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Abstract  

This study presents a comprehensive comparison of U-Net and Ghost U-Net for road crack segmentation, emphasizing their 

performance and memory efficiency across various data representation formats, including FP32, FP16, and INT8 quantization. 

A dataset of 12,480 images was used, with preprocessing steps such as binarization and normalization to improve segmentation 

accuracy. Results show that Ghost U-Net achieved a marginally higher performance, with an IoU of 0.5041 and a Dice 

coefficient of 0.6664, compared to U-Net’s IoU of 0.5034 and Dice coefficient of 0.6662. Ghost U-Net also demonstrated 

significant memory efficiency, reducing GPU usage by up to 60% in FP16 and INT8 formats. However, a sharp decline in 

performance was observed for Ghost U-Net in the INT8 format, where the IoU dropped to 0.2038 and the Dice coefficient to 

0.3227, whereas U-Net maintained stable performance across all formats. These findings suggest that Ghost U-Net is 

preferable for applications prioritizing memory efficiency and inference speed, while U-Net may be better suited for tasks 

requiring consistent accuracy across different quantization levels. This study underscores the importance of considering both 

performance stability and memory efficiency when selecting models for deployment in real-world applications. 
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1. Introduction  

Cracks on concrete surfaces are a key indicator that 

reveals the safety and degradation level of a structure. 

To maintain the health and reliability of buildings, 

regular inspection and monitoring of surface cracks are 

crucial [1]. In the context of infrastructure maintenance, 

the process of crack detection and road segmentation is 

one of the critical aspects that requires high accuracy, 

considering that small and complex cracks on road 

surfaces are difficult to detect manually [2].  

The application of deep learning-based computer vision 

methods has proven to improve the accuracy and 

efficiency of crack detection, with U-Net being one of 

the widely used models for high-quality image 

segmentation, including in the medical and 

infrastructure fields. However, as the need for 

computational efficiency increases, especially on 

devices with limited resources such as edge computing 

and mobile devices, a lighter and faster model is needed 

[3]. Ghost U-Net; a variant of U-Net, was developed to 

address this issue by using the Ghost module, which 

reduces the number of parameters and memory usage 

while maintaining competitive accuracy and improving 

inference efficiency, especially on low-precision data 

formats such as FP16 and INT8.  

Previous research conducted by Lingyu Sun et al. has 

shown that Ghost U-Net performs well on underwater 

imagery [4]. Research by Yinghan Xu et al. also 

demonstrated good results on medical images [5]. In 

addition to image segmentation, Ghost U-Net has also 

shown satisfactory results in the image deblurring case 

studied by Feng Ziliang [6]. Our Ghost U-Net model 

also shows improvements in GPU resource utilization 

and inference time compared to the research conducted 

by Alessandro Di Benedetto et al., although in terms of 

metrics, it is still lower [7]. That study achieved 6.7 

frames per second (FPS), while our Ghost U-Net 

https://doi.org/10.29207/resti.v8i6.6089
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achieved 99.04 FPS for FP32 and 156.53 FPS for FP16. 

This makes our model suitable for running on 

embedded devices.  

Many studies have examined the application of various 

image segmentation methods to detect road damage, 

such as the use of the SDDNet model [8] and 

DeepCrack [9]. Research related to floating point 

customization and quantization has been conducted by 

Mohammad Hossein et al. [10] using the U-Net model 

for medical images. To the best of our knowledge, no 

one has yet applied Ghost U-Net nor studied the effects 

of floating point customization and quantization of U-

Net and Ghost U-Net models for road crack 

segmentation. This study focuses on comparing the 

performance of U-Net and Ghost U-Net on road crack 

data. Additionally, this research evaluates the stability 

of the model on different floating point representations 

and model quantization. 

2. Research Methods 

This research aims to compare two models for image 

segmentation, namely U-Net and Ghost U-Net. The first 

stage of the research involves data collection, and 

preprocessing, followed by training both models with 

varying learning rates. After training, the best model 

from both U-Net and Ghost U-Net will be selected 

based on testing performance. The best model will then 

be converted into different floating-point 

representations for further evaluation, using metrics 

such as GPU memory usage and prediction speed.  

