
 Received: 05-09-2024 | Accepted: 04-12-2024 | Published Online: 27-01-2025 

85 

 

  

Accredited SINTA 2 Ranking 
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021 

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026  

 

Published online at: http://jurnal.iaii.or.id 

 

JURNAL RESTI 

(Rekayasa Sistem dan Teknologi Informasi)  

    Vol. 8 No. 1 (2024) 85 - 93      e-ISSN: 2580-0760 

Impact of Adaptive Synthetic on Naïve Bayes Accuracy  

in Imbalanced Anemia Detection Datasets 

Muhammad Khahfi Zuhanda1*, Lisya Permata2, Hartono3, Erianto Ongko4, Desniarti5 

1,3Department of Informatics, Faculty of Engineering, Universitas Medan Area, Medan, Indonesia 
2Department of Medical Education, Faculty of Medicine, Universitas Islam Sumatera Utara, Medan, Indonesia 
4Department of Computer Science, Faculty of Engineering, Institut Modern Arsitektur dan Teknologi, Medan, Indonesia 
5Department of Mathematics Education, Faculty of Teaching and Education, Universitas Muslim Nusantara Al Washliyah, 

Medan, Indonesia  
1khahfi@staff.uma.ac.id 

Abstract  

This research aims to analyze the impact of the Adaptive Synthetic (ADASYN) oversampling technique on the performance of 

the Naïve Bayes classification algorithm on datasets with class imbalance. Class imbalance is a common problem in machine 

learning that can cause bias in prediction results, especially in minority classes. ADASYN is one of the oversampling methods 

that focuses on adaptively synthesizing new data for minority classes. In this study, the performance of the Naïve Bayes 

algorithm was tested on Anemia Diagnosis datasets before and after the application of ADASYN. This dataset contains 104 

instances, 5 attributes, and 2 classes, and has an imbalance ratio of 3. The evaluation was carried out by comparing accuracy, 

confusion matrix, precision, recall, and F1-score to obtain a more comprehensive picture of the effectiveness of ADASYN in 

improving Naïve Bayes. The results of the study show that the performance of the oversampling method depends on the 

imbalance ratio so it is important to ensure that the oversampling method does not cause overfitting and this can be overcome 

by using ADASYN which only selects Selected Neighbors. The results showed that ADASYN significantly increased accuracy 

from 0.57 to 0.78, precision from 0.17 to 0.74, recall from 0.20 to 0.88, and F1-Score from 0.18 to 0.80. In this study, we also 

compared the application of ADASYN and SMOTE on the Naïve Bayes algorithm. The results show that ADASYN outperforms 

SMOTE across all key metrics—accuracy, precision, recall, and F1-Score—while the accuracy improvements were statistically 

significant (p-value = 0.00903). 
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1. Introduction  

Classification problems in machine learning have been 

widely used in disease detection[1]. The identification 

of anemia is one of the applications of machine 

learning. Anemia is the most prevalent blood disorder 

worldwide. Anemia is a condition in which the body's 

physiological requirements are not met due to an 

insufficient number of red blood cells and, as a result, 

an insufficient oxygen-carrying capacity, as defined by 

the World Health Organization (WHO)[2]. Datasets are 

essential components of machine learning techniques. 

Machine learning methods can achieve optimal 

performance When processing high-quality datasets 

free of noise, outliers, missing values, and unbalanced 

data. However, class imbalance issues are actually 

present in anemia detection, as negative classes are 

significantly more numerous than positive classes[3]. 

A feature of the class imbalance problem is the 

existence of a class that has a significantly greater 

instance count than other classes [4]. The problem of 

class imbalance can cause a 10% decrease in the 

minority class's accuracy [5]. The problem of class 

imbalance is lessened by the data balancing procedure 

[6]. Class imbalance data classification is still a 

relatively new challenge[7], [8], particularly when 

dealing with binary classification problems when one 

class outnumbers the other [9]. When models are 

skewed toward dominating classes, it might result in 

https://doi.org/10.29207/resti.v9i1.6031


Muhammad Khahfi Zuhanda, Lisya Permata, Hartono, Erianto Ongko, Desniarti 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)  

 

This is an open access article under the CC BY-4.0 license                                                                                 86 

 

imbalanced classification[10], which makes it difficult 

to forecast the minority class[11], [12].  

