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Abstract              

In the field of skin cancer classification, machine learning and deep learning have been extensively utilized, particularly with 

convolutional neural network (CNN) architectures. However, there remains room for exploration to achieve optimal 

performance. This study investigates the use of the MobileNetV3Large architecture for transfer learning, chosen for its 

efficiency in low-power and memory-constrained applications. To further enhance performance, black-hat morphological 

transformation and oversampling techniques were applied to the ISIC 2020 dataset. Additionally, mixed precision training was 

implemented to reduce training time. The research aimed to compare the accuracy, precision, recall, F1-score, and training 

time of models trained with and without mixed precision. The findings revealed that while the model without mixed precision 

achieved superior performance with accuracy, precision, recall, and F1-score metrics reaching 98%, both models yielded an 

AUC-ROC of 1. Notably, mixed precision training significantly reduced training time by 1,646 seconds (27 minutes and 26 

seconds), representing an 8.39% speed increase. These results suggest that mixed precision can meaningfully accelerate model 

training while maintaining competitive performance. The practical implications of this research include its potential to improve 

the efficiency of skin cancer classification models, making them more suitable for real-time clinical applications, particularly 

in resource-constrained environments. 
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1. Introduction  

Skin cancer is one of the most common types of cancer 

with an increasing incidence rate, placing a heavy 

burden on the healthcare system [1]. This is supported 

by statistical data released by GLOBOCAN in 2018, 

compiled by the International Agency for Research on 

Cancer (IARC), showing that melanoma and non-

melanoma skin cancers rank 19th and 5th respectively 

as the most common cancers [2]. In the same year, the 

World Health Organization (WHO) recorded 14 million 

new patients and 9.6 million deaths caused by cancer, 

with skin cancer being the most significant type of 

cancer contributing to increased mortality rates [3].  

In Indonesia, skin cancer ranks third after cervical 

cancer and breast cancer. The incidence of skin cancer 

is found in 5.9 - 7.8% of all types of cancer per year. 

The most common skin cancer in Indonesia is basal cell 

carcinoma (65.5%), followed by squamous cell 

carcinoma (23%), malignant melanoma (7.9%), and 

other skin cancers [4]. The International Agency for 

Research on Cancer (IARC) concluded in 2009 that 

ultraviolet (UV) radiation is a cause of skin cancer in 

humans. UV radiation helps the development of 

melanoma and non-melanoma cancers (basal cell 

carcinoma and squamous cell carcinoma), which are 

more common in individuals with skin sensitive to 

sunlight and those living closer to the equator [5]. 

To determine the type of skin cancer, a direct diagnosis 

by a doctor using biopsy and microscopic procedures is 

required. A biopsy is performed by taking a small piece 

of the cancerous cell to be checked and examined in 

detail by a doctor or dermatologist. This testing 

technique requires a considerable amount of time for a 

dermatologist and carries the risk of accidents during 

the biopsy process [6]. With the advancement of 

technology, there is an alternative way to classify skin 
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cancer: the application of machine learning and deep 

learning, which is believed to assist the public in the 

classification of skin cancer. 

In general, machine learning and deep learning can 

perform self-training without repetitive coding by 

humans. Deep Learning is an advanced level of 

machine learning that requires an initial set of data 

called a dataset to predict outcomes. Deep Learning will 

generