
 Received: 29-09-2024 | Accepted: 13-12-2024 | Published Online: 28-12-2024

779

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2024

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

Vol. 8 No. 6 (2024) 779 - 787 e-ISSN: 2580-0760

Performance and Efficiency Comparison of U-Net and Ghost U-Net

in Road Crack Segmentation with Floating Point

and Quantization Optimization

Haidhi Angkawijana Tedja1*, Onno W. Purbo2
1,2Department of Computer Science, Informatics, Institut Teknologi Tangerang Selatan, Tangerang Selatan, Indonesia

1haidhiangkawijana@gmail.com, 2onno@indo.net.id

Abstract

This study presents a comprehensive comparison of U-Net and Ghost U-Net for road crack segmentation, emphasizing their

performance and memory efficiency across various data representation formats, including FP32, FP16, and INT8 quantization.

A dataset of 12,480 images was used, with preprocessing steps such as binarization and normalization to improve segmentation

accuracy. Results show that Ghost U-Net achieved a marginally higher performance, with an IoU of 0.5041 and a Dice

coefficient of 0.6664, compared to U-Net’s IoU of 0.5034 and Dice coefficient of 0.6662. Ghost U-Net also demonstrated

significant memory efficiency, reducing GPU usage by up to 60% in FP16 and INT8 formats. However, a sharp decline in

performance was observed for Ghost U-Net in the INT8 format, where the IoU dropped to 0.2038 and the Dice coefficient to

0.3227, whereas U-Net maintained stable performance across all formats. These findings suggest that Ghost U-Net is

preferable for applications prioritizing memory efficiency and inference speed, while U-Net may be better suited for tasks

requiring consistent accuracy across different quantization levels. This study underscores the importance of considering both

performance stability and memory efficiency when selecting models for deployment in real-world applications.

Keywords: U-Net; Ghost U-Net; image segmentation; memory efficiency; quantization

How to Cite: H. A. Tedja and Onno W. Purbo, “Performance and Efficiency Comparison of U-Net and Ghost U-Net in Road

Crack Segmentation with Floating Point and Quantization Optimization”, J. RESTI (Rekayasa Sist. Teknol. Inf.) , vol. 8, no. 6,

pp. 779 - 787, Dec. 2024.

DOI: https://doi.org/10.29207/resti.v8i6.6089

1. Introduction

Cracks on concrete surfaces are a key indicator that

reveals the safety and degradation level of a structure.

To maintain the health and reliability of buildings,

regular inspection and monitoring of surface cracks are

crucial [1]. In the context of infrastructure maintenance,

the process of crack detection and road segmentation is

one of the critical aspects that requires high accuracy,

considering that small and complex cracks on road

surfaces are difficult to detect manually [2].

The application of deep learning-based computer vision

methods has proven to improve the accuracy and

efficiency of crack detection, with U-Net being one of

the widely used models for high-quality image

segmentation, including in the medical and

infrastructure fields. However, as the need for

computational efficiency increases, especially on

devices with limited resources such as edge computing

and mobile devices, a lighter and faster model is needed

[3]. Ghost U-Net; a variant of U-Net, was developed to

address this issue by using the Ghost module, which

reduces the number of parameters and memory usage

while maintaining competitive accuracy and improving

inference efficiency, especially on low-precision data

formats such as FP16 and INT8.

Previous research conducted by Lingyu Sun et al. has

shown that Ghost U-Net performs well on underwater

imagery [4]. Research by Yinghan Xu et al. also

demonstrated good results on medical images [5]. In

addition to image segmentation, Ghost U-Net has also

shown satisfactory results in the image deblurring case

studied by Feng Ziliang [6]. Our Ghost U-Net model

also shows improvements in GPU resource utilization

and inference time compared to the research conducted

by Alessandro Di Benedetto et al., although in terms of

metrics, it is still lower [7]. That study achieved 6.7

frames per second (FPS), while our Ghost U-Net

https://doi.org/10.29207/resti.v8i6.6089

 Haidhi Angkawijana Tedja, Onno W. Purbo

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 780

achieved 99.04 FPS for FP32 and 156.53 FPS for FP16.

This makes our model suitable for running on

embedded devices.

Many studies have examined the application of various

image segmentation methods to detect road damage,

such as the use of the SDDNet model [8] and

DeepCrack [9]. Research related to floating point

customization and quantization has been conducted by

Mohammad Hossein et al. [10] using the U-Net model

for medical images. To the best of our knowledge, no

one has yet applied Ghost U-Net nor studied the effects

of floating point customization and quantization of U-

Net and Ghost U-Net models for road crack

segmentation. This study focuses on comparing the

performance of U-Net and Ghost U-Net on road crack

data. Additionally, this research evaluates the stability

of the model on different floating point representations

and model quantization.

2. Research Methods

This research aims to compare two models for image

segmentation, namely U-Net and Ghost U-Net. The first

stage of the research involves data collection, and

preprocessing, followed by training both models with

varying learning rates. After training, the best model

from both U-Net and Ghost U-Net will be selected

based on testing performance. The best model will then

be converted into different floating-point

representations for further evaluation, using metrics

such as GPU memory usage and prediction speed.

Figure 1. Research flow

The diagram in Figure 1 illustrates the workflow for

comparing the performance of the Ghost U-Net and U-

Net models in a specific task, such as image

segmentation. Figure 1 is an explanation of the steps in

the diagram: The first stage is gathering the data that

will be used to train the models. The collected data

undergoes preprocessing to ensure consistency before

being used in the models. Following preprocessing,

both the Ghost U-Net and U-Net models are trained

using the data with five different learning rates for each

model. Once the training phase is complete, the models

are tested to evaluate their performance. The best-

performing model from these tests is then selected and

converted into various formats for performance

optimization, including ONNX and different floating-

point formats like FP32 and FP16, as well as

quantization to INT8. Finally, the performance results

across these formats are analyzed to determine the best

model and configuration.

Semantic segmentation is the process of pixel-level

classification, where each pixel in an image is assigned

a specific category. Meanwhile, instance segmentation

not only classifies pixels as in semantic segmentation

but also distinguishes different objects within the same

category [11]. In this research, we will work on

semantic segmentation.

U-Net was initially developed as a fully convolutional

network model for medical image segmentation [12].

U-Net is an autoencoder model where the encoder part

extracts features and information, while the decoder

part learns and reconstructs the information from the

encoder [13].

Table 1. U-Net Architecture

Block Output shape Params

DownConv 1 [64,128,128] 38.720

DownConv 2 [128,64,64] 221.550

DownConv 3 [256,64,64] 885.248

DownConv 4 [512,32,32] 3.539.968

Bottleneck [1024,16,16] 14.157.824

UpConv 1 [512,32,32] 9.176.576

UpConv 2 [256,64,64] 2.294.528

UpConv 3 [128,128,128] 573.824

UpConv 4 [64, 256, 256] 143.552

Ouput Layer [1, 256, 256] 65

Total Params 31.031.855

Table 1 presents the architecture of a U-Net model,

detailing the layers in the encoder (DownConv),

bottleneck, and decoder (UpConv) phases. It includes

the output shape and the number of parameters for each

layer. The model begins with four downsampling

convolutional layers (DownConv) that reduce spatial

dimensions while increasing feature maps, followed by

a bottleneck layer with the highest number of

parameters. The decoder consists of four upsampling

convolutional layers (UpConv) that restore the spatial

dimensions while reducing the number of feature maps.

Finally, the model ends with an output layer that

produces a [1,256,256] output. The total number of

parameters in the model is approximately 31 million,

making this U-Net architecture quite large. To address

this, we developed Ghost U-Net which uses ghost

modules as the backbone to significantly reduce the

number of parameters while maintaining performance.

 Haidhi Angkawijana Tedja, Onno W. Purbo

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 781

Ghost U-Net is a U-Net model that uses the Ghost

module as its backbone. Due to the large complexity of

U-Net's backbone, the model requires significant

memory, making it unsuitable for devices with limited

memory, such as embedded devices [5]. The model also

demonstrates strong performance, as shown by high

pixel accuracy and IoU, despite having fewer

parameters [14]. By utilizing the Ghost module as the

backbone, the model is expected to provide informative

features with fewer parameters [15].

Table 2. Ghost U-Net Architecture

Block Output shape Params

Ghost DownConv 1 [64,128,128] 2.976

Ghost DownConv 2 [128,64,64] 13.952

Ghost DownConv 3 [256,64,64] 52.480

Ghost DownConv 4 [512,32,32] 203.264

Bottleneck [1024,16,16] 14.157.824

Ghost UpConv 1 [512,32,32] 2.497.536

Ghost UpConv 2 [256,64,64] 626.176

Ghost UpConv 3 [128,128,128] 157.440

Ghost UpConv 4 [64, 256, 256] 39.808

Ouput Layer [1, 256, 256] 65

Total Params 17.751.521

Table 2 presents the architecture of a Ghost U-Net

model, which utilizes ghost modules to reduce the

number of parameters compared to the standard U-Net.

Each block of the model, from the Ghost DownConv

layers in the encoder to the Ghost UpConv layers in the

decoder, is detailed with its output shape and parameter

count. The model follows a similar structure to U-Net,

with downsampling in the encoder, a bottleneck layer,

and upsampling in the decoder. However, by using

ghost modules, the total parameters of Ghost U-Net are

significantly reduced to approximately 17.75 million,

compared to the 31 million parameters in the standard

U-Net. This reduction makes Ghost U-Net a more

efficient alternative while retaining the original

functionality of U-Net.

3. Results and Discussions

The dataset used in this research is a road crack dataset

obtained from Kaggle, designed for image

segmentation tasks. This dataset consists of 12,480

pairs of images, with a size of 448 x 448 x 3 for the input

(x) and 448 x 448 for the labels (y). The input images

(x) are RGB images with three channels, while the label

images (y) are grayscale images with only one channel.

These images will be resized to 256 x 256 to reduce

computational load and improve efficiency [16].

Image segmentation generally requires a binary mask to

define the area to be predicted by the model. The

binarization process converts pixel values into two

categories: the object to be predicted by the model,

which is marked by a pixel value of 255 or 1, and the

background, which is marked by a value of 0. This

process is crucial in identifying the area targeted for

detection by the model [17]. The collected dataset still

contains pixel values ranging from 0 to 255. Figure 2 is

a sample of the mask and the proportion of unique pixel

values.

In Figure 3, pixels with a value of 0 (black) account for

86.8%, while those with a value of 255 (white) makeup

9.3%. The remaining 3.9% are pixels with values other

than 0 and 255. Due to the inconsistency in pixel values,

a binarization method will be applied to convert all

masks into a binary format. In this study, a threshold of

100 will be used, meaning that all pixels with an

intensity value above 100 will be considered as the

foreground (typically converted to 255), and pixels with

an intensity below that will be considered as the

background (typically converted to 0). After going

through the binary thresholding process, we will get an

image like Figure 4.

Figure 2. Input image (left) and label mask (right)

Figure 3. Proportion of Pixels Values

Figure 4. Binarized Image

 Haidhi Angkawijana Tedja, Onno W. Purbo

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 782

 After harmonizing all labels, the next step in

preprocessing is normalization. Normalization is a

preprocessing stage where data is scaled so that each

feature contributes equally and maintains a consistent

value range [18]. Additionally, normalization plays a

crucial role in improving the model's generalization

ability, ensuring that the model can consistently

recognize patterns in varied data, leading to optimal

prediction performance on both training data and new,

unseen data [19]. In this study, normalization will be

performed by dividing each pixel value by 255 [20].

Both models will be trained with a data split of 80:10:10

for training, validation, and testing. The training and

validation data will be used during the training process,

while the testing data will be employed to evaluate the

final results of the models and determine which model

performs best [21]. The metrics used for evaluation will

include IoU [22], Dice Coefficient [23], and a

combination of Dice Loss and Binary Cross Entropy

(BCE) as the loss function [24].

Intersection over Union (IoU) is widely used in various

tasks, particularly in segmentation. In segmentation

tasks, IoU evaluates the accuracy of pixel-wise

predictions, which reflect the quality of the learned

features. Specifically, IoU is calculated by taking the

area of overlap between the predicted segmentation and

the ground truth, divided by the area of their union using

Equation 1.

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
 (1)

This metric provides a comprehensive measure of how

well the model distinguishes between different classes

at the pixel level, making it essential for assessing

segmentation performance [25]. The third measure used

for further evaluation of network models is the Dice

coefficient (F1 score), which is defined as twice the

number of common pixels from a given class in the

reference image and predicted image, divided by the

sum of the pixels belonging to that class in both the

reference and predicted images.

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
 (2)

The Dice coefficient in Equation 2 is positively

correlated with the IoU measure; however, in the case

of IoU, individual poor segmentation results have a

more severe impact on the overall evaluation of the

model [26].

For the loss function, we adopt the combination of

Binary Cross Entropy (BCE) and Dice Loss, inspired by

studies such as those conducted by Vishal Rajput [27]

ass shown in Equations 3 and 4.

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (3)

𝐵𝐶𝐸 = −
1

𝑛
∑ (𝑌𝑖 ∙ log �̂�𝑖 (1 − 𝑌𝑖) ∙ log(1 − �̂�𝑖

𝑛
𝑖−1) (4)

These works demonstrated that Dice Loss provides

superior pixel-wise accuracy, especially in

segmentation tasks, while BCE offers better

generalization and resistance to noise and adversarial

attacks. By merging both loss functions, we aim to

improve the model's precision, robustness, and overall

performance, achieving a balance between accurate

segmentation and resilience against perturbations.

It should be noted that the use of custom representation

e.g. ONNX, FP32, FP16, and INT8 is done after

training is completed (post-training quantization), with

the aim of improving inference efficiency [28]. We used

the PyTorch framework for modeling and training,

utilizing the default floating point format, which is

FP32, due to its balance between precision and

computational efficiency.

The training process uses 2x T4 GPU from Kaggle

kernel. We will use 50 epochs and a batch size of 16 due

to limited computing power and time. We also use

checkpoint callbacks to save the model with the lowest

loss during the 50 epochs of training. The training

results are shown in Tables 3 and 4.

Table 3. U-net training result

Learning Rate Loss Iou Dice

0,1 2,1966 0,029 0,0563

0,01 0,5455 4×10−8 0

0,001 0,2398 0,4471 0,615

0,0001 0,1965 0,5195 0,6812

0,00001 0,2207 0,4837 0,6477

Table 4. Ghost U-net training result

Learning Rate Loss Iou Dice

0,1 0 0,5047 0,6679

0,01 0,198 0,5146 0,677

0,001 0,195 0,5195 0,6809

0,0001 0,1962 0,5186 0,68

0,00001 0,2424 0,4888 0,6529

Tables 3 and 4 show the best results from the validation

data during training. The U-Net model performed best

when trained with a learning rate of 0.0001, while Ghost

U-Net achieved its best results at a learning rate of

0.001. In numerical terms, the performance of U-Net is

superior to that of Ghost U-Net, although the difference

is not significant, as the values are very close to each

other. The final results of the models will be tested on

the testing data to measure performance on unseen data

during the training process. The model with the best

performance on the testing data will be selected for

further evaluation using ONNX and TensorRT as

shown in Tables 5 and 6.