 

Figure 1. Research flow 

The diagram in Figure 1 illustrates the workflow for 

comparing the performance of the Ghost U-Net and U-

Net models in a specific task, such as image 

segmentation. Figure 1 is an explanation of the steps in 

the diagram: The first stage is gathering the data that 

will be used to train the models. The collected data 

undergoes preprocessing to ensure consistency before 

being used in the models. Following preprocessing, 

both the Ghost U-Net and U-Net models are trained 

using the data with five different learning rates for each 

model. Once the training phase is complete, the models 

are tested to evaluate their performance. The best-

performing model from these tests is then selected and 

converted into various formats for performance 

optimization, including ONNX and different floating-

point formats like FP32 and FP16, as well as 

quantization to INT8. Finally, the performance results 

across these formats are analyzed to determine the best 

model and configuration. 

Semantic segmentation is the process of pixel-level 

classification, where each pixel in an image is assigned 

a specific category. Meanwhile, instance segmentation 

not only classifies pixels as in semantic segmentation 

but also distinguishes different objects within the same 

category [11]. In this research, we will work on 

semantic segmentation. 

U-Net was initially developed as a fully convolutional 

network model for medical image segmentation [12]. 

U-Net is an autoencoder model where the encoder part 

extracts features and information, while the decoder 

part learns and reconstructs the information from the 

encoder [13].    

Table 1. U-Net Architecture 

Block Output shape Params 

DownConv 1 [64,128,128] 38.720 

DownConv 2 [128,64,64] 221.550 

DownConv 3 [256,64,64] 885.248 

DownConv 4 [512,32,32] 3.539.968 

Bottleneck [1024,16,16] 14.157.824 

UpConv 1 [512,32,32] 9.176.576 

UpConv 2 [256,64,64] 2.294.528 

UpConv 3 [128,128,128] 573.824 

UpConv 4 [64, 256, 256]  143.552 

Ouput Layer [1, 256, 256] 65 

Total Params  31.031.855 

Table 1 presents the architecture of a U-Net model, 

detailing the layers in the encoder (DownConv), 

bottleneck, and decoder (UpConv) phases. It includes 

the output shape and the number of parameters for each 

layer. The model begins with four downsampling 

convolutional layers (DownConv) that reduce spatial 

dimensions while increasing feature maps, followed by 

a bottleneck layer with the highest number of 

parameters. The decoder consists of four upsampling 

convolutional layers (UpConv) that restore the spatial 

dimensions while reducing the number of feature maps. 

Finally, the model ends with an output layer that 

produces a [1,256,256] output. The total number of 

parameters in the model is approximately 31 million, 

making this U-Net architecture quite large. To address 

this, we developed Ghost U-Net which uses ghost 

modules as the backbone to significantly reduce the 

number of parameters while maintaining performance. 
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Ghost U-Net is a U-Net model that uses the Ghost 

module as its backbone. Due to the large complexity of 

U-Net's backbone, the model requires significant 

memory, making it unsuitable for devices with limited 

memory, such as embedded devices [5]. The model also 

demonstrates strong performance, as shown by high 

pixel accuracy and IoU, despite having fewer 

parameters [14]. By utilizing the Ghost module as the 

backbone, the model is expected to provide informative 

features with fewer parameters [15].  

Table 2. Ghost U-Net Architecture 

Block Output shape Params 

Ghost DownConv 1 [64,128,128] 2.976 

Ghost DownConv 2 [128,64,64] 13.952 

Ghost DownConv 3 [256,64,64] 52.480 

Ghost DownConv 4 [512,32,32] 203.264 

Bottleneck [1024,16,16] 14.157.824 

Ghost UpConv 1 [512,32,32] 2.497.536 

Ghost UpConv 2 [256,64,64] 626.176 

Ghost UpConv 3 [128,128,128] 157.440 

Ghost UpConv 4 [64, 256, 256]  39.808 

Ouput Layer [1, 256, 256] 65 

Total Params  17.751.521 

Table 2 presents the architecture of a Ghost U-Net 

model, which utilizes ghost modules to reduce the 

number of parameters compared to the standard U-Net. 

