
 Received: 18-09-2024 | Accepted: 23-12-2024 | Published Online: 25-01-2024 

69 

 

  

Accredited SINTA 2 Ranking 
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021 

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026  

 

Published online at: http://jurnal.iaii.or.id 

 

JURNAL RESTI 

(Rekayasa Sistem dan Teknologi Informasi)  

    Vol. 9 No. 1 (2025) 69 - 76 e-ISSN: 2580-0760 

Enhancing Network Security: Evaluating SDN-Enabled Firewall Solutions 

and Clustering Analysis Using K-Means through Data-Driven Insights 

Ahmad Turmudi Zy1*, Isarianto2, Anggi Muhammad Rifai3, Agung Nugroho4, Abdul Ghofir5 
1,2,3,4 Department of Informatics Engineering, Faculty of Engineering, Pelita Bangsa University, Bekasi, Indonesia 

5 Department of Informatics Engineering, Faculty of Engineering, President University, Bekasi, Indonesia 
1turmudi@pelitabangsa.ac.id, 2isarianto@pelitabangsa.ac.id, 3anggimuhammad@pelitabangsa.ac.id, 

4agung@pelitabangsa.ac.id, 5geoff@president.ac.id  

Abstract  

In the face of escalating and increasingly complex cyber threats, enhancing network security has become a critical challenge. 

This study addresses this issue by investigating the optimization of SDN-enabled firewall solutions using a data-driven 

approach. The research employs K-Means clustering to analyze attack patterns, aiming to identify and understand distinct 

patterns for improved firewall effectiveness. Through the clustering process, attack data was classified into three clusters: 

Cluster 0, indicating concentrated attack sources likely tied to high-activity regions or networks; Cluster 1, representing a 

dispersed distribution of attacks, pointing to diverse origins; and Cluster 2, linked to specific geographic regions or unique 

attack behaviors. The clustering efficacy was evaluated using the Silhouette Score (0.606) and the Davies-Bouldin Index 

(0.614), indicating meaningful and reliable clustering outcomes. These findings provide actionable insights into network threat 

patterns, enabling the refinement and enhancement of SDN-enabled firewalls. The study contributes to the field by 

demonstrating the potential of clustering techniques in uncovering patterns overlooked by traditional methods and paving the 

way for further research into alternative clustering algorithms and broader applications in network security. 
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1. Introduction  

In the constantly evolving digital landscape, 

organizations face an ever-growing range of cyber 

threats that are both more sophisticated and frequent 

[1]. These threats target network infrastructures, aiming 

to exploit vulnerabilities in systems, potentially leading 

to significant security breaches and loss of sensitive 

data [2]. Attack methods vary widely, from simple 

intrusions to highly complex and sustained campaigns 

known as advanced persistent threats (APTs) [3]. The 

diversity and complexity of these attacks require more 

than just traditional defensive strategies to effectively 

protect network integrity [4]. 

The rise in cyberattacks has been driven by 

technological advancements that have made it easier for 

malicious actors to bypass outdated security measures 

[5]. As organizations adopt more interconnected and 

dynamic systems, vulnerabilities in networks become 

harder to manage [6]. This expanding attack surface 

makes traditional security solutions such as static 

firewalls and signature-based detection systems 

inadequate in the face of increasingly sophisticated 

threats [7]. These conventional systems often struggle 

to detect new or evolving forms of attack, leaving 

networks exposed to considerable risk [8]. 

Furthermore, traditional security measures typically 

rely on predefined rules or known signatures to detect 

threats, making them inherently reactive and slow to 

adapt to new challenges [9]. With cyberattacks 

becoming more adaptive, there is a pressing need for 

security solutions that can offer real-time protection 

[10]. As attackers become more creative and persistent, 

organizations require advanced solutions that can not 

only detect but also mitigate threats before they cause 

serious damage [2]. 

https://doi.org/10.29207/resti.v9i1.6056
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Recent studies have highlighted the limitations of 

conventional security measures, sparking interest in 

more adaptive technologies such as Software-Defined 

Networking (SDN) [11]. SDN allows for a separation 

of the control plane from the data plane, offering a 

centralized and flexible approach to managing network 

traffic [12]. This architecture has opened the door to 

more advanced and dynamic security systems, where 

rules and policies can be updated automatically in 

response to emerging threats. Many researchers have 

identified SDN as a key technology for transforming 

network security by offering greater control over data 

flows [13]. 