The most often used processing approaches for 

unbalanced data nowadays are data improvement 

methods based on oversampling [10], [13], [14]. To 

address the issue of class imbalance, numerous 

classification techniques have been put forth, with 

minority oversampling techniques playing a key part 

[15]. Classifiers produced on uneven training sets show 

a prediction bias linked with poor performance in the 

minority class, which is the primary cause of class 

imbalance [16]. 

The goal of oversampling is to create artificial minority 

examples that minimize their distance from the border 

between minority and majority instances while also 

optimizing their real-valued classification potential as 

described [8], [17]. By boosting the amount of minority 

class samples through interpolation, the oversampling 

method balances datasets [18]. A disparity in class can 

also have a detrimental effect on learning and reduce 

accuracy [19].  

In order to obtain an approximately balanced number of 

samples in each category, oversampling is a technology 

that produces minority samples [20]. Conversely, over-

sampling techniques enhance the training dataset by 

incorporating a collection of minority data. These 

samples may consist of pre-existing samples from the 

initial minority class, synthetic samples produced by 

linear interpolation, or samples identified through 

active learning [21]. Clustering of the cases in the 

majority class is the fundamental process of the over-

sampling approach used here. The closest neighbors 

who belong to the minority class are chosen based on 

the centers of the clusters created in this manner, which 

serve as reference examples[22]. Ultimately, all of the 

closest neighbors chosen from the minority class are 

created as synthetic instances [23].  

Adaptive synthetic sampling (ADASYN) is a different 

kind of SMOTE than borderline or neighbor 

sampling[24]. Rather, it builds synthetic data based on 

data density considerations [25]. Adaptive Synthetic 

(ADASYN) automatically determines how many 

synthetic samples are required for each minority class 

sample and can adaptively synthesis a portion of the 

samples based on the distribution[26], [27]. The main 

idea behind the Adaptive Synthetic (ADASYN) 

algorithm is to automatically calculate the number of 

synthetic samples that should be generated for each 

minority data example by using the density distribution 

as a criterion[28], [29]. 

Machine learning algorithms like KNN, Random 

Forest, and Naive Bayes work incredibly well in the 

current era of machine learning approaches because of 

their low complexity and acceptable computation times 

[30]. Because Naive Bayes is a quick and effective 

technique for classification modeling[31], it was 

selected [32]. To maximize the effectiveness of the 

Naïve Bayes classifier, the data must first undergo 

extensive preparation[33], [34]. The "naive" belief that 

all features are independent of one another given the 

class label is where the classifier gets its name [35]. 

Naive Bayes is a popular machine-learning algorithm 

due to its effectiveness and simplicity [36]. One well-

known machine learning technique, Naive Bayes, is 

based on a Bayesian network and is typically used for 

classification tasks. It performs exceptionally well [37]. 

Naive Bayes, a straightforward linear classifier that 

assumes all characteristics are independent given the 

class, has already demonstrated astonishing 

classification performance and is regarded as one of the 

top 10 data mining techniques [38]. 

A comparison of five oversampling techniques—

SMOTE, K-means-SMOTE, BS-SMOTE, ADASYN, 

and DPC-SMOTE—was generated in the study by [18], 

and all of the evaluations showed a considerable rise in 

the index. This suggested strategy reduces sampling 

risk and uncertainty by incorporating past knowledge 

about cases of the minority class, according to research 

by [21] Furthermore, this suggested method is 

developed into adaptive unbalanced learning through 

the use of an error-bound model in conjunction with 

multi-objective optimization. Numerous tests have been 

conducted on unbalanced problems, and the outcomes 

show that this approach can enhance the functionality 

of several classification algorithms. 