Each block of the model, from the Ghost DownConv 

layers in the encoder to the Ghost UpConv layers in the 

decoder, is detailed with its output shape and parameter 

count. The model follows a similar structure to U-Net, 

with downsampling in the encoder, a bottleneck layer, 

and upsampling in the decoder. However, by using 

ghost modules, the total parameters of Ghost U-Net are 

significantly reduced to approximately 17.75 million, 

compared to the 31 million parameters in the standard 

U-Net. This reduction makes Ghost U-Net a more 

efficient alternative while retaining the original 

functionality of U-Net. 

3. Results and Discussions 

The dataset used in this research is a road crack dataset 

obtained from Kaggle, designed for image 

segmentation tasks. This dataset consists of 12,480 

pairs of images, with a size of 448 x 448 x 3 for the input 

(x) and 448 x 448 for the labels (y). The input images 

(x) are RGB images with three channels, while the label 

images (y) are grayscale images with only one channel. 

These images will be resized to 256 x 256 to reduce 

computational load and improve efficiency [16]. 

Image segmentation generally requires a binary mask to 

define the area to be predicted by the model. The 

binarization process converts pixel values into two 

categories: the object to be predicted by the model, 

which is marked by a pixel value of 255 or 1, and the 

background, which is marked by a value of 0. This 

process is crucial in identifying the area targeted for 

detection by the model [17]. The collected dataset still 

contains pixel values ranging from 0 to 255. Figure 2 is 

a sample of the mask and the proportion of unique pixel 

values. 

In Figure 3, pixels with a value of 0 (black) account for 

86.8%, while those with a value of 255 (white) makeup 

9.3%. The remaining 3.9% are pixels with values other 

than 0 and 255. Due to the inconsistency in pixel values, 

a binarization method will be applied to convert all 

masks into a binary format. In this study, a threshold of 

100 will be used, meaning that all pixels with an 

intensity value above 100 will be considered as the 

foreground (typically converted to 255), and pixels with 

an intensity below that will be considered as the 

background (typically converted to 0). After going 

through the binary thresholding process, we will get an 

image like Figure 4.  

 

 

 

Figure 2. Input image (left) and label mask (right) 

 

Figure 3. Proportion of Pixels Values 

 

Figure 4. Binarized Image 



 Haidhi Angkawijana Tedja, Onno W. Purbo 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)  

 

This is an open access article under the CC BY-4.0 license                                                                                 782 

 

 After harmonizing all labels, the next step in 

preprocessing is normalization. Normalization is a 

preprocessing stage where data is scaled so that each 

feature contributes equally and maintains a consistent 

value range [18]. Additionally, normalization plays a 

crucial role in improving the model's generalization 

ability, ensuring that the model can consistently 

recognize patterns in varied data, leading to optimal 

prediction performance on both training data and new, 

unseen data [19]. In this study, normalization will be 

performed by dividing each pixel value by 255 [20].  

Both models will be trained with a data split of 80:10:10 

for training, validation, and testing. The training and 

validation data will be used during the training process, 

while the testing data will be employed to evaluate the 

final results of the models and determine which model 

performs best [21]. The metrics used for evaluation will 

include IoU [22], Dice Coefficient [23], and a 

combination of Dice Loss and Binary Cross Entropy 

(BCE) as the loss function [24].  

Intersection over Union (IoU) is widely used in various 

tasks, particularly in segmentation. In segmentation 

tasks, IoU evaluates the accuracy of pixel-wise 

predictions, which reflect the quality of the learned 

features. Specifically, IoU is calculated by taking the 

area of overlap between the predicted segmentation and 

the ground truth, divided by the area of their union using 

Equation 1.  

𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
                (1) 

This metric provides a comprehensive measure of how 

well the model distinguishes between different classes 

at the pixel level, making it essential for assessing 

segmentation performance [25]. The third measure used 

for further evaluation of network models is the Dice 

coefficient (F1 score), which is defined as twice the 

number of common pixels from a given class in the 

reference image and predicted image, divided by the 

sum of the pixels belonging to that class in both the 

reference and predicted images.  