The best model is the one trained with a learning rate of

0.0001, whether it be U-Net or Ghost U-Net. The U-Net

model achieved a loss of 0.2031, an IoU of 0.5034, and

a Dice coefficient of 0.6662. In contrast, the Ghost U-

Net model recorded a loss of 0.2012, an IoU of 0.5041,

and a Dice coefficient of 0.6664. Overall, Ghost U-Net

performs slightly better than U-Net.

After obtaining the best model, we will conduct further

testing to compare the performance and resources used

by each model. The testing will be performed using the

 Haidhi Angkawijana Tedja, Onno W. Purbo

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 783

Open Neural Network Exchange (ONNX) framework,

which is user-friendly and suitable for use in embedded

devices [29]. In addition to ONNX, we will also test

using TensorRT, which enables fast predictions [30]

and supports floating-point customization and

quantization [31]. In this testing, we will use both 32-

bit and 16-bit floating-point representations. The higher

the bit, the wider the range of values that can be

calculated, resulting in more precise predictions but

requiring more resources [32]. This is because

calculations with 32-bit floating-point representation

can cover a broader value range, meaning they can

represent very small to very large numbers with higher

accuracy and precision [33].

Table 5. U-net on testing data

Learning Rate Loss Iou Dice

0,1 1,98×1040 0,00055 0,00111

0,01 0,544 4×10−8 0

0,001 0,2449 0,4322 0,5996

0,0001 0,2031 0,5034 0,6662

0,00001 0,2334 0,455 0,6198

Table 6. Ghost U-net on testing data

Learning Rate Loss Iou Dice

0,1 0,213 0,488 0,6524

0,01 0,203 0,4998 0,663

0,001 0,2029 0,5017 0,6646

0,0001 0,2012 0,5041 0,6664

0,00001 0,2522 0,4658 0,631

Previous research has demonstrated that ONNX

provides significant improvements in inference speed

compared to other frameworks. In a study involving

25,600 OCT B-scans, the binary prediction results (0-

normal, 1-B-scan of interest) were identical between

TensorFlow and ONNX inferences in both CPU and

GPU modes. However, the average inference execution

times showed notable differences. In CPU mode, the

average execution time for one macular cube was

8.99±0.09 seconds for TensorFlow and 3.57±0.15

seconds for ONNX, resulting in a speedup of 60.29%.

In GPU mode, the average execution times were

0.55±0.03 seconds for TensorFlow and 0.35±0.03

seconds for ONNX, leading to a speedup of 36.36%

[34]

Additionally, in a study conducted by Zhang et al.,

experiments running YOLOv3 on the NVIDIA Jetson

Nano revealed that using TensorRT with fp16

quantization resulted in the lowest power consumption,

fastest running speed, and least memory usage. The

fastest inference time achieved was 13.1 FPS with a

320×192 resolution. This demonstrates that the fp16

model is an effective technique to reduce computational

resources while maintaining fast inference speeds,

particularly in edge AI applications where power and

memory efficiency are critical factors [35].

We will also implement quantization, where the model

is converted to an 8-bit integer representation, allowing

for faster inference and reduced memory usage, albeit

at the cost of accuracy [36]. This occurs because

floating-point data types are transformed into integer

numbers, allowing calculations to be completed more

quickly with less memory, thereby reducing the overall

latency of the model and increasing inference speed at

the expense of accuracy [37]. The testing will utilize an

RTX 3050 mobile GPU, with the parameters to be

evaluated being inference time and GPU resource

usage. A total of 12,475 images will be used for this

evaluation. The results of the tests will be illustrated in

in Figure 5.

Figure 5. Inference time

The diagram in Figure 5 illustrates a comparison of

execution times between U-Net and Ghost U-Net across

several data formats, including ONNX (CUDA), FP32,

FP16, and INT8. In general, Ghost U-Net demonstrates

faster execution times than U-Net, with the only

exception being the INT8 format. For the ONNX

(CUDA) format, U-Net takes 280.23 seconds to

complete the task, while Ghost U-Net finishes in 193.83

seconds. This results in a time difference of 86.4

seconds, indicating that Ghost U-Net is 30.8% faster

than U-Net in this format. Moving to the FP32 format,

U-Net records an execution time of 219.62 seconds,

whereas Ghost U-Net reduces this time to 126.06

seconds. The difference of 93.56 seconds represents the

largest time savings, making Ghost U-Net 42.6% more

efficient in FP32. In the FP16 format, U-Net's execution

time is 100.47 seconds, while Ghost U-Net completes

the process in 79.83 seconds, saving 20.64 seconds and

showing a 20.5% improvement in speed. However, in

the INT8 format, the trend reverses slightly, with U-Net

 Haidhi Angkawijana Tedja, Onno W. Purbo

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 784

being marginally faster than Ghost U-Net. U-Net

completes the task in 71.48 seconds, compared to Ghost

U-Net's 74.46 seconds, making Ghost U-Net 4.2%

slower in this format.

In summary, Ghost U-Net consistently outperforms U-

Net in terms of execution time across all formats, except

for the quantized INT8 format, where U-Net holds a

slight advantage. This suggests that Ghost U-Net excels

particularly in higher-precision formats such as ONNX

(CUDA), FP32, and FP16, offering significant

improvements in efficiency.