In the study by [25] four different oversampling 

techniques—the Synthetic Minority Oversampling 

Technique (SMOTE), SVM-SMOTE, Adaptive 

Synthetic Sampling (ADASYN), and borderline-

SMOTE—were examined in order to produce an 

optimized dataset and address the imbalanced issue of 

the dataset. A PSO technique is also used to optimize 

the weights of the features. 

In the study by [27] a two-step feature-selection strategy 

was used to optimize the feature set for training the 

prediction model's accuracy. Edited nearest-neighbor 

undersampling method and adaptive synthetic 

oversampling approach were used to solve dataset 

imbalance. Comparative empirical research between 

Inspector's performance and that of current 

technologies shows that Inspector could distinguish 

lysine succinylation sites with competitive prediction 

performance. Researchers [30] classified them without 

the use of oversampling techniques by employing 

various iterations of the Naive Bayes classifier.  

Based on the explanation, it is very interesting to 

conduct research using the Adaptive Synthetic 

(ADASYN) oversampling technique on datasets and 

compare the accuracy results before and after applying 

ADASYN using the Naïve Bayes algorithm. To date, 

there has been no research specifically focusing on this 

particular comparison using ADASYN in conjunction 

with Naïve Bayes for handling imbalanced datasets. 

This gap in the literature presents an opportunity to 

explore how ADASYN can enhance the performance of 

Naïve Bayes in different scenarios. The findings could 
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contribute valuable insights into the effectiveness of 

oversampling techniques in improving classification 

model accuracy, particularly for datasets with 

significant class imbalances. 

2. Research Methods 

2.1 Process 

The flow of this research can be seen in Figure 1. 

 

Figure 1. Flowchart of Research Process 

Figure 1 shows the overall research flow, comparing the 

results of the Naïve Bayes algorithm applied to an 

anemia dataset before and after the Adaptive Synthetic 

(ADASYN) oversampling technique. The process starts 

with data pre-processing, followed by the application of 

Naïve Bayes to the original, imbalanced dataset. The 

results are recorded and analyzed. Next, the Adaptive 

Synthetic (ADASYN) method is applied to address the 

class imbalance, after which Naïve Bayes is run again 

on the balanced dataset. Adaptive Synthetic Sampling 

(ADASYN) is a data resampling technique designed to 

address class imbalance in machine learning. It 

generates synthetic data points for the minority class by 

focusing more on the difficult-to-learn samples that are 

near the decision boundary. The final step is comparing 

the performance metrics, such as accuracy, precision, 

recall, and F1-score, to evaluate the impact of 

ADASYN on the model's effectiveness. 

2.2 Datasets 

In this study, the performance of the Naïve Bayes 

algorithm was tested on Anemia Diagnosis datasets 

before and after the application of Adaptive Synthetic 

(ADASYN). This dataset contains 104 instances, and 5 

attributes, and has an imbalance ratio of 3. The datasets 

used are sourced from [39] which can be seen in Table 

1.  

Table 1 shows that the dataset consists of 104 instances, 

with 6 columns representing various features such as 

Sex, Red, Green, and Blue pixel values, hemoglobin 

(Hb) levels, and whether the individual has anemia. Out 

of the 104 instances, there are 78 entries labeled as "No" 

(indicating no anemia) and 26 entries labeled as "Yes" 

(indicating the presence of anemia). Pixel values (RGB) 

and hemoglobin were chosen for anemia detection 

because RGB values in medical images can reflect 

changes in blood oxygenation and red blood cell 

concentration, which are linked to anemia, while 

hemoglobin levels provide a direct measure of the 

blood's oxygen-carrying capacity, a key indicator of 

anemia. Combining these features improves detection 

accuracy by using both visual and physiological 

data[40]. This imbalance between the two classes sets 

the stage for applying techniques such as Adaptive 

Synthetic (ADASYN) to improve classification 

accuracy. 

