuffleNet, and EfficientNet—

for steganalysis on the BOSSbase-1.01 dataset. The 

evaluation focused on key metrics: accuracy, ROC-

AUC, computational time, and resource efficiency 

(trainable parameters). Unfortunately, the results 

indicated that the models struggled to detect 

steganographic content effectively, performing close to 

random guessing in most cases. The discussion focus on 

testing phase which is the trained models predict testing 

data of 2000 images which not used in the training. This 

section discusses the experimental findings, the reasons 

for the low performance, and implications for future 

research. 

When analyzing accuracy, as shown in Figure 2 as well 

as detailed in Table 2, MobileNet achieved the highest 

fold accuracy among the three models, reaching 63.8%. 

While this still falls short of acceptable performance for 

steganalysis, where accuracies typically exceed 90% 

[11], MobileNet’s relatively higher accuracy can be 

attributed to its architectural design. Specifically, 

MobileNet’s use of depthwise separable convolutions 

allows it to capture some level of spatial dependencies 

while significantly reducing the parameter count and 

computational demands compared to standard 

convolutional layers. This architectural feature provides 

MobileNet with a moderate capacity for distinguishing 

between cover and stego images, though it struggles to 

capture the fine-grained features necessary for high 

precision in steganalysis. 

 

Figure 2. Plot of Accuracy of All Models in Testing Phase in All 

Fold 

Table 2. Accuracy of all models in testing phase in all fold 

The accuracy variation across folds, from 50.9% to 

63.8%, suggests that while MobileNet’s architecture is 

somewhat suited for feature extraction in steganalysis, 

it lacks consistency and the robustness required to 

generalize effectively. This fluctuation highlights 

MobileNet's limited capacity to reliably detect subtle, 

hidden patterns within the image data, which are critical 

for steganalysis tasks. Nonetheless, the modest success 

in certain folds indicates that MobileNet’s lightweight 

design can extract some meaningful spatial information 

that aids in distinguishing between cover and stego 

images, albeit insufficiently for practical application. 

In comparison in Figure 2, ShuffleNet consistently 

hovered around 50% accuracy across all folds, 

performing no better than random guessing. 

ShuffleNet’s reliance on grouped convolutions and 

channel shuffling, which are intended to optimize 

efficiency, may restrict its ability to capture detailed 

spatial information necessary for steganalysis. The 

Model 
Fold 

1 2 3 4 5 

MobileNet 0.63 0.51 0.50 0.56 0.56 

ShuffleNet 0.5 0.5 0.5 0.5 0.49 

EfficienNet 0.49 0.5 0.50 0.49 0.5 
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grouped convolutions limit channel-wise connectivity, 

which could impair ShuffleNet's capacity to identify 

subtle changes across the image, leading to an accuracy 

that reflects random guessing rather than true pattern 

recognition. 

EfficientNet, despite its more advanced and scalable 

architecture, similarly recorded poor performance in 

Table 2, with its highest accuracy only reaching 50.0%. 

This outcome suggests that EfficientNet's complexity 

and parameter count did not translate into improved 

accuracy for this particular task. While EfficientNet 

achieves state-of-the-art performance in general image 

classification by scaling depth, width, and resolution, 

these enhancements did not benefit the steganalysis 

task. Its accuracy plateau, comparable to ShuffleNet, 

underscores that increased model complexity alone 

does not ensure better performance in tasks requiring 

nuanced feature extraction. 

In summary, MobileNet’s comparatively better 

accuracy reflects a slight advantage in feature extraction 

due to its use of depthwise separable convolutions, but 

all three models ultimately struggle to achieve the 

accuracy levels needed for reliable steganalysis. This 

outcome highlights a key limitation in applying general-

purpose lightweight CNN architectures to steganalysis, 

where detecting subtle hidden patterns remains a 

significant challenge. 