Among the innovations driven by SDN, SDN-enabled 

firewalls have garnered particular attention for their 

ability to provide programmable, real-time responses to 

threats [14]. Unlike traditional firewalls, which require 

manual configuration and are slower to adapt, SDN-

enabled firewalls can be programmed to adjust 

dynamically based on live network data [15]. Studies 

show that these firewalls not only enhance security but 

also improve overall network efficiency by minimizing 

disruptions caused by manual security updates [16]. 

However, while SDN-enabled firewalls have shown 

promise, their deployment faces certain challenges [17]. 

The sheer volume of data that these systems must 

analyze can overwhelm even the most advanced 

algorithms. Several research papers have emphasized 

the importance of integrating data analytics techniques 

to enhance SDN firewalls' ability to process and act 

upon this data efficiently [18]. This need for real-time 

analysis has led to the exploration of various machine 

learning techniques, particularly clustering methods 

like K-Means, to provide insights into attack patterns 

that could improve the adaptability and performance of 

SDN-enabled firewalls [19], [20]. 

Despite the advances in SDN-enabled firewalls, 

optimizing their effectiveness remains a significant 

challenge due to the dynamic and complex nature of 

network threats [21]. As these firewalls are 

programmed to respond to real-time network 

conditions, understanding and categorizing attack data 

becomes crucial for fine-tuning their performance [22]. 

Current research suggests that without a clear method 

to analyze this vast amount of data, SDN-enabled 

firewalls cannot fully leverage their potential [14]. The 

need for advanced analytical tools to process security 

data has become more urgent, as traditional methods 

fall short in categorizing and predicting new attack 

vectors [23]. 

Data-driven approaches such as K-Means clustering 

have been proposed as a solution to this problem [24]. 

K-Means clustering, a machine learning technique, can 

process large datasets to identify and group similar 

attack patterns [25]. This ability to categorize and 

analyze security data provides critical insights into how 

threats evolve and behave, allowing for more targeted 

and effective firewall configurations [26]. By 

understanding the distinct attack patterns, network 

administrators can make more informed decisions on 

how to deploy their firewall resources to protect against 

both current and future threats [27]. 

The integration of K-Means clustering with SDN 

technology represents an innovative approach to 

addressing the growing complexity of cyberattacks 

[28]. By using this clustering method, it is possible to 

move from a reactive to a proactive security posture. 

The combination of real-time threat analysis with 

adaptive firewall responses ensures that organizations 

can better safeguard their networks against emerging 

threats, offering a more robust defence system overall 

[25]. 

Recent studies by [29] have introduced advanced 

approaches to enhance security in Software-Defined 

Networks (SDNs), with a focus on addressing 

Distributed Denial of Service (DDoS) attacks. One such 

approach is the Whale Optimization Algorithm-based 

DDoS detection (WOA-DD), which utilizes a 

metaheuristic clustering technique to identify and 

mitigate DDoS threats. This algorithm has been 

evaluated in various conditions and has demonstrated 

significant robustness, stability, and efficiency. WOA-

DD has been found to outperform several traditional 

solutions, proving its effectiveness in securing SDN 

environments against DDoS attacks. 

This study is designed to evaluate the effectiveness of 

SDN-enabled firewalls by integrating K-Means 

clustering to analyze and categorize network attack 

patterns. The research aims to address the critical 

challenge of optimizing firewall configurations by 

providing a more detailed understanding of the threats 

that networks face [30]. By applying K-Means 

clustering, this study seeks to identify distinct attack 

clusters that can inform more adaptive and dynamic 

firewall policies, enhancing overall network protection 

against sophisticated and evolving cyber threats [31]. 