Table 1. Anemia Datasets 

No Sex 
%Red 

Pixel 

%Green 

pixel 

%Blue 

pixel 
Hb Anemia 

1 M 432555 308421 259025 63 Yes 

2 F 456033 2819 262067 135 No 

3 F 450107 289677 260215 117 No 

4 F 445398 289899 264703 135 No 

5 M 43287 306972 260158 124 No 

6 M 450994 279645 269361 162 No 

7 F 431457 301628 266915 86 Yes 

8 F 436103 291099 272798 103 No 

9 F 450423 29166 257918 13 No 

10 F 465143 274282 260575 97 Yes 

… … … … … … … 

10

4 
F 435706 298094 266199 122 No 

2.3. Adaptive Synthetic (ADASYN) 

Creating synthetic data is a useful way to increase the 

number of examples available for testing and training 

models. Equations 1 and 2 illustrate the ADASYN 

method's functionality. An imbalance ratio was first 

created by establishing a collection of k-nearest 

neighbors for the majority and minority classes. This 

imbalance ratio serves as the basis for calculating the 

quantity of synthetic samples that must be produced 

[41]. 

𝐼𝑅𝑥𝑖 =
|𝑁𝑚𝑎𝑗(𝑥𝑖)|

|𝑁𝑚𝑖𝑛(𝑥𝑖)|
         (1) 

Equation 1 computes the ratio for a class of 𝑥𝑖 samples 

by taking into account the nearest neighbors of the 

majority and minority, as determined by the k-nearest 

neighbor technique. Equation 2 is then used to calculate 

the number of synthetic samples that need to be 

generated using this imbalance ratio 𝐼𝑅𝑥𝑖 [41]. 

𝑁𝑆𝑥𝑖 = 𝑖𝑛𝑡(𝐼𝑅𝑥𝑖 ∗ 𝑁𝑆𝑥𝑖 −𝑁𝑆𝑥𝑖) (2) 

Equation 2 uses 𝑁𝑆𝑥𝑖 to stand for the synthetic samples 

that will be produced by multiplying the original input 

samples 𝑁𝑂𝑥𝑖 in the minority class by the imbalance 

ratio determined in Equation 1. Equation 3 can be used 

to represent the process of creating fresh samples [41]. 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑟𝑖𝑔 + 𝛿 ∗ (𝑥𝑛𝑒𝑖𝑔 − 𝑥𝑜𝑟𝑖𝑔) (3) 
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Equation 3 denotes the recently produced samples. The 

difference between the minority class neighbors as 

determined by the KNN method and the original 𝑥 

feature is multiplied by the random number 𝛿, which 

ranges from 0 to 1. A new sample is created by 

combining this result with the initial minority class 

sample [41]. 

The pseudocode of Adaptive Synthetic (ADASYN) can 

be seen as follows: 
Input: X_min, X_maj, K, G 

Output: X_synth 

1. r ← calculate_imbalance_ratio(X_min, X_maj) 

2. G ← calculate_synthetic_samples_needed(r, |X_maj|, |X_min|) 

3. For each x_i in X_min do 

a. Neighbors ← find_K_nearest_neighbors(x_i, X_maj, K) 

b. r_i ← calculate_r_i(Neighbors, K) 

4. Normalize r_i values such that Σ r_i = G 

5. For each x_i in X_min do 

a. N_synthetic ← 

calculate_number_of_synthetic_samples(r_i) 

b. For j = 1 to N_synthetic do 

x_j ← randomly_select_neighbor(Neighbors) 

λ ← generate_random_number(0, 1) 

x_synth ← generate_synthetic_sample(x_i, x_j, λ) 

Add x_synth to X_synth 

6. Return X_synth 

End 

The ADASYN pseudocode calculates the class 

imbalance ratio to determine the number of synthetic 

samples needed. It uses KNN to find neighbors for 

minority class samples, computes the ratio of majority 

neighbors, and normalizes these values. Synthetic 

samples are generated by interpolating between 

minority samples and their neighbors with a random 

factor. The algorithm returns these synthetic samples to 

balance the dataset 

2.4 Naïve Bayes 

The naive Bayes approach is a common statistical 

methodology in machine learning that addresses 

classification issues based on the Bayes Theorem [42]. 