Table 3. Model performance on all models 

Model Time (seconds) 
Trainable params 

(millions) 

MobileNet 4.55 3.22 

ShuffleNet 10.60 1.37 

EfficientNet 10.98 4.02 

 

Figure 3. Plot of Model Performance on All Models 

Table 3. shows the model's performance consist time 

computation and their trainable params used. In terms 

of computational efficiency, MobileNet was the fastest, 

completing predictions in 4.55 seconds, significantly 

outperforming ShuffleNet (10.60 seconds) and 

EfficientNet (10.98 seconds). This makes MobileNet a 

better candidate for real-time applications if accuracy 

can be improved. In terms of resource usage, ShuffleNet 

had the fewest trainable parameters (1.37 million), 

followed by MobileNet (3.22 million) and EfficientNet 

(4.02 million). However, despite ShuffleNet’s 

efficiency in terms of parameters, its accuracy was 

suboptimal, suggesting that reducing the number of 

parameters alone is insufficient for effective 

steganalysis. 

Table 4. ROC of all models in testing phase 

Model ROC Value 

MobileNet 0.71 

ShuffleNet 0.50 

EfficientNet 0.50 

The ROC-AUC score (Receiver Operating 

Characteristic - Area Under the Curve) is a crucial 

metric for evaluating the performance of classification 

models [33], particularly in binary tasks like 

steganalysis, where the goal is to distinguish between 

cover images (non-steganographic) and stego images 

(steganographic). The ROC curve, which plots the True 

Positive Rate (TPR) against the False Positive Rate 

(FPR) at various thresholds, helps assess model 

performance. TPR, or recall, measures the proportion of 

actual positives (stego images) correctly identified, 

while FPR indicates the proportion of actual negatives 

(cover images) misclassified as positives. The AUC 

score summarizes this performance across all 

thresholds, with a perfect classifier achieving a score of 

1.0, random guessing scoring 0.5, and scores below 0.5 

indicating a model performing worse than random. 

Table 4 shows that ROC-AUC scores revealed 

significant limitations in the models’ ability to 

differentiate between cover and stego images. Both 

ShuffleNet and EfficientNet recorded AUC scores of 

0.50, indicating their performance was equivalent to 

random guessing and that they failed to extract 

meaningful features. MobileNet performed slightly 

better, with an AUC of 0.71, suggesting it could rank 

stego images higher than cover images 71% of the time. 

However, this still reflects substantial misclassification, 

falling short of practical application needs. 

False positives—where cover images are incorrectly 

classified as stego images—severely impact a model’s 

overall performance. Such misclassifications waste 

resources on unnecessary scrutiny and undermine trust 

in the system’s reliability [34], which is particularly 

problematic in critical areas like digital forensics and 

cybersecurity, where precision is paramount [35]. A 

high false positive rate leads to inefficiencies, and 

models with low AUC scores are typically poorly 

calibrated, lacking the ability to effectively distinguish 

between positive (stego) and negative (cover) instances. 

This issue reflects deeper problems with the model’s 

learning capacity rather than simply a threshold 

adjustment. In this study, the consistently low ROC-

AUC scores across all models indicate an inability to 

generalize to unseen data, with the models struggling to 

capture the subtle pixel-level differences introduced by 

steganography. Even MobileNet, with an AUC of 0.71, 

exhibited high levels of both false positives and false 

negatives, limiting its practical use. 

The real-world feasibility of these models is limited by 

their poor performance. While MobileNet demonstrated 

computational efficiency and could potentially be used 
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for real-time steganalysis on mobile platforms, its 

accuracy (63.8%) remains too low for practical 

application. The models’ inability to detect 

steganographic images with sufficient accuracy can be 

attributed to several factors.  

The BOSSbase-1.01 dataset, created using the S-

UNIWARD algorithm with a 0.4 bpp embedding rate, 

presents a significant challenge for lightweight 

architectures in steganalysis due to the subtle and 

imperceptible differences between cover and stego 

images. These grayscale images contain minute 

alterations that are difficult to detect, especially for 

models with limited capacity. The grayscale format 

itself reduces the overall information available for 

analysis, and the S-UNIWARD algorithm is designed 

to minimize visual distortions, further complicating the 

task for lightweight models. These models typically 

lack the deep feature extraction capabilities required to 

capture such fine-grained differences, especially when 

compared to more complex architectures that excel in 

detecting nuanced patterns in image data. 