Figure 6. Inference resource

Figure 6 illustrates the average GPU memory usage (in

megabytes) for both U-Net and Ghost U-Net models

across different data representations: ONNX (CUDA),

FP32, FP16, and INT8. The first comparison shows that

U-Net and Ghost U-Net consume nearly the same

amount of memory, approximately 758.52 MB, when

using the ONNX (CUDA) format, with a negligible

difference. However, as smaller data representations are

used, significant memory savings become evident.

When using FP32, U-Net consumes 452.52 MB, while

Ghost U-Net reduces memory usage to 354.52 MB,

showcasing Ghost U-Net's efficiency. The trend

continues with FP16, where U-Net uses 316.52 MB and

Ghost U-Net further reduces this to 292.52 MB. The

most optimized memory usage is observed with the

INT8 representation, where U-Net consumes 276.52

MB, and Ghost U-Net uses the least, at 258.52 MB.

Overall, Ghost U-Net consistently uses less GPU

memory than U-Net across all representations,

especially when employing smaller data types like FP16

and INT8. These results suggest that using reduced data

representations, such as FP16 and INT8, can lower

GPU memory usage by nearly 60% compared to the

FP32 and ONNX formats, offering a clear advantage in

memory efficiency without compromising model

performance. Further testing will involve evaluating

performance metrics with the same dataset.

Figure 7. U-Net performance on all representation

The graph in Figure 7 presents a performance

comparison of the U-Net model using several data

representation formats, including ONNX (CUDA),

TensorRT FP32, TensorRT FP16, and TensorRT INT8.

The results indicate a high level of consistency across

most configurations in terms of loss, Intersection over

Union (IoU), and Dice coefficient. For the loss metric,

U-Net maintained a stable value of 0.2094 across

ONNX, TensorRT FP32, and TensorRT FP16

representations. However, a slight increase to 0.2115 is

observed in the TensorRT INT8 representation.

In terms of the IoU (Intersection over Union), the model

achieved a score of 0.4945 for ONNX, FP32, and FP16

representations, showing a steady performance across

these configurations. A minor reduction to 0.4929

occurred when the model was run using the INT8

representation, indicating a slight decrease in

segmentation accuracy at this reduced precision level.

For the Dice coefficient, which measures the overlap

between the predicted segmentation and the ground

truth, the U-Net model consistently scored 0.6542

across ONNX, FP32, and FP16. Like the IoU, the Dice

 Haidhi Angkawijana Tedja, Onno W. Purbo

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 785

coefficient showed a minor drop to 0.6527 when using

the INT8 format.

In summary, while U-Net's performance remains

relatively consistent across ONNX, FP32, and FP16

data representations, a slight degradation in

performance is observed when using the INT8 format.

This is evident from the marginal increases in loss and

small decreases in both IoU and Dice coefficient.

Despite these reductions, the differences are minimal,

making INT8 a viable option when prioritizing memory

efficiency over the finest performance metrics.

Figure 8. Ghost U-Net performance on all representation

The graph in Figure 8 depicts the performance of the

Ghost U-Net model across four different data

representation formats: ONNX (CUDA), TensorRT

FP32, TensorRT FP16, and TensorRT INT8. For the

first three formats (ONNX, FP32, and FP16), the

performance remains relatively consistent, with a loss

value of 0.2084, IoU (Intersection over Union) of 0.493,

and a Dice coefficient of 0.6522. This stability indicates

that Ghost U-Net performs reliably across these

representations, maintaining accuracy in segmentation

tasks.

However, when transitioning to the TensorRT INT8

format, there is a noticeable degradation in

performance. The loss value increases significantly to

0.3999, indicating that the model's predictions deviate

more from the ground truth compared to the other

formats. Similarly, the IoU drops sharply to 0.2038,

suggesting a considerable reduction in segmentation

accuracy. The Dice coefficient also decreases

substantially to 0.3227, reflecting a significant loss in

overlap between predicted and actual segmentations.

In comparison to the U-Net model, Ghost U-Net

demonstrates less stability, particularly in the INT8

representation. While both models experience some

performance decline with INT8, Ghost U-Net's metrics

show a much larger drop, particularly in terms of IoU

and Dice coefficient. This suggests that Ghost U-Net

may be less suited to lower-precision formats like INT8,

where memory savings come at the expense of

substantial performance degradation. Further analysis

will include visualizing the segmentation results for

each model and representation to better understand

these performance differences.

The results of the tests from Figures 9, 10 and 11

indicate that both the U-Net and Ghost U-Net models

perform well, except for the Ghost U-Net that was

quantized to 8-bit integer. This model fails to segment

images effectively, even producing no output at all. This

issue is likely due to the model's complexity and the

tasks it is performing, as U-Net utilizes the Ghost

module as its backbone to reduce the number of

parameters. The use of the Ghost module can decrease

the model's robustness [38]. When robustness

decreases, the model becomes more sensitive to the

noise generated by the quantization process [39].