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
              (2) 

The Dice coefficient in Equation 2 is positively 

correlated with the IoU measure; however, in the case 

of IoU, individual poor segmentation results have a 

more severe impact on the overall evaluation of the 

model [26].  

For the loss function, we adopt the combination of 

Binary Cross Entropy (BCE) and Dice Loss, inspired by 

studies such as those conducted by Vishal Rajput [27] 

ass shown in Equations 3 and 4.  

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 =  1 − 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡            (3) 

𝐵𝐶𝐸 = −
1

𝑛
∑ (𝑌𝑖 ∙ log �̂�𝑖 (1 − 𝑌𝑖) ∙ log(1 − �̂�𝑖

𝑛
𝑖−1 )     (4)  

These works demonstrated that Dice Loss provides 

superior pixel-wise accuracy, especially in 

segmentation tasks, while BCE offers better 

generalization and resistance to noise and adversarial 

attacks. By merging both loss functions, we aim to 

improve the model's precision, robustness, and overall 

performance, achieving a balance between accurate 

segmentation and resilience against perturbations.  

It should be noted that the use of custom representation 

e.g. ONNX, FP32, FP16, and INT8 is done after 

training is completed (post-training quantization), with 

the aim of improving inference efficiency [28]. We used 

the PyTorch framework for modeling and training, 

utilizing the default floating point format, which is 

FP32, due to its balance between precision and 

computational efficiency.  

The training process uses 2x T4 GPU from Kaggle 

kernel. We will use 50 epochs and a batch size of 16 due 

to limited computing power and time. We also use 

checkpoint callbacks to save the model with the lowest 

loss during the 50 epochs of training. The training 

results are shown in Tables 3 and 4. 

Table 3. U-net training result 

Learning Rate Loss Iou Dice 

0,1 2,1966 0,029 0,0563 

0,01 0,5455 4×10−8 0 

0,001 0,2398 0,4471 0,615 

0,0001 0,1965 0,5195 0,6812 

0,00001 0,2207 0,4837 0,6477 

Table 4. Ghost U-net training result 

Learning Rate Loss Iou Dice 

0,1 0 0,5047 0,6679 

0,01 0,198 0,5146 0,677 

0,001 0,195 0,5195 0,6809 

0,0001 0,1962 0,5186 0,68 

0,00001 0,2424 0,4888 0,6529 

 

Tables 3 and 4 show the best results from the validation 

data during training. The U-Net model performed best 

when trained with a learning rate of 0.0001, while Ghost 

U-Net achieved its best results at a learning rate of 

0.001. In numerical terms, the performance of U-Net is 

superior to that of Ghost U-Net, although the difference 

is not significant, as the values are very close to each 

other. The final results of the models will be tested on 

the testing data to measure performance on unseen data 

during the training process. The model with the best 

performance on the testing data will be selected for 

further evaluation using ONNX and TensorRT as 

shown in Tables 5 and 6.  

The best model is the one trained with a learning rate of 

0.0001, whether it be U-Net or Ghost U-Net. The U-Net 

model achieved a loss of 0.2031, an IoU of 0.5034, and 

a Dice coefficient of 0.6662. In contrast, the Ghost U-

Net model recorded a loss of 0.2012, an IoU of 0.5041, 

and a Dice coefficient of 0.6664. Overall, Ghost U-Net 

performs slightly better than U-Net. 

After obtaining the best model, we will conduct further 

testing to compare the performance and resources used 

by each model. The testing will be performed using the 
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Open Neural Network Exchange (ONNX) framework, 

which is user-friendly and suitable for use in embedded 

devices [29]. In addition to ONNX, we will also test 

using TensorRT, which enables fast predictions [30] 

and supports floating-point customization and 

quantization [31]. In this testing, we will use both 32-

bit and 16-bit floating-point representations. The higher 

the bit, the wider the range of values that can be 

calculated, resulting in more precise predictions but 

requiring more resources [32]. This is because 

calculations with 32-bit floating-point representation 

can cover a broader value range, meaning they can 

represent very small to very large numbers with higher 

accuracy and precision [33].   