In addition, the dataset’s size and diversity may be 

insufficient to adequately train these lightweight 

models. The BOSSbase-1.01 dataset, comprising 

20,000 images evenly split between cover and stego 

classes, while reasonably sized, may not provide the 

model with enough variety to learn the intricate features 

necessary for successful steganalysis. The images are 

generated with the same embedding rate and algorithm, 

meaning the differences between images may be highly 

consistent, limiting the model’s ability to generalize to 

unseen patterns. 

Compared to more sophisticated and resource-intensive 

models like integrated GooleNet by Zhang 2022, which 

have achieved over 90% accuracy, these lightweight 

models clearly underperformed. While integrated 

GoogleNet offers superior performance, it requires 

significantly more computational power, highlighting a 

trade-off between computational efficiency and 

accuracy. The lightweight models tested in this study, 

while suitable for mobile deployment in terms of speed 

and memory usage, were not capable of achieving 

similar levels of accuracy. 

Several challenges emerged during the study, including 

limitations in the models’ architecture and the improper 

of advanced preprocessing techniques. The models’ 

design, optimized for general image classification, may 

not have been well-suited to the specific challenges of 

steganalysis, where hidden data introduces minimal 

pixel-level changes. Additional preprocessing steps, 

such as choosing high-pass filtering properly or noise 

augmentation, could have enhanced the models’ ability 

to detect hidden patterns. Moreover, the relatively small 

dataset may have contributed to the models’ poor 

generalization, as more diverse training data could help 

the models learn to detect steganography more 

effectively. 

In this study, balancing computational efficiency with 

detection accuracy, as each model presented unique 

trade-offs in resource usage that impacted its feasibility 

for practical steganalysis. MobileNet, for instance, 

achieved the highest computational efficiency, 

completing predictions in 4.55 seconds with only 3.22 

million trainable parameters, making it well-suited for 

applications on resource-limited devices. However, its 

accuracy (63.8%) still fell significantly below the 

practical requirements for reliable steganalysis. 

Although ShuffleNet demonstrated the lowest memory 

demand (1.37 million parameters), its performance was 

equivalent to random guessing, showing that memory 

efficiency alone does not ensure practical utility in 

steganalysis. 

For steganalysis tasks, which require detecting subtle 

pixel-level changes, models typically demand both high 

accuracy and extensive computational resources. 

However, resource limitations, especially in mobile or 

edge devices, constrain the complexity of models that 

can be deployed effectively. While resource-efficient 

architectures like MobileNet may offer the potential for 

real-time applications in resource-limited 

environments, this study underscores the need for an 

optimized balance where lightweight models can 

improve detection accuracy without significantly 

increasing resource requirements. 

Moreover, steganalysis, by its nature, requires the 

ability to identify subtle and often imperceptible 

changes at the pixel level [27], [36]. Lightweight 

models such as MobileNet, ShuffleNet, and 

EfficientNet are optimized for computational 

efficiency, which involves trade-offs in their capacity 

for deep feature extraction. While these architectures 

excel at traditional image classification tasks—where 

larger, more distinguishable features like shapes, 

textures, and colors are important [15], [16], [20]—they 

are not inherently designed to detect the minute, low-

level changes introduced by steganography. To reduce 

computational costs, these lightweight models employ 

fewer and shallower convolutional layers, limiting their 

ability to capture the deep, nuanced features needed for 

steganalysis. As a result, the relatively shallow 

architectures of MobileNet, ShuffleNet, and 

EfficientNet may not be as effective for tasks requiring 

deeper models capable of extracting fine-grained details 

across multiple layers of abstraction, which is critical 

for detecting steganographic content. 

Future research should aim to address these limitations 

through several key areas. First, exploring advanced 

preprocessing techniques such as data augmentation, 

noise reduction, and feature extraction could lead to 

more robust and effective steganalysis models. Fine-

tuning lightweight models with these improved 

preprocessing methods may significantly enhance 

performance. Second, using larger and more diverse 

datasets that encompass a wider range of 

steganographic techniques and image types would 

likely improve the models’ ability to generalize across 
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different contexts. Finally, incorporating ensemble 

methods like [11], which combine the predictive power 

of multiple lightweight models, could lead to better 

detection accuracy. These ensemble approaches can 

leverage the strengths of individual models while 

maintaining computational efficiency, offering a 

promising avenue for improved performance in 

steganalysis tasks. 