Naïve Bayes has the advantage of only requiring a small 

amount of training data to determine the range of 

parameters used in the classification process because an 

independent variable only takes the variant of a variable 

in a class that is required to determine the classification, 

not the entire covariance matrix [43]. The most widely 

used and well-liked Naïve Bayes classifier is the 

Gaussian. The Gauss distribution is the source of the 

decision function which can be seen in Equation 4  [44]. 

𝑃(𝑣|𝑦) =
1

√2𝜋𝜎2
. 𝑒

−
(𝑣−𝜇)2

2𝜎2   (4) 

Equation 4 shows μ and σ are the estimated mean and 

standard deviation using the maximum likelihood 

principle [44]. Pseudocode naïve bayes can be seen as 

follows: 

Input: X_train, y_train, X_test 

Output: y_pred (predicted labels for X_test) 

1. Classes ← unique_classes(y_train) 

2. For each class in Classes do 

a. X_class ← subset of X_train where y_train = 

class 

b. Mean_class ← calculate_mean(X_class) 

c. Variance_class ← calculate_variance(X_class) 

d. Prior_class ← 

calculate_prior_probability(y_train, class) 

3. For each sample x in X_test do 

a. For each class in Classes do 

Likelihood_class ← calculate_likelihood(x, 

Mean_class, Variance_class) 

Posterior_class ← Likelihood_class * 

Prior_class 

b. y_pred ← class with highest Posterior_class 

4. Return y_pred 

End 

Pseudocode Gaussian Naïve Bayes classifies data by 

first calculating the mean, variance, and prior 

probability for each class in the training data, assuming 

a Gaussian (normal) distribution for each feature. For 

each test sample, the algorithm computes the likelihood 

of the sample belonging to each class using the 

Gaussian probability density function, then multiplies 

the likelihood by the class's prior probability to get the 

posterior probability. The class with the highest 

posterior probability is chosen as the predicted label. 

2.5 Confusion Matrix 

Adopted metrics can be characterized, according to the 

confusion matrix which can be seen in Equations 5, 6, 

7, 8 and Table 2 [10]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
  (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (7) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
(1+𝛽2)∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

Table 2. Confusion Matrix 

 Predicted 

Actual Class_X Class_NX 

Class_X TP FN 

Class_NX FP TN 

Equations 5, 6, 7, 8 and Table 2 shows defines 

𝑇𝑃, 𝐹𝑁, 𝑇𝑁, and 𝐹𝑃. The value β is often chosen by 1, 

indicating that Precision is equally crucial to accuracy 

as recall. By taking Precision and Recall into account, 

F-Score offers a thorough evaluation metric that is only 

large when both Precision and Recall are large. In 

summary, we anticipate that 𝐹𝑃 and 𝐹𝑁 will be near 

zero, so that the evaluation metrics will be near one 

[10]. 

3. Results and Discussions  

3.1 Adaptive Synthetic (ADASYN) 

Before oversampling using Adaptive Synthetic 

(ADASYN) datasets are first preprocessed by changing 

the contents of the dataset into numbers which can be 

seen in Table 3. 
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Table 3. Pre-Processing Datasets 

No Sex 
%Red 

Pixel 

%Green 

pixel 

%Blue 

pixel 
Hb Anaemic 

1 0 432555 308421 259025 63 1 

2 1 456033 2819 262067 135 0 

3 1 450107 289677 260215 117 0 

4 1 445398 289899 264703 135 0 

5 0 43287 306972 260158 124 0 

6 0 450994 279645 269361 162 0 

7 1 431457 301628 266915 86 1 

8 1 436103 291099 272798 103 0 

9 1 450423 29166 257918 13 0 

10 1 465143 274282 260575 97 1 

… … … … … … … 

10

4 
1 435706 298094 266199 122 0 

Table 3 illustrates that the data in the Sex column has 

been modified, where "M" is converted to "0" and "F" 

to "1." Similarly, in the Anaemic column, the values 

"Yes" and "No" are replaced with "1" and "0," 

respectively. This transformation standardizes the 

categorical data for further analysis and machine 

learning applications. Before applying the Adaptive 

Synthetic (ADASYN) technique, the Anaemic column 

contained 78 instances of Class 0 (No Anaemic) and 26 

instances of Class 1 (Anaemic). These original 

proportions highlight the significant imbalance between 

the two classes, which can negatively impact model 

performance. 

