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Abstract  

Stunting, a condition characterised by short stature, is a growth disorder caused by chronic malnutrition, which often begins 

in the womb. Children affected by stunting usually show different physical and cognitive characteristics compared to their 

peers. Research shows that these physical differences can also be observed in facial features. Because faces provide important 

information and are commonly studied in digital image processing, in this study, we will compare the facial image classification 

performance of stunted children versus normal children using various Convolutional Neural Network (CNN) architectures. 

The evaluated architectures include MobileNetV2, InceptionV3, VGG19, ResNet18, EfficientNetB0, and AlexNet. To improve 

the learning process, augmentation techniques with Haar cascade and Gaussian filters were applied so that the data set 

increased from 1,000 to 6,000 images. After adding the dataset, training is carried out with an early stop approach to minimise 

overfitting. The main aim of this research is to identify the CNN model that is most effective in differentiating facial images of 

stunted children from normal children. The results show that the EfficientNetB0 architecture outperforms other models, 

achieving 100% accuracy. Early stopping has been shown to improve training efficiency and help prevent overfitting. 
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1. Introduction  

Stunting is a serious health problem that impacts 

children's physical growth and cognitive development. 

Early detection of stunting is critical for timely and 

effective intervention. Traditional approaches to 

detecting stunting generally involve measuring body 

height, which can be time-consuming and require 

special equipment. However, technological 

developments in image processing have become an 

alternative for detecting stunting through facial image 

analysis. [1]-[4]. 

Convolutional Neural Networks (CNN) have been 

proven effective in a variety of image classification 

tasks, including identifying medical conditions through 

image analysis [5]. Several CNN architectures have 

been built for stunting detection, namely the AlexNet 

architecture [4], malnutrition detection, and similar 

using the Inception and VGG19  [2] and the ResNet18 

architecture for malnutrition detection in children [6].  

In this research, we compare the performance of several 

popular CNN architectures, namely MobileNetV2, 

InceptionV3, VGG19, ResNet18, EfficientNetB0, and 

AlexNet, in classifying facial images of stunted 

children. The Haar Cascade technique is used to detect 

the location of faces from an image, while early 

stopping is applied to prevent overfitting during model 

training [7], [8].  Previously, we succeeded in building 

a facial image classification model using ResNet50 and 

AlexNet architecture [9].  

2. Research Methods 

2.1. Dataset 

In this study, a data set was used that included facial 

photos of normal children and stunted children obtained 

from previous research [9]. Some examples of the 

images are shown in Figure 1. The collected data was 

1000 images of children's faces, which were then 

augmented to increase the accuracy of the CNN model. 

https://doi.org/10.29207/resti.v9i1.6068
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The data is then processed using the Haar Cascade 

technique to detect the eye, head, and hair areas, which 

are characteristic of stunted children. After detection, 

the image is cropped from the top to the bottom of the 

child's eyes [10], [11]. Data augmentation was carried 

out using five different techniques to enrich the dataset. 

First, the zoom technique is applied with a factor of 0.1. 

Second, rotation is carried out randomly with angles of 

5, 10, and 15 degrees. Third, a translation of 2% is 

applied, resulting in a shift of approximately 5 pixels 

both horizontally and vertically [12], [13]. Fourth, 

horizontal flipping is performed on the image. Finally, 

Gaussian noise was added with a sigma value of 25. 

Some examples of augmented images are shown in 

Figure 2. This augmentation process aims to increase 

the variety of the dataset, which in turn can increase the 

generalization ability and accuracy of the CNN model 

in detecting stunting in children. This dataset 

augmentation process produces significant variations 

from the original data. Each augmentation technique 

generates 1,000 new images, and the application of five 

different augmentation techniques yields a total of 

5,000 augmented images. Thus, the total number of 

datasets used in this research reached 6,000 images, 

consisting of 1,000 original images and 5,000 

augmented images. Next, the dataset is divided into 

three, namely training, validation, and testing, with a 

ratio of 80:10:10. 