This research discusses imlementation of K-Means 

clustering to enhance the performance of SDN-enabled 

firewalls in identifying and mitigating cyber threats in 

real-time. The study focuses on clustering attack data to 

uncover patterns and insights that traditional analysis 

methods might overlook. By analyzing large datasets of 

attack patterns and classifying them into distinct 

clusters, the research aims to improve real-time threat 

detection and response capabilities within SDN-enabled 

networks [32].  

The primary objective of this study is to evaluate the 

combined impact of K-Means clustering and SDN 

technology on network security. Addressing this 

objective fills a critical gap in the literature, as most 

existing studies explore the benefits of SDN and 

clustering techniques in isolation. The findings 

demonstrate that integrating advanced data analysis 

techniques enhances the efficacy of SDN-enabled 

firewalls, providing organizations with actionable 
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insights to bolster their security measures in the face of 

increasingly complex cyber threats.  

The structure of this research is as follow figure 1: first, 

input the dataset from AWS Honeyspot; then pre-

processing to find missing data fields; next step, add 

feature selection and split the dataset for training 80% 

and testing 20%; our clustering method is K-means 

clustering, and for measures prediction, we use the 

silhouette score and Davies-Bouldin index. 

2. Research Methods 

This research aims to evaluate the performance of SDN-

enabled firewall solutions by integrating clustering 

analysis using the K-Means algorithm. The approach 

begins with the collection and preprocessing of network 

traffic data, which will serve as the foundation for 

identifying network anomalies. A data-driven 

methodology is employed, where key features are 

extracted and analyzed to determine patterns and 

potential security threats. The clustering process groups 

traffic flows based on similar characteristics, allowing 

for enhanced detection of abnormal behavior. The 

firewall solution is then tested under various network 

conditions to assess its efficiency in mitigating potential 

threats. The performance metrics of the solution are 

evaluated using accuracy, detection rate, and false-

positive rate, providing insights into its overall 

effectiveness in enhancing network security and 

research purpose shown in Figure 1. 

 

Figure 1. Research Purpose

Data was gathered from the AWS Honeypot [33], which 

collects detailed information on cyberattacks. The 

dataset includes attack details such as source IP 

addresses, ports, protocols, geographic information, and 

timestamps. The dataset spans various attack types, 

including TCP, UDP, and ICMP protocols.  

The collected data required extensive preprocessing due 

to the presence of missing and irrelevant fields. First, 

fields such as 'type' and 'Unnamed: 15' were removed 

due to their high rate of missing values. Further, rows 

with missing latitude and longitude values were 

excluded to maintain geographic accuracy for the 

clustering analysis. Additionally, any outliers in latitude 

values exceeding 90 degrees were also filtered out. The 

dataset was resampled into hourly intervals to aggregate 

attack counts and prepare the time series data for further 

analysis. To normalize the attack distribution, a 

logarithmic transformation was applied to the count of 

attacks, mitigating the impact of extreme values on the 

clustering and prediction models shown in Table 1. 

Table 1. Sample AWS Honeypot Dataset 

No. datetime host src proto spt dpt srcstr CC country locale latitude longitude 

0. 2013-03-03 

21:53:00 

groucho-

oregon 

1032051418 TCP 6000.0 1433.0 61.131.218.2

18 

CN China Jiangxi 

Sheng 

28.5500 115.9333 

1. 2013-03-03 

21:57:00 

groucho-

oregon 

1347834426 UDP 5270.0 5060.0 80.86.82.58 DE Germany NaN 51.0000 9.0000 

2. 2013-03-03 

21:58:00 

groucho-

oregon 

2947856490 TCP 2489.0 1080.0 175.180.184.106 TW Taiwan Taipei 25.0392 121.5250 

3. 2013-03-03 

21:58:00 

groucho-

us-east 

841842716 UDP 43235.0 1900.0 50.45.128.28 US United 

States 

Oregon 45.5848 -122.9117 

4. 2013-03-03 

21:58:00 

groucho-

singapore 

3587648279 TCP 56577.0 80.0 213.215.43.2

3 

FR France NaN 48.8600 2.3500 

.... .... .... .... .... .... .... .... .... .... .... .... .... 