Table 4 presents a comparison of the data before and 

after the ADASYN process was applied. Initially, the 

dataset comprised 104 instances, with a majority of 78 

instances categorized as "No Anaemic" and only 26 

instances as "Anaemic." 

Table 4. Before and After Adaptive Synthetic 

Category Before ADASYN After ADASYN 

No Anaemic 78 80 

Anaemic 26 78 

After ADASYN, the dataset increased to 158 instances, 

with the number of "Anaemic" instances rising 

substantially from 26 to 78. This significant boost in 

minority class instances demonstrates ADASYN’s role 

in creating synthetic data points to balance the dataset. 

Such balance is crucial for improving the accuracy of 

predictive models, particularly in cases with high-class 

imbalances. 

The application of Adaptive Synthetic (ADASYN) 

effectively addresses the issue of class imbalance by 

generating synthetic samples for the minority class. By 

increasing the number of Class 1 (Anaemic) from 26 to 

78, ADASYN equalizes the distribution of both classes. 

This adjustment reduces the risk of bias in machine 

learning models, which may otherwise overfit the 

majority class. Furthermore, the increase in data size, 

from 104 to 158 instances, enhances the model’s ability 

to learn more effectively. The balanced dataset 

ultimately results in better generalization when applied 

to unseen data. 

 

3.2 Naïve Bayes 

Both datasets were trained and tested using the Naïve 

Bayes algorithm, with 80% of the data used for training 

and 20% for testing. In the case of the dataset before 

applying Adaptive Synthetic (ADASYN), as shown in 

Figure 2, the Naïve Bayes model achieved an accuracy 

of 0.57, with a Precision of 0.17, Recall of 0.20, and an 

F1-Score of 0.18. The confusion matrix indicated 11 

True Negatives, 1 True Positive, 5 False Positives, and 

4 False Negatives. These results highlight the difficulty 

of predicting the minority class in an imbalanced 

dataset, leading to low recall and precision values. 

Overall, the model struggled to correctly identify the 

minority class, which resulted in poor overall 

performance. 

 

Figure 2. Training and Testing with Dataset Before Adaptive 

Synthetic (ADASYN) 

 

Figure 3. Training and Testing with Dataset After Adaptive 

Synthetic (ADASYN) 
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After applying Adaptive Synthetic (ADASYN) to 

balance the dataset, the Naïve Bayes model 

demonstrated significant improvements, as shown in 

Fig. 3. The accuracy increased to 0.78, with a Precision 

of 0.74, Recall of 0.88, and an F1-Score of 0.80. The 

confusion matrix for this model showed 11 True 

Negatives, 14 True Positives, 5 False Positives, and 2 

False Negatives. These results demonstrate that 

ADASYN helped improve the model's ability to predict 

the minority class more accurately, reflected by the 

higher recall and precision scores. This balanced dataset 

allowed the model to perform better overall, reducing 

the impact of class imbalance on prediction accuracy. 

3.3 Discussion 

After applying the Adaptive Synthetic (ADASYN) 

method to the dataset, a comparison was made to 

observe the increase in data volume, as shown in Table 

5. The number of instances increased significantly, 

from 104 before ADASYN to 158 after ADASYN. 

More importantly, the number of instances in Class 1, 

which initially had only 26 data points, increased to 78. 

This increase in the minority class ensures that the 

dataset is more balanced, allowing the model to train 

more effectively on the previously underrepresented 

class. The change in data distribution highlights the 

effectiveness of ADASYN in addressing class 

imbalance issues. 

Table 5. Results Comparison for Pre-Processing Dataset 

No Pre-Processing Dataset Instance Class 0 Class 1 

1 
Before Adaptive 

Synthetic (ADASYN) 
104 78 26 

2 

After Adaptive 

Synthetic 

(ADASYN) 

158 80 78 

Following this increase in data, both the pre-ADASYN 

and post-ADASYN datasets were used to train and test 

a Naïve Bayes model, and the results are compared in 

Table 6. Before applying ADASYN, the model's 

performance was suboptimal, with an accuracy of only 

0.57. The precision and recall values were also low, at 

0.17 and 0.20, respectively, indicating that the model 

struggled to correctly classify instances from the 

minority class. This poor performance was reflected in 

the F1-Score of 0.18, showing that the balance between 

precision and recall was weak in this imbalanced 

dataset. 