  

(a) Normal 

  

(b) Stunting 

Figure 1. Samples of Normal and Stunting Images 

(a) Original 
 

(b) Zoom (c) Rotated 

 

(d)Translation 

 

(e) Flipping 

 

(f) Gaussian Noise 

Figure.1 Samples dataset with augmentation  

Data augmentation techniques such as zoom, rotation, 

translation, flipping, and Gaussian noise are very 

important in improving the performance and robustness 

of stunting classification models on child facial images 

[14], [15]. These methods allow the model to adapt to 

variations that may arise when taking photos in real-life 

situations. Zoom replicates the difference in distance 

between the camera and the child's face, allowing the 

model to distinguish indicators of stunting at different 

scales. Rotation allows the model to recognize stunting 

features from different angles, improving its ability to 

identify signs of stunting regardless of facial orientation 

[16]. Translation or shifting of the image horizontally 

or vertically simulates situations where the child's face 

is not always in the center of the frame, teaching the 

model to recognize the characteristics of stunting 

without relying on a particular facial position. 

Horizontal flipping provides additional variety by 

mirroring the image, helping the model recognize 

stunting features from both sides of the face. Finally, the 

addition of Gaussian noise increases the model's 

robustness to minor image disturbances that may occur 

due to varying camera quality or lighting. By applying 

these five augmentation techniques, the model becomes 

more flexible and adaptive in handling various shooting 

scenarios in the real world, thereby increasing accuracy 

and reliability in detecting stunting in children. 

The focus of the results to be achieved is: 'Stunting' and 

'Normal' by utilizing a Deep Learning model based on 

Convolutional Neural Network (CNN) to classify facial 

images of children who are stunted, especially based on 

grayscale facial images. The main strength of CNN lies 

in its ability to recognize visual elements such as edges, 

textures, corners, and patterns. 

2.2. Simulation 

Figure 3 shows the simulation process conducted to 

achieve the goal namely, to classify the facial images 

into ‘Stunting’ and ‘Normal” classes. The first stage 

was to input the image dataset. The input dataset was 

divided into three stages, namely training, validation, 

and testing. Training images were 4800, while each 

validation and testing image was 600 images. With the 

dataset, we conducted the simulation using the training 

hyperparameters shown in Table 1. In the second stage, 

the upper eye area from facial features was extracted 

using the Haar Cascade Viola-Jones algorithm, 

resulting in ROI. The images were resized to 227x227 

pixels for use in the AlexNet architecture and 224x224 

pixels for the other five architectures. In the third stage, 

the processed facial images were used to train six CNN 

architectures. Finally, model validation and evaluation 

were performed. The model's performance was 

evaluated based on accuracy, precision, recall, and F1-

score metrics for each architecture. 

Table 1. Hyperparameter Training 

Epoch Learning 

rate 

Optimizer Batch 

size 

Loss 

function 

10, 20, 

40, 60, 

80, 100 

0,001 Stochastic 

Gradient 

Descent 

(SGD) 

32 Binary 

Cross 

Entropy 

In neural network training, several key parameters play 

an important role in model optimization. Epoch refers 

to one complete cycle in which the entire dataset has 

gone through the process of forward and backward 

propagation in a neural network [17]. The learning rate 

determines the number of steps taken by the 
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optimization algorithm during the training process [18],  

while the batch size determines the number of data 

samples processed by the model in each iteration. 

Stochastic Gradient Descent (SGD) is an optimization 

algorithm used to update model parameters, especially 

weights and bias, with the binary cross-entropy loss 

function as an evaluation metric [19]. 

The selection of parameters such as epoch 10, 20, 40, 

60, 80, and 100, learning rate 0.001, SGD optimizer, 

and batch size 32 is based on the careful consideration 

to optimize the model learning process [20]. The epoch  

 that produces the best results will be chosen to give the 

model enough time to learn patterns in the data without 

excessive risk of overfitting. A learning rate of 0.001 is 

a commonly used value as a starting point, offering a 

balance between stability and learning efficiency. The 

Stochastic Gradient Descent was chosen because of its 

simplicity and effectiveness in various cases, especially 

when combined with a relatively small learning rate. 

Meanwhile, batch size 32 provides a good balance 

between training speed and memory usage while still 

allowing stable gradient estimation and good 

generalization. 

Our ultimate goal is to create an accurate model for 

classifying stunting on children's faces through facial 

image analysis. To achieve this, we carefully consider 

the characteristics of each parameter and their 

interactions. This approach allows the model to achieve 

optimal performance in the classification task, bringing 

us closer to our goal. 

After setting the training hyperparameters, the dataset 

was trained using several architectures, namely, 

AlexNet, VGG, ResNet, EfficientNet, MobileNet, and 

Inception. Following this, the model underwent a 

rigorous validation process. This step is crucial as it 

evaluates the model's performance using data that is not 

used in the training process. By doing so, we ensure that 

the model not only learns patterns from the training data 

but also generalizes well to new data [14], thereby 

enhancing its robustness. 