451

580

. 

2013-09-08 

05:55:00 

groucho-

tokyo 

28142724 TCP 3555.0 445.0 1.173.108.13

2 

TW Taiwan Taipei 25.0392 121.525 

For feature selection, key attributes such as protocol 

type (TCP, UDP, ICMP), source country, and 

geographic location (latitude and longitude) were 

considered. These features provided essential 

information for analyzing attack vectors and clustering 

them based on geographic or protocol behavior. The 

dataset was split into training and testing sets to 

evaluate the predictive performance of the clustering 

and firewall solution models. 
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K-Means clustering was applied to analyze patterns in 

the attacks, grouping them based on geographical 

distribution and protocol types [34]. The algorithm was 

tuned to find the optimal number of clusters using the 

elbow method, which allowed us to capture the most 

distinct clusters of attack behavior. Each cluster 

represented a grouping of attacks with similar 

characteristics, which is vital for understanding how 

SDN-enabled firewalls could dynamically adapt to 

network threats based on geographic and protocol-

based attack clusters [35]. By identifying distinct 

groups, we could gain insights into the frequency and 

type of attacks in specific regions, allowing for more 

targeted firewall rule applications.  

K-Means is an unsupervised learning algorithm 

commonly used to solve clustering problems [36]. Its 

goal is to partition data into distinct groups or clusters 

based on specific features, where each cluster is 

represented by a centroid that acts as the center of all 

the data points within the cluster [37]. The algorithm 

begins by initializing a predetermined number of 

clusters, 𝐾, and randomly selecting 𝐾 data points from 

the dataset as initial centroids. These centroids serve as 

the initial cluster centers [38].  

In the next step, the algorithm assigns each data point to 

the nearest centroid. The distance between a data point 

and a centroid is typically calculated using the 

Euclidean Distance formula, although other distance 

measures can be used. The Euclidean Distance between 

two points, 𝑥 and 𝑦, in an n-dimensional space is given 

by Formula 1 [39]. 

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1               (1) 

d(x,y) represents the distance between the points, and 𝑥𝑖 
and 𝑦𝑖 are the coordinates of the points in the iii-th 

dimension. Once all data points are assigned to the 

closest centroid, the algorithm updates the centroid 

positions by calculating the mean of all data points 

assigned to each cluster. The new centroid for a cluster 

is the average of the data points in that cluster, 

computed using Formula 2 [40]. 

𝐶𝑖 =
1

𝑛𝑗
∑ 𝑥𝑖
𝑛𝑗
𝑖=1

               (2) 

𝐶𝑗 represents the new centroid of cluster j, 𝑛𝑗 is the 

number of data points in the cluster, and 𝑥𝑖 are the data 

points in that cluster. 

This process of assigning points to the nearest centroid 

and updating centroids is repeated iteratively until the 

centroids no longer change significantly, or a 

predefined number of iterations is reached. The 

objective of K-Means is to minimize the Sum of 

Squared Errors (SSE), which is the total squared 

distance between each data point and its nearest 

centroid. The SSE is calculated as Formula 3 [39]. 

𝑆𝑆𝐸 = ∑ ∑ ||𝑥𝑖 − 𝐶𝑗||
2

𝑥𝑖∈𝐶𝑗
𝐾
𝑗=1              (3) 

𝐾 is the number of clusters, 𝑥𝑖 represents the data 

points, and 𝐶𝑗 is the centroid of cluster 𝑗. By minimizing 

SSE, K-Means ensures that the data points within each 

cluster are as close to their respective centroid as 

possible, leading to tighter and more cohesive clusters. 

To evaluate the effectiveness of the SDN-enabled 

firewall, the model's predictive power in classifying 

network traffic was assessed using common measures 

such as the Silhouette Score and Davies-Bouldin Index 

[41]. These measures were calculated based on how 

well the clustering algorithm distinguished between 

different types of attacks. Additionally, the number of 

false positives and negatives was examined to measure 

the firewall's sensitivity and ensure it does not block 

legitimate traffic while efficiently detecting threats. 