Table 5. U-net on testing data 

Learning Rate Loss Iou Dice 

0,1 1,98×1040 0,00055 0,00111 

0,01 0,544 4×10−8 0 

0,001 0,2449 0,4322 0,5996 

0,0001 0,2031 0,5034 0,6662 

0,00001 0,2334 0,455 0,6198 

Table 6. Ghost U-net on testing data 

Learning Rate Loss Iou Dice 

0,1 0,213 0,488 0,6524 

0,01 0,203 0,4998 0,663 

0,001 0,2029 0,5017 0,6646 

0,0001 0,2012 0,5041 0,6664 

0,00001 0,2522 0,4658 0,631 

Previous research has demonstrated that ONNX 

provides significant improvements in inference speed 

compared to other frameworks. In a study involving 

25,600 OCT B-scans, the binary prediction results (0-

normal, 1-B-scan of interest) were identical between 

TensorFlow and ONNX inferences in both CPU and 

GPU modes. However, the average inference execution 

times showed notable differences. In CPU mode, the 

average execution time for one macular cube was 

8.99±0.09 seconds for TensorFlow and 3.57±0.15 

seconds for ONNX, resulting in a speedup of 60.29%. 

In GPU mode, the average execution times were 

0.55±0.03 seconds for TensorFlow and 0.35±0.03 

seconds for ONNX, leading to a speedup of 36.36% 

[34] 

Additionally, in a study conducted by Zhang et al., 

experiments running YOLOv3 on the NVIDIA Jetson 

Nano revealed that using TensorRT with fp16 

quantization resulted in the lowest power consumption, 

fastest running speed, and least memory usage. The 

fastest inference time achieved was 13.1 FPS with a 

320×192 resolution. This demonstrates that the fp16 

model is an effective technique to reduce computational 

resources while maintaining fast inference speeds, 

particularly in edge AI applications where power and 

memory efficiency are critical factors [35]. 

We will also implement quantization, where the model 

is converted to an 8-bit integer representation, allowing 

for faster inference and reduced memory usage, albeit 

at the cost of accuracy [36]. This occurs because 

floating-point data types are transformed into integer 

numbers, allowing calculations to be completed more 

quickly with less memory, thereby reducing the overall 

latency of the model and increasing inference speed at 

the expense of accuracy [37]. The testing will utilize an 

RTX 3050 mobile GPU, with the parameters to be 

evaluated being inference time and GPU resource 

usage. A total of 12,475 images will be used for this 

evaluation. The results of the tests will be illustrated in 

in Figure 5.  

 

Figure 5. Inference time 

The diagram in Figure 5 illustrates a comparison of 

execution times between U-Net and Ghost U-Net across 

several data formats, including ONNX (CUDA), FP32, 

FP16, and INT8. In general, Ghost U-Net demonstrates 

faster execution times than U-Net, with the only 

exception being the INT8 format. For the ONNX 

(CUDA) format, U-Net takes 280.23 seconds to 

complete the task, while Ghost U-Net finishes in 193.83 

seconds. This results in a time difference of 86.4 

seconds, indicating that Ghost U-Net is 30.8% faster 

than U-Net in this format. Moving to the FP32 format, 

U-Net records an execution time of 219.62 seconds, 

whereas Ghost U-Net reduces this time to 126.06 

seconds. The difference of 93.56 seconds represents the 

largest time savings, making Ghost U-Net 42.6% more 

efficient in FP32. In the FP16 format, U-Net's execution 

time is 100.47 seconds, while Ghost U-Net completes 

the process in 79.83 seconds, saving 20.64 seconds and 

showing a 20.5% improvement in speed. However, in 

the INT8 format, the trend reverses slightly, with U-Net 
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being marginally faster than Ghost U-Net. U-Net 

completes the task in 71.48 seconds, compared to Ghost 

U-Net's 74.46 seconds, making Ghost U-Net 4.2% 

slower in this format. 

In summary, Ghost U-Net consistently outperforms U-

Net in terms of execution time across all formats, except 

for the quantized INT8 format, where U-Net holds a 

slight advantage. This suggests that Ghost U-Net excels 

particularly in higher-precision formats such as ONNX 

(CUDA), FP32, and FP16, offering significant 

improvements in efficiency. 