Once the training and validation process is complete, 

the model is generated. To test a model's accuracy, it is 

necessary to process it with test images, where the 

resulting output is a stunting or normal class. Then, an 

evaluation process is carried out using the parameters 

accuracy, precision, recall, and F1-score. 

3. Results and Discussions 

Using the prepared dataset and according to the 

simulation flow illustrated in Figure 3, we present the 

performance of the models, using the graphs of training 

and validation losses over 100 epochs, with the early 

stopping approach applied to all architectures. In 

addition, an overview of the prediction results for each 

architecture will be displayed via a confusion matrix, 

and the performance analysis is summarized in Table 2.  

 

Figure 3. Simulation flow 

Figure 4 shows the graph of training and validation 

losses. In Figure 4(a), the loss graph was trained using 

300 epochs with a patience of 5. This means that if the 

validation loss does not decrease after 5 epochs, the 

system will stop. In this case, MobileNet stopped at 

epoch 53. Figure 4(b) shows the loss curve of the early 

stopping implementation on the InceptionV3 

architecture, where the system stops at epoch 30. From 

Figure 4(c), the loss curve of the early stopping 

implementation on the VGG architecture is visible, 

where the system stops at epoch 19. The ResNet 

architecture shown in Figure 4(d) has a loss curve that 

performs early stopping at epoch 43. Figure 4(e) 

displays the loss curve implementing early stopping on 

the EfficientNetB0 architecture, where the loss graph 

appears unstable, causing the system to stop too early at 

epoch 13. Finally, Figure 4(f) presents the loss curve on 

the AlexNet architecture with early stopping at epoch 

60. Early stopping is a strategy to avoid "overfitting." 

When the model stops improving and begins to perform 

poorly during training, one solution is to halt the 

training process. In other words, the model will 

"terminate" training earlier to prevent overfitting [21]. 

Figure 5 shows the confusion matrix for the six 

architecture models with the use of early stopping to 

calculate the proportion of accurate and inaccurate 

predictions. In Figure 5(a), the MobileNetV2 confusion 

matrix shows the evaluation of the model using the test 

data. It can be seen that 299 images were correctly 

classified as stunting (True Positive/TP), 1 image was 

incorrectly classified as stunting (False Positive/FP), 
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and 300 images were correctly classified as normal 

(True Negative/TN).   

      

(a) MobileNetV2 Early Stopping Training Loss and Validation Graph      (b) InceptiontV3 Early Stopping Training Loss and Validation Graph  

      

(c) VGG19 Early Stopping Training Loss and Validation Graph            (d) ResNet18 Early Stopping Training Loss and Validation Graph 

     

(e) EfficientNetB0 Early Stopping Training Loss and Validation Graph     (f) AlexNet Early Stopping Training Loss and Validation Graph 

Figure 4. Training and Validation Loss graphs for 100 Epochs with Early Stopping applied for all Architecture

In Figure 5(b), the InceptionV3 confusion matrix with 

early stopping shows the model's evaluation of the test 

data. It shows that 300 images were correctly classified 

as stunting (True Positive/TP), 3 images were 

incorrectly classified as normal (False Negative/FN), 5 

images were incorrectly classified as stunting (False 

Positive/FP), and 297 images were correctly classified 

as normal (True Negative/TN). In Figure 5(c), the 

VGG19 confusion matrix presents the evaluation 

results from the test data. It shows that 299 images were 

correctly classified as stunting (True Positive/TP), 1 

image was incorrectly classified as normal (False 
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Negative/FN), and 300 images were correctly classified 

as normal (True Negative/TN). In Figure 5(d), the 

ResNet18 confusion matrix displays the test data 

evaluation. The model correctly classified 299 images 

as stunting (True Positive/TP), incorrectly classified 1 

image as normal (False Negative/FN), and correctly 

classified 300 images as normal (True Negative/TN). In 

Figure 5(e), the EfficientNetB0 confusion matrix 

presents the test data evaluation. It shows that 300 

images were correctly classified as stunting (True 

Positive/TP), and 300 were correctly classified as 

normal (True Negative/TN). Lastly, in Figure 5(f), the 

AlexNet confusion matrix with early stopping shows 

the evaluation of the test data. The model correctly 

classified 299 images as stunting (True Positive/TP), 

incorrectly classified 1 image as normal (False 

Negative/FN), incorrectly classified 1 image as stunting 

(False Positive/FP), and correctly classified 299 images 

as normal (True Negative/TN). 