The analysis showed that K-Means clustering could 

successfully identify attack patterns based on 

geographical regions and protocol types. By integrating 

these insights with SDN-enabled firewall 

configurations, we could create adaptive firewall rules 

that automatically respond to incoming threats. The 

firewall's dynamic adjustments based on the clustering 

model led to improved detection and response times, 

especially in regions with high attack volumes like 

China and the United States. This approach not only 

enhances network security but also provides a scalable 

solution for real-time threat detection in dynamic 

network environments. 

3. Results and Discussions 

3.1 Data Analysis 

The graph illustrates in Figure 2, the number of attacks 

per hour between March 2013 and September 2013, 

revealing significant fluctuations in attack frequency 

over time.  

Figure 2. Attack by Date 

For most of the period, the number of attacks remains 

consistently low, generally below 2,000 attacks per 

hour, indicating a relatively stable environment with 

minimal attack activity. However, based on the 

analysis, a notable increase in attacks was observed in 

May, with over 2,000 incidents recorded. This was 
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followed by a decline in June and July. In August, there 

was a dramatic spike, where the number of attacks 

surged to 11,216 per hour, marking the most significant 

event in the analyzed period. After this peak, the 

number of attacks decreased slightly but remained high 

in September, with over 9,000 attacks recorded. These 

intense spikes suggest major attack incidents, likely 

large-scale Distributed Denial of Service (DDoS) 

attacks or similar coordinated efforts, significantly 

impacting the network. The overall pattern highlights 

the fluctuating nature of cyberattacks, with critical 

periods of heightened vulnerability in May and August, 

contrasting sharply with the generally lower attack 

frequency throughout the rest of the period. 

Based on the analysis of Figure 3, it is evident that the 

average values for Break-In attempts remain relatively 

stable, demonstrating a consistent fluctuation pattern 

over time. However, significant spikes in activity were 

observed on specific dates, including May 18th, July 

24th, and August 26th. These sudden increases suggest 

heightened security vulnerabilities or targeted attack 

efforts on those dates, which may require further 

investigation to understand the underlying causes and 

implications. Such fluctuations are critical for 

identifying periods of elevated risk and for refining 

security strategies in response to these potential threats.

 

Figure 3. Time Series of Break-In Attempts 

 
Figure 4. Attack location by Country 

 

Figure 5. Detail Type by Location
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The analysis of attack patterns show in Figure 4 attack 

reveals that China is the predominant source of 

cyberattacks, contributing a total of 191,394 incidents. 

This is followed by the United States, which accounts 

for 89,941 attacks. Japan ranks third with 17,204 

attacks, while Iran and Taiwan reported 13,042 and 

12,148 attacks, respectively. Other countries 

contributing significantly include the Netherlands 

(10,739), India (9,418), South Korea (9,316), Vietnam 

(7,826), and Russia (7,211). The attack traffic observed 

comprises three main types: TCP, UDP, and ICMP, 

each contributing to different dimensions of the threat 

landscape show in Figure 4 and Figure 5 for detail type 

each location. Conversely, countries such as Andorra, 

Bermuda, Barbados, Namibia, and Cape Verde have 

reported the lowest attack incidences, each contributing 

fewer than five cases. This stark contrast between the 

highest and lowest attack sources provides insights into 

the global distribution of cyber threats, underlining the 

necessity for targeted security strategies in high-risk 

regions while acknowledging the global nature of 

cybersecurity challenges. 