 

Figure 6. Inference resource 

Figure 6 illustrates the average GPU memory usage (in 

megabytes) for both U-Net and Ghost U-Net models 

across different data representations: ONNX (CUDA), 

FP32, FP16, and INT8. The first comparison shows that 

U-Net and Ghost U-Net consume nearly the same 

amount of memory, approximately 758.52 MB, when 

using the ONNX (CUDA) format, with a negligible 

difference. However, as smaller data representations are 

used, significant memory savings become evident. 

When using FP32, U-Net consumes 452.52 MB, while 

Ghost U-Net reduces memory usage to 354.52 MB, 

showcasing Ghost U-Net's efficiency. The trend 

continues with FP16, where U-Net uses 316.52 MB and 

Ghost U-Net further reduces this to 292.52 MB. The 

most optimized memory usage is observed with the 

INT8 representation, where U-Net consumes 276.52 

MB, and Ghost U-Net uses the least, at 258.52 MB. 

Overall, Ghost U-Net consistently uses less GPU 

memory than U-Net across all representations, 

especially when employing smaller data types like FP16 

and INT8. These results suggest that using reduced data 

representations, such as FP16 and INT8, can lower 

GPU memory usage by nearly 60% compared to the 

FP32 and ONNX formats, offering a clear advantage in 

memory efficiency without compromising model 

performance. Further testing will involve evaluating 

performance metrics with the same dataset. 

 

Figure 7. U-Net performance on all representation 

The graph in Figure 7 presents a performance 

comparison of the U-Net model using several data 

representation formats, including ONNX (CUDA), 

TensorRT FP32, TensorRT FP16, and TensorRT INT8. 

The results indicate a high level of consistency across 

most configurations in terms of loss, Intersection over 

Union (IoU), and Dice coefficient. For the loss metric, 

U-Net maintained a stable value of 0.2094 across 

ONNX, TensorRT FP32, and TensorRT FP16 

representations. However, a slight increase to 0.2115 is 

observed in the TensorRT INT8 representation. 

In terms of the IoU (Intersection over Union), the model 

achieved a score of 0.4945 for ONNX, FP32, and FP16 

representations, showing a steady performance across 

these configurations. A minor reduction to 0.4929 

occurred when the model was run using the INT8 

representation, indicating a slight decrease in 

segmentation accuracy at this reduced precision level. 

For the Dice coefficient, which measures the overlap 

between the predicted segmentation and the ground 

truth, the U-Net model consistently scored 0.6542 

across ONNX, FP32, and FP16. Like the IoU, the Dice 
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coefficient showed a minor drop to 0.6527 when using 

the INT8 format. 

In summary, while U-Net's performance remains 

relatively consistent across ONNX, FP32, and FP16 

data representations, a slight degradation in 

performance is observed when using the INT8 format. 

This is evident from the marginal increases in loss and 

small decreases in both IoU and Dice coefficient. 

Despite these reductions, the differences are minimal, 

making INT8 a viable option when prioritizing memory 

efficiency over the finest performance metrics. 

 

Figure 8. Ghost U-Net performance on all representation 

The graph in Figure 8 depicts the performance of the 

Ghost U-Net model across four different data 

representation formats: ONNX (CUDA), TensorRT 

FP32, TensorRT FP16, and TensorRT INT8. For the 

first three formats (ONNX, FP32, and FP16), the 

performance remains relatively consistent, with a loss 

value of 0.2084, IoU (Intersection over Union) of 0.493, 

and a Dice coefficient of 0.6522. This stability indicates 

that Ghost U-Net performs reliably across these 

representations, maintaining accuracy in segmentation 

tasks. 

However, when transitioning to the TensorRT INT8 

format, there is a noticeable degradation in 

performance. The loss value increases significantly to 

0.3999, indicating that the model's predictions deviate 

more from the ground truth compared to the other 

formats. Similarly, the IoU drops sharply to 0.2038, 

suggesting a considerable reduction in segmentation 

accuracy. The Dice coefficient also decreases 

substantially to 0.3227, reflecting a significant loss in 

overlap between predicted and actual segmentations. 