In conclusion, while MobileNet demonstrated 

computational efficiency, none of the models achieved 

satisfactory accuracy for reliable steganalysis. The 

results suggest that current lightweight models, as 

implemented in this research, are not well-suited for the 

detection of steganographic images, especially when 

the steganographic method is highly sophisticated. 

Future work should explore model adaptations and 

advanced techniques to improve the performance of 

these models in resource-constrained environments. 

4. Conclusions 

This research aimed to evaluate the effectiveness of 

lightweight deep learning models—MobileNet, 

ShuffleNet, and EfficientNet—for real-time 

steganalysis in resource-constrained environments, 

particularly on mobile devices. The study focused on 

key performance metrics, including accuracy, 

computational time, resource efficiency, and the ability 

to detect hidden information within digital images. The 

results, however, highlighted significant limitations in 

the models’ performance, suggesting that these 

architectures are not yet suitable for practical 

steganalysis applications in their current form. Among 

the models tested, MobileNet demonstrated the best 

computational efficiency, with faster inference times 

and fewer trainable parameters compared to ShuffleNet 

and EfficientNet. This makes it a promising candidate 

for real-time use, especially in environments where 

computational resources are limited, such as mobile 

platforms. However, despite its efficiency, MobileNet’s 

detection accuracy remained suboptimal, with a highest 

accuracy of just 63.8%. ShuffleNet and EfficientNet 

performed even worse, hovering around 50%, 

effectively reducing their performance to the level of 

random guessing. The ROC-AUC results further 

underscored this issue, with both ShuffleNet and 

EfficientNet achieving scores of 0.50, indicating an 

inability to differentiate between steganographic and 

cover images. The underperformance of these models is 

likely attributable to several factors. First, the 

BOSSbase-1.01 dataset, which contains grayscale 

images with subtle pixel-level modifications, presents a 

significant challenge for lightweight models that are 

optimized for general image classification tasks rather 

than the nuanced detection of hidden data. Additionally, 

the S-UNIWARD steganographic algorithm, which 

minimizes perceptual differences between cover and 

stego images, likely made it difficult for the models to 

extract meaningful features necessary for detection. The 

limited size of the dataset and the properly choosing 

advanced preprocessing techniques, such as high-pass 

filtering, may have further hindered the models’ ability 

to generalize well. While MobileNet and other 

lightweight architectures hold potential due to their low 

computational cost and efficiency, this research 

suggests that current implementations fall short in 

steganalysis tasks, particularly when faced with 

sophisticated steganographic techniques. The need for 

more powerful feature extraction methods, possibly 

through advanced preprocessing or more refined model 

architectures, is evident. Additionally, larger, more 

diverse datasets and the incorporation of ensemble 

methods could improve the models’ accuracy without 

significantly increasing computational demands. In 

conclusion, while this study explored the feasibility of 

deploying lightweight deep learning models for 

steganalysis on mobile platforms, the results indicate 

that further optimization is required to achieve 

acceptable performance. To improve the accuracy of 

lightweight deep learning models for steganalysis in 

addition of future research previously, several 

actionable recommendations can be implemented. First, 

tweaking the model architecture by integrating attention 

mechanisms, such as Squeeze-and-Excitation blocks or 

self-attention layers, could help the models focus on 

subtle pixel-level variations [37], [38]. Hybrid 

architectures that combine CNNs with Graph Neural 

Networks (GNNs) or Transformer layers could further 

improve performance by capturing complex spatial 

relationships [39], [40]. In refining the training process, 

data augmentation using image rotation, noise injection, 

and contrast adjustments can improve model 

generalization, while transfer learning from large 

datasets (such as ImageNet) can enhance feature 

extraction [41], [42], [43], [44]. Additionally, 

hyperparameter tuning through methods like Bayesian 

Optimization or Grid Search can optimize model 

performance [45]. 
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