3.2 Result Prediction 

The K-Means clustering analysis yielded three distinct 

clusters, each representing different characteristics of 

the observed attacks, as shown in Figure 6. The Green 

Cluster highlights a concentrated area of attack origins, 

indicating high activity from a specific region or 

network, likely due to vulnerabilities or coordinated 

efforts. This localized nature makes it essential to 

develop targeted mitigation strategies. In contrast, the 

Purple Cluster shows a more decentralized attack 

pattern, suggesting multiple regions or networks as 

sources, requiring broader security responses. The 

Yellow Cluster, while also region-specific, reveals 

unique attack behaviors that may reflect distinct 

techniques or motives, necessitating specialized 

defenses. The strong clustering performance, supported 

by a Silhouette Score of 0.606 and a Davies-Bouldin 

Index of 0.614, confirms that these distinct patterns 

offer valuable insights for adaptive security measures, 

particularly in environments using SDN-enabled 

firewalls. 

However, several key challenges must be addressed to 

fully leverage these insights. Potential biases in the 

dataset—such as geographic or attack type bias from 

uneven honeypot deployments—could skew the 

analysis. Scalability issues arise with increasing data 

volumes, affecting storage, processing, and real-time 

response capabilities. Additionally, real-time 

implementation poses difficulties, including the need 

for low-latency data streaming, efficient threat 

detection, and timely alerts. To overcome these 

challenges, the data pipeline must be optimized, 

algorithms improved for efficiency, and dynamic 

anomaly detection models integrated to ensure 

scalability and responsiveness in real-time applications. 

 
Figure 6 Result K-Means Clustering 

4. Conclusions 

In conclusion, the K-Means clustering analysis 

successfully identified distinct attack patterns across 

three key clusters, each representing unique 

characteristics in terms of geographical origin and 

attack behavior. The Green Cluster, which displayed a 

high concentration of attacks, pointed to a specific 

region or network that is particularly vulnerable or 

subjected to coordinated malicious activities. This 

finding suggests the presence of concentrated cyber 

threats, potentially due to exploitable vulnerabilities or 

orchestrated efforts by malicious actors. Targeting such 

a region with focused security measures and localized 

threat mitigation strategies would be crucial in reducing 

the attack surface within this hotspot. The Purple 
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Cluster, by contrast, showed a more dispersed attack 

pattern, indicating a wider range of attack origins 

spanning multiple regions or networks. This 

decentralized nature of attacks poses a different 

challenge, requiring broader and more adaptable 

security responses, as these threats do not emanate from 

a single source. Such a diverse origin profile could 

indicate more sophisticated, distributed attack 

campaigns or botnet-based threats, which necessitate 

global monitoring and scalable defenses. The Yellow 

Cluster exhibited a distinct set of characteristics, 

revealing attacks originating from a specific geographic 

region but distinguished by unique behavioral patterns 

or techniques. This suggests the attackers in this cluster 

may have different motives or methods compared to 

those in the other clusters. Understanding these unique 

behaviors allows for the development of specialized 

defenses that cater to the particular tactics employed by 

this group. The robustness of the clustering was 

confirmed through evaluation metrics, with a Silhouette 

Score of 0.606 and a Davies-Bouldin Index of 0.614, 

both indicating good clustering performance. These 

metrics suggest that the clustering model effectively 

separated distinct groups while maintaining cohesion 

within each cluster. The insights gained from this 

analysis are particularly valuable for designing SDN-

enabled firewall systems, which can dynamically adjust 

to the geographic and protocol-based attack clusters. 

This allows for a more nuanced and responsive 

approach to network security, tailored to the specific 

characteristics of the threats identified. The 

implications of the identified clusters for network 

defense strategies are crucial. The Green Cluster, with 

its high concentration of attacks, necessitates proactive 

measures such as localized security enhancements and 

vulnerability assessments to counter coordinated 

threats. Conversely, the Purple Cluster's dispersed 

attack patterns require a scalable defense approach, 

utilizing global threat intelligence and adaptive security 

architectures like Software-Defined Networking (SDN) 

to effectively manage threats from multiple sources. 

Lastly, the Yellow Cluster indicates the need for 

tailored defenses, employing advanced analytics to 

understand and respond to the unique tactics of 

attackers in this group. By implementing these 

strategies, organizations can enhance their resilience 

against the diverse threats highlighted by the clustering 

analysis. 
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