Table 6. Comparison Naïve Bayes 

No Dataset Accuracy Precision Recall 
F1 -

Score 

1 

Before 

Adaptive 

Synthetic 

(ADASYN) 

0.57 0.17 0.20 0.18 

2 

After 

Adaptive 

Synthetic 

(ADASYN) 

0.78 0.74 0.88 0.80 

However, after applying ADASYN to balance the 

dataset, the performance of the Naïve Bayes model 

improved substantially across all metrics. Accuracy 

increased to 0.78, showing that the model's overall 

ability to classify the data became much better. Similar 

research results were obtained by Ozdemir et al.[45] 

who used the Xuzhou HYSPEX dataset sourced from 

the IEEE-Dataport Machine Learning Repository. The 

classification results on One vs All without balancing, 

the accuracy was 93.15 and after balancing with 

ADASYN, the accuracy increased to 95.57. There is a 

tendency for ADASYN to be applied to a classification 

method in machine learning in handling class 

imbalance. Research conducted by Assegie et al.[46] in 

breast, cancer identification showed that ADASYN 

applied to Logistic Regression (LR) significantly 

improved performance on LR to reach 99.46% and was 

much better when compared to SVM which only 

obtained 97.87%. The same research results were 

obtained in this study where accuracy increased from 

0.57 (57%) to 0.78 (78%). Research conducted by 

Malhotra and Kamal [47] comparing a number of 

oversampling methods showed that ADASYN provided 

the best performance compared to other methods. 

The precision saw a remarkable improvement, jumping 

from 0.17 to 0.74, indicating a substantial reduction in 

false positives. Similarly, recall increased dramatically 

from 0.20 to 0.88, meaning the model became much 

more capable of identifying the minority class. The F1-

Score, which balances precision and recall, also 

increased significantly from 0.18 to 0.80, indicating that 

the model now performs well in both aspects. The 

results obtained show that ADASYN can improve the 

balance of the number of positive and negative samples 

in determining anemia using the Anemia Dataset. The 

classification results obtained using Naïve Bayes show 

an increase in accuracy, precision, Recall, and F1-Score 

so that the model can properly determine Anemia. 

ADASYN proficiently mitigates class imbalance by 

producing synthetic data points for the minority class. It 

is essential to acknowledge the potential risk of 

overfitting. Noise can be introduced into the dataset 

through synthetic data generation methods like 

ADASYN, especially when the minority class is 

oversampled near decision boundaries. This could 

result in the model becoming excessively sensitive to 

the synthetic data, which can lead to overfitting. In this 

situation, the model exhibits strong performance on the 

training data but underperforms on novel test data. 

Several distinctions are emphasized when ADASYN is 

compared with other oversampling methodologies, 

including SMOTE. In scenarios with intricate decision 

boundaries, SMOTE produces synthetic samples by 

interpolating between instances of the minority class, 

which may not consistently correspond with the actual 

data distribution. Conversely, ADASYN focuses on 

generating an increased quantity of synthetic samples in 

areas where the minority class is more difficult to learn, 

potentially enhancing performance in those regions. 

Both methods are prone to overfitting if not executed 
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judiciously, especially in datasets characterized by a 

significant imbalance ratio or limited size. 

The results of applying ADASYN to Naive Bayes will 

be compared with SMOTE using 10-Folds cross-

validation and can be seen in Table 7. 