Figure 9. Inference result 1

Figure 10. Inference result 2

Figure 11. Inference result 3

 Haidhi Angkawijana Tedja, Onno W. Purbo

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 786

4. Conclusions

This research focuses on road crack image

segmentation using two deep learning models, U-Net

and Ghost U-Net, with a dataset from Kaggle consisting

of 12,480 pairs of images. The images were

preprocessed using binarization and normalization

techniques to facilitate segmentation, with binary masks

defining objects and backgrounds. The training data

was divided into training, validation, and testing sets in

an 80:10:10 ratio. The metrics used were IoU, Dice

Coefficient, and a combined loss function of binary

cross-entropy and Dice loss. The models were trained

for a total of 50 epochs. Ghost U-Net demonstrated

advantages in model efficiency by reducing the number

of parameters from 31 million (U-Net) to approximately

17 million without significant performance loss. U-Net

achieved the best results with a learning rate of 1e-4,

resulting in a loss of 0.1965, IoU of 0.5195, and a Dice

coefficient of 0.6812, while Ghost U-Net showed very

similar performance at a learning rate of 1e-3, with a

loss of 0.195, IoU of 0.5195, and a Dice coefficient of

0.6809. During testing with the test data, both models

achieved their best results at a learning rate of 1e-4, with

U-Net achieving a loss of 0.2031, IoU of 0.5034, and

Dice of 0.6662, while Ghost U-Net obtained a loss of

0.2012, IoU of 0.5041, and Dice of 0.6664. This

indicates that, although Ghost U-Net has fewer

parameters, it can rival U-Net's performance. After

training and identifying the best model, we evaluated

the performance of both models on various data

representations (FP32, FP16, and INT8) using the

ONNX and TensorRT frameworks. Ghost U-Net

excelled in inference speed, being 20%-40% faster and

using approximately 35MB less memory across all data

representations. In terms of metrics—IoU, Dice, and

loss—the U-Net model achieved consistent results with

slight degradation in the INT8 format. Conversely,

Ghost U-Net maintained stability in ONNX, FP32, and

FP16 formats but experienced a significant

performance drop in INT8, with a notable increase in

loss and sharp decreases in IoU and Dice coefficient.

This demonstrates that models with fewer parameters

can be sensitive to quantization. These findings

highlight the importance of selecting an appropriate

model based on application priorities, whether

efficiency or stability is preferred. To our knowledge,

there has been no prior research specifically analyzing

the impact of floating-point customization and

quantization (FP16, FP32, INT8) on the performance of

deep learning models, particularly in the context of road

crack segmentation. Therefore, this research makes a

significant contribution to bridging the literature gap

related to memory efficiency and model stability based

on data representation formats. The results provide

essential insights for researchers and practitioners in

selecting and adjusting deep learning models according

to computational needs and application accuracy.

Further research will focus on exploring more advanced

quantization techniques to improve the accuracy of

quantized models. Additionally, lighter and more

efficient model architectures will be investigated.

Finally, larger and more diverse datasets will be used to

enhance the model's generalization capabilities.

Acknowledgements

Dataset from Kaggle and contributions from ONNX

and TensorRT developers are greatly appreciated for for

supporting this research.

References

[1] B. Kim, N. Yuvaraj, K. R. Sri Preethaa, and R. Arun Pandian,

“Surface crack detection using deep learning with shallow

CNN architecture for enhanced computation,” Neural Comput.

Appl., vol. 33, no. 15, pp. 9289–9305, 2021

 https://doi.org/10.1007/s00521-021-05690-8.

[2] M. Zhang and J. Xu, “A semantic segmentation model for road

cracks combining channel-space convolution and frequency

feature aggregation,” Sci. Rep., vol. 14, no. 1, p. 16038, 2024

 https://doi.org/10.1038/s41598-024-66182-y

[3] L. Xiaolin, R. C. Panicker, B. Cardiff, and D. John, “Multistage

Pruning of CNN Based ECG Classifiers for Edge Devices,” in

2021 43rd Annual International Conference of the IEEE

Engineering in Medicine & Biology Society (EMBC), 2021, pp.

1965–1968.

 https://doi.org/10.1109/EMBC46164.2021.9630588.

[4] L. Sun, W. Li, and Y. Xu, “Ghost-UNet: Lightweight model

for underwater image enhancement,” Eng. Appl. Artif. Intell.,

vol. 133, p. 108585, 2024,

https://doi.org/10.1016/j.engappai.2024.108585.

[5] Y. Xu, Q. Li, S. He, and B. Awudong, “Ghost-Unet: An

efficient convolutional neural network for spine MR image

segmentation: Lightweight Segmentation Method for Spine

MRI,” in Proceedings of the 2022 4th International

Conference on Robotics, Intelligent Control and Artificial

Intelligence, in RICAI ’22. New York, NY, USA: Association

for Computing Machinery, 2023, pp. 1159–1163.

https://doi.org/10.1145/3584376.3584581.

[6] Z. Feng, J. Zhang, X. Ran, D. Li, and C. Zhang, “Ghost-Unet:

multi-stage network for image deblurring via lightweight

subnet learning,” Vis. Comput., 2024

 https://doi.org/10.1007/s00371-024-03315-4.

[7] A. Di Benedetto, M. Fiani, and L. M. Gujski, “U-Net-Based

CNN Architecture for Road Crack Segmentation,”

Infrastructures, vol. 8, no. 5, 2023

 https://doi.org/10.3390/infrastructures8050090.

[8] W. Choi and Y.-J. Cha, “SDDNet: Real-Time Crack

Segmentation,” IEEE Trans. Ind. Electron., vol. 67, no. 9, pp.

8016–8025, 2020

https://doi.org/10.1109/TIE.2019.2945265.

[9] Y. Liu, J. Yao, X. Lu, R. Xie, and L. Li, “DeepCrack: A deep

hierarchical feature learning architecture for crack

segmentation,” Neurocomputing, vol. 338, pp. 139–153, 2019

https://doi.org/10.1016/j.neucom.2019.01.036.

[10] M. AskariHemmat et al., “U-Net Fixed-Point Quantization for

Medical Image Segmentation,” in Large-Scale Annotation of

Biomedical Data and Expert Label Synthesis and Hardware

Aware Learning for Medical Imaging and Computer Assisted

Intervention, L. Zhou, N. Heller, Y. Shi, Y. Xiao, R. Sznitman,

V. Cheplygina, D. Mateus, E. Trucco, X. S. Hu, D. Chen, M.

Chabanas, H. Rivaz, and I. Reinertsen, Eds., Cham: Springer

International Publishing, 2019, pp. 115–124.

https://doi.org/10.1007/978-3-030-33642-4_13

[11] R. Azad et al., “Medical Image Segmentation Review: The

Success of U-Net,” IEEE Trans. Pattern Anal. Mach. Intell.,

pp. 1–20, 2024

https://doi.org/10.1109/TPAMI.2024.3435571.

[12] O. Ronneberger, P. Fischer, and T. Brox, “U-Net:

Convolutional Networks for Biomedical Image

Segmentation,” CoRR, vol. abs/1505.04597, 2015, [Online].

Available: http://arxiv.org/abs/1505.04597

[13] N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni,

 Haidhi Angkawijana Tedja, Onno W. Purbo

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 787

“U-Net and Its Variants for Medical Image Segmentation: A

Review of Theory and Applications,” IEEE Access, vol. 9, pp.

82031–82057, 2021

 https://doi.org/ 10.1109/ACCESS.2021.3086020.

[14] I. A. Kazerouni, G. Dooly, and D. Toal, “Ghost-UNet: An

Asymmetric Encoder-Decoder Architecture for Semantic

Segmentation From Scratch,” IEEE Access, vol. 9, pp. 97457–

97465, 2021

 https://doi.org/ 10.1109/ACCESS.2021.3094925

[15] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu,

“GhostNet: More Features From Cheap Operations,” in 2020

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2020, pp. 1577–1586.

https://doi.org/10.1109/CVPR42600.2020.00165.

[16] M. Kumaravelan Umashankarand Nivedita, “Localized Super

Resolution for Foreground Images Using U-Net and MR-

CNN,” in Computer Vision and Machine Intelligence

Paradigms for SDGs, S. M. and W. S.-H. Kannan R.

Jagadeeshand Thampi, Ed., Singapore: Springer Nature

Singapore, 2023, pp. 25–39.

 https://doi.org/10.1007/978-981-19-7169-3_3

[17] J. Pandey Shreyaand Bharti, “Review of Different Binarization

Techniques Used in Different Areas of Image Analysis,” in

Evolution in Signal Processing and Telecommunication

Networks, J. and S. S. C. and B. V. Chowdary P. Satish

Ramaand Anguera, Ed., Singapore: Springer Singapore, 2022,

pp. 249–268.

https://doi.org/10.1007/978-981-16-8554-5_25

[18] D. Singh and B. Singh, “Investigating the impact of data

normalization on classification performance,” Appl. Soft

Comput., vol. 97, p. 105524, 2020, doi:

https://doi.org/10.1016/j.asoc.2019.105524.

[19] P. L. Delisle, B. Anctil-Robitaille, C. Desrosiers, and H.

Lombaert, “Realistic image normalization for multi-Domain

segmentation,” Med. Image Anal., vol. 74, p. 102191, Dec.

2021, doi: 10.1016/J.MEDIA.2021.102191.

[20] X. Pei et al., “Robustness of machine learning to color, size

change, normalization, and image enhancement on micrograph

datasets with large sample differences,” Mater. Des., vol. 232,

p. 112086, 2023, doi:

https://doi.org/10.1016/j.matdes.2023.112086.

[21] F. Maleki, N. Muthukrishnan, K. Ovens, C. Reinhold, and R.

Forghani, “Machine Learning Algorithm Validation: From

Essentials to Advanced Applications and Implications for

Regulatory Certification and Deployment,” Neuroimaging

Clin., vol. 30, no. 4, pp. 433–445, Nov. 2020

https://doi.org/10.1016/j.nic.2020.08.004.

[22] F. van Beers, A. Lindström, E. Okafor, and M. Wiering, “Deep

Neural Networks with Intersection over Union Loss for Binary

Image Segmentation,” in Proceedings of the 8th International

Conference on Pattern Recognition Applications and Methods,

SciTePress, Mar. 2019, pp. 438–445.

https://doi.org/10.5220/0007347504380445.

[23] A. W. Setiawan, “Image Segmentation Metrics in Skin Lesion:

Accuracy, Sensitivity, Specificity, Dice Coefficient, Jaccard

Index, and Matthews Correlation Coefficient,” in 2020

International Conference on Computer Engineering, Network,

and Intelligent Multimedia (CENIM), 2020, pp. 97–102.

 https://doi.org/10.1109/CENIM51130.2020.9297970

[24] S. Jadon, “A survey of loss functions for semantic

segmentation,” in 2020 IEEE Conference on Computational

Intelligence in Bioinformatics and Computational Biology

(CIBCB), 2020, pp. 1–7.

https://doi.org/10.1109/CIBCB48159.2020.9277638

[25] Z. Liang, Z. Zhang, M. Zhang, X. Zhao, and S. Pu,

“RangeIoUDet: Range Image based Real-Time 3D Object

Detector Optimized by Intersection over Union,” in 2021

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2021, pp. 7136–7145.

https://doi.org/10.1109/CVPR46437.2021.00706

[26] Z. Krawczyk, J. S. ´NSKI, J. Starzyński, B. Pol, and A. Tech,

“Segmentation of bone structures with the use of deep learning

techniques,” Bull. Polish Acad. Sci. Tech. Sci., 2023

 https://doi.org/10.3390/app14177557

[27] V. Rajput, “Robustness of different loss functions and their

impact on networks learning capability,” ArXiv, vol.

abs/2110.0, 2021

 https://doi.org/10.2139/ssrn.4065778

[28] Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao, “Post-

Training Quantization for Vision Transformer,” in Advances in

Neural Information Processing Systems, M. Ranzato, A.

Beygelzimer, Y. Dauphin, P. S. Liang, and J. W. Vaughan,

Eds., Curran Associates, Inc., 2021, pp. 28092–28103.

 https://doi.org/10.48550/arXiv.2106.14156

[29] A. Shridhar, P. Tomson, and M. Innes, “Interoperating Deep

Learning models with ONNX.jl,” Proc. JuliaCon Conf., vol. 1,

no. 1, p. 59, 2020

 https://doi.org/10.21105/jcon.00059

[30] E. Jeong, J. Kim, and S. Ha, “TensorRT-Based Framework and

Optimization Methodology for Deep Learning Inference on

Jetson Boards,” ACM Trans. Embed. Comput. Syst., vol. 21,

no. 5, Oct. 2022

https://doi.org/10.1145/3508391

[31] L. Stäcker et al., “Deployment of Deep Neural Networks for

Object Detection on Edge AI Devices with Runtime

Optimization,” in 2021 IEEE/CVF International Conference

on Computer Vision Workshops (ICCVW), 2021, pp. 1015–

1022.

 https://doi.org/10.1109/ICCVW54120.2021.00118

[32] C. Gernigon, S.-I. Filip, O. Sentieys, C. Coggiola, and M.

Bruno, “Low-Precision Floating-Point for Efficient On-Board

Deep Neural Network Processing,” in 2023 European Data

Handling & Data Processing Conference (EDHPC), 2023, pp.

1–8.

https://doi.org/10.23919/EDHPC59100.2023.10396014

[33] T. Yu et al., “Collage: Light-Weight Low-Precision Strategy

for LLM Training,” in Proceedings of the 41st International

Conference on Machine Learning, R. Salakhutdinov, Z. Kolter,

K. Heller, A. Weller, N. Oliver, J. Scarlett, and F. Berkenkamp,

Eds., in Proceedings of Machine Learning Research, vol. 235.

PMLR, Sep. 2024, pp. 57459–57479. [Online]. Available:

https://proceedings.mlr.press/v235/yu24d.html

[34] H. Ren, S. Duca, and N. D’Souza, “Comparison of Open

Neural Network Exchange (ONNX) and TensorFlow based

inferences for the B-scan of interest algorithm,” Invest.

Ophthalmol. Vis. Sci., vol. 64, no. 8, p. 213, Jun. 2023.

[35] J. Suo, X. Zhang, S. Zhang, W. Zhou, and W. Shi, “Feasibility

Analysis of Machine Learning Optimization on GPU-based

Low-cost Edges,” in 2021 IEEE SmartWorld, Ubiquitous

Intelligence & Computing, Advanced & Trusted Computing,

Scalable Computing & Communications, Internet of People

and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/IOP/SCI), 2021, pp. 89–

96.

https://doi.org/10.1109/SWC50871.2021.00022

[36] M. Dörrich, M. Fan, and A. M. Kist, “Impact of Mixed

Precision Techniques on Training and Inference Efficiency of

Deep Neural Networks,” IEEE Access, vol. 11, pp. 57627–

57634, 2023

https://doi.org/10.1109/ACCESS.2023.3284388

[37] D. Liu, M. Jiang, and K. Pister, “LLMEasyQuant – An Easy to

Use Toolkit for LLM Quantization,” 2024. [Online].

Available: https://arxiv.org/abs/2406.19657

[38] C. Devaguptapu, D. Agarwal, G. Mittal, and V. N.

Balasubramanian, “An Empirical Study on the Robustness of

NAS based Architectures,” CoRR, vol. abs/2007.08428, 2020

 https://doi.org/10.48550/arXiv.2406.19657

[39] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M.

van Baalen, and T. Blankevoort, “A White Paper on Neural

Network Quantization,” CoRR, vol. abs/2106.08295, 2021

https://doi.org/10.48550/arXiv.2406.19657