         

        (a) Confusion Matrix MobileNetV2 Early Stopping     (b) Confusion Matrix InceptiontV3 Early Stopping 

           

(c) Confusion Matrix VGG19 Early Stopping           (d) Confusion Matrix ResNet18 Early Stopping 

         



Yunidar, Y Yusni, N Nasaruddin, Fitri Arnia 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)  

 

This is an open access article under the CC BY-4.0 license                                                                                 67 

 

(e) Confusion Matrix EfficientNetB0 Early Stopp       (f) Confusion Matrix AlexNet Early Stoppinging  

Figure 5. Confusion Matrix of All Architectures 

Table 2 presents the results of using MobileNetV2, 

InceptionV3, VGG19, ResNet18, EfficientNetB0, and 

AlexNet without and with the implementation of early 

stopping. The EfficientNetB0 and EfficientNetB0 early 

stopping architectures produce superior accuracy 

compared to other architectures, with both accuracy 

values reaching 100%. Here, are the advantages of 

implementing early stopping; at epoch 13, the model 

training was stopped because the resulting accuracy is 

maximum. Meanwhile, those who do not apply early 

stopping will continue to be in the learning process so 

that the resulting graph experiences overfitting even 

though the accuracy reaches 100%. The superiority of 

EfficientNetB0 can be attributed to the use of a joint 

scaling technique, which optimizes the depth, width, 

and resolution of the model simultaneously, allowing it 

to capture relevant facial features at multiple scales very 

effectively.  

Table 2. Performance of all models 

In addition, ResNet18 and AlexNet achieve the same 

accuracy of 99.83%. However, there are several 

advantages and several important differences between 

each model. ResNet18 has a major advantage in its use 

of Residual Learning, which allows the network to 

overcome the degradation problem as the network depth 

increases. This residual approach allows information to 

pass through several layers without affecting 

performance, allowing ResNet18 to be used on deeper 

networks without the risk of overfitting [15]. 

Meanwhile, AlexNet is one of the first convolutional 

neural networks to change the paradigm of computer 

vision by introducing several innovations, such as the 

ReLU activation function that speeds up the  

training process and the use of dropout to prevent 

overfitting. The advantages of AlexNet lie in the 

simplicity of its design and its ability to classify images 

with a relatively smaller number of parameters compared 

to other models at the time [16]. VGG produces an 

accuracy of 99.6%. The advantages of VGG19 lie in its 

very deep architecture, which consists of many 

convolutional layers [17]. In addition, VGG19 has a 

large capacity, so it can learn complex and detailed 

feature representations from images of children's faces.  

The InceptionV3 architecture produces an accuracy of 

98.83%, showing good performance but could be more 

optimal in capturing specific stunting features. 

MobileNetV2 architecture produces the lowest 

accuracy compared to other architectures, namely 

96.83%; MobileNet proves its ability to recognize facial 

stunting features even though MobileNet is designed for 

efficiency on mobile devices. With high accuracy, 

precision, recall, and F1 score, it shows good 

performance in classifying data related to stunting and 

normal conditions. However, it is important to note that 

our study has several limitations, such as the size and 

diversity of the dataset used, which may affect the 

results. It is crucial to acknowledge these limitations to 

ensure the transparency and reliability of our findings. 

4. Conclusions 

Based on the results of the study involving various 

popular CNN architectures such as MobileNetV2, 

InceptionV3, VGG19, ResNet18, EfficientNetB0, and 

AlexNet, as well as the implementation of early 

stopping in the classification of facial images of stunted 

and normal children, significant results were obtained. 

The learning hyperparameters used include epoch 100, 

the optimizer used is SGD, batch size 32, learning rate 

0.001, and binary cross-entropy loss function. From the 

evaluation conducted, EfficientNetB0 and 

EfficientNetB0 with early stopping are proven to 

produce the best performance compared to other 

architectures. The evaluation metrics for both models 

show perfect accuracy, precision, recall, and F1 score, 

which is 100%. This shows that the model is able to 

classify images very well. The success of using early 

stopping in improving model performance also 

indicates that this method is effective in avoiding 

overfitting in the model. For further research, it is 

recommended to add more images and utilize facial 

landmark features to improve the performance of the 

classification algorithm. In addition, further exploration 

of more effective and efficient CNNs is expected to 

produce a model that is superior in facial image 

classification tasks. 
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