Table 7. Results Comparison with SMOTE 

No 
Accuracy Precision Recall F1 -Score 

ADASYN SMOTE ADASYN SMOTE ADASYN SMOTE ADASYN SMOTE 

1 0.78 0.74 0.74 0.73 0.88 0.82 0.8 0.65 

2 0.81 0.73 0.72 0.71 0.87 0.86 0.81 0.79 

3 0.82 0.81 0.75 0.80 0.85 0.89 0.77 0.81 

4 0.73 0.72 0.76 0.75 0.86 0.83 0.71 0.74 

5 0.75 0.74 0.81 0.76 0.79 0.77 0.82 0.81 

6 0.74 0.74 0.82 0.81 0.81 0.79 0.78 0.77 

7 0.81 0.76 0.79 0.77 0.82 0.82 0.77 0.76 

8 0.82 0.81 0.81 0.79 0.79 0.81 0.84 0.83 

9 0.76 0.73 0.77 0.78 0.83 0.79 0.77 0.74 

10 0.75 0.73 0.84 0.81 0.84 0.77 0.73 0.71 

Table 7 compares ADASYN and SMOTE in terms of 

Accuracy, Precision, Recall, and F1-Score across 10 

tests. ADASYN shows a clear advantage over SMOTE, 

particularly in both Accuracy and Recall, where it 

consistently scores higher, indicating not only better 

identification of positive instances but also overall 

stronger model performance. While Precision 

differences are minimal between the two, ADASYN 

generally performs slightly better. The F1-Score also 

tends to favor ADASYN, though SMOTE matches 

closely in certain tests. Overall, ADASYN outperforms 

SMOTE, especially in key metrics like Accuracy and 

Recall. 

To test the significance, it is done using Wilcoxon 

Signed-Rank. The results of the Wilcoxon Signed-Rank 

Test can be seen in Table 8. 

Table 8. Significance Test using Wilcoxon Signed-Rank Test 

No Parameter P-Value Hypothesis 

1 Accuracy 0.00903 Significant score difference 

2 Precision 0.1504 No significant difference 

3 Recall 0.1537 No significant difference 

4 F-1 Score 0.2826 No significant difference 

Table 8 compares different evaluation metrics such as 

Accuracy, Precision, Recall, and F-1 Score, with their 

respective p-values and hypothesis results. Based on the 

p-value column, only Accuracy has a significant score 

difference (p-value = 0.00903), indicating that the 

difference in accuracy is statistically significant. For 

Precision, Recall, and F-1 Score, the p-values are higher 

than the typical threshold of 0.05, suggesting no 

significant differences for these metrics. 

4. Conclusions 

From the results of training and testing the Naïve Bayes 

model carried out using the original unprocessed dataset 

and the dataset that has been processed using the 

Adaptive Synthetic (ADASYN) method, it is proven 

that the application of this oversampling technique can 

have a positive impact on increasing the number of data 

instances overall, especially in increasing the number of 

instances in the minority class which is often 

overlooked in standard analysis. This not only has an 

impact on balancing the data distribution, but also 

improves model performance in terms of accuracy, 

precision, recall, and f1-score, which reflect the model's 

ability to perform better classification in Anemia. In this 

study, we also compared the application of ADASYN 

and SMOTE on the Naïve Bayes algorithm. The results 

show that ADASYN outperforms SMOTE across all 

key metrics—accuracy, precision, recall, and F1-

Score—and while the accuracy improvements were 

statistically significant (p-value = 0.00903), the 

differences in precision, recall, and F1-Score were not, 

indicating that ADASYN's advantage is primarily 

driven by its impact on accuracy. Thus, for further 

research, it is highly recommended that this approach 

be expanded by increasing the size of the dataset used 

for training so that the model can be trained on more 

diverse data. In addition, the application of other 

oversampling techniques is expected to be explored to 

see how far it can improve model performance and 

employ a statistical significance test, such as a t-test or 

a Wilcoxon signed-rank test. However, ADASYN may 

introduce the risk of overfitting, particularly in smaller 

datasets or when synthetic data does not align well with 

real data distribution. Additionally, while Naïve Bayes 

is efficient, its assumption of feature independence can 

limit performance in real-world scenarios with 

correlated features, suggesting the need for future 

research to explore more advanced algorithms, such as 

Random Forest or Support Vector Machines (SVM), 

which can better handle feature interactions and 

complex decision boundaries. 
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