In comparison to the U-Net model, Ghost U-Net 

demonstrates less stability, particularly in the INT8 

representation. While both models experience some 

performance decline with INT8, Ghost U-Net's metrics 

show a much larger drop, particularly in terms of IoU 

and Dice coefficient. This suggests that Ghost U-Net 

may be less suited to lower-precision formats like INT8, 

where memory savings come at the expense of 

substantial performance degradation. Further analysis 

will include visualizing the segmentation results for 

each model and representation to better understand 

these performance differences. 

The results of the tests from Figures 9, 10 and 11 

indicate that both the U-Net and Ghost U-Net models 

perform well, except for the Ghost U-Net that was 

quantized to 8-bit integer. This model fails to segment 

images effectively, even producing no output at all. This 

issue is likely due to the model's complexity and the 

tasks it is performing, as U-Net utilizes the Ghost 

module as its backbone to reduce the number of 

parameters. The use of the Ghost module can decrease 

the model's robustness [38]. When robustness 

decreases, the model becomes more sensitive to the 

noise generated by the quantization process [39]. 

 

 

Figure 9. Inference result 1 

 

 

Figure 10. Inference result 2 

 

 

Figure 11. Inference result 3 
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4. Conclusions 

This research focuses on road crack image 

segmentation using two deep learning models, U-Net 

and Ghost U-Net, with a dataset from Kaggle consisting 

of 12,480 pairs of images. The images were 

preprocessed using binarization and normalization 

techniques to facilitate segmentation, with binary masks 

defining objects and backgrounds. The training data 

was divided into training, validation, and testing sets in 

an 80:10:10 ratio. The metrics used were IoU, Dice 

Coefficient, and a combined loss function of binary 

cross-entropy and Dice loss. The models were trained 

for a total of 50 epochs. Ghost U-Net demonstrated 

advantages in model efficiency by reducing the number 

of parameters from 31 million (U-Net) to approximately 

17 million without significant performance loss. U-Net 

achieved the best results with a learning rate of 1e-4, 

resulting in a loss of 0.1965, IoU of 0.5195, and a Dice 

coefficient of 0.6812, while Ghost U-Net showed very 

similar performance at a learning rate of 1e-3, with a 

loss of 0.195, IoU of 0.5195, and a Dice coefficient of 

0.6809. During testing with the test data, both models 

achieved their best results at a learning rate of 1e-4, with 

U-Net achieving a loss of 0.2031, IoU of 0.5034, and 

Dice of 0.6662, while Ghost U-Net obtained a loss of 

0.2012, IoU of 0.5041, and Dice of 0.6664. This 

indicates that, although Ghost U-Net has fewer 

parameters, it can rival U-Net's performance. After 

training and identifying the best model, we evaluated 

the performance of both models on various data 

representations (FP32, FP16, and INT8) using the 

ONNX and TensorRT frameworks. Ghost U-Net 

excelled in inference speed, being 20%-40% faster and 

using approximately 35MB less memory across all data 

representations. In terms of metrics—IoU, Dice, and 

loss—the U-Net model achieved consistent results with 

slight degradation in the INT8 format. Conversely, 

Ghost U-Net maintained stability in ONNX, FP32, and 

FP16 formats but experienced a significant 

performance drop in INT8, with a notable increase in 

loss and sharp decreases in IoU and Dice coefficient. 

This demonstrates that models with fewer parameters 

can be sensitive to quantization. These findings 

highlight the importance of selecting an appropriate 

model based on application priorities, whether 

efficiency or stability is preferred. To our knowledge, 

there has been no prior research specifically analyzing 

the impact of floating-point customization and 

quantization (FP16, FP32, INT8) on the performance of 

deep learning models, particularly in the context of road 

crack segmentation. Therefore, this research makes a 

significant contribution to bridging the literature gap 

related to memory efficiency and model stability based 

on data representation formats. The results provide 

essential insights for researchers and practitioners in 

selecting and adjusting deep learning models according 

to computational needs and application accuracy.  

Further research will focus on exploring more advanced 

quantization techniques to improve the accuracy of 

quantized models. Additionally, lighter and more 

efficient model architectures will be investigated. 

Finally, larger and more diverse datasets will be used to 

enhance the model's generalization capabilities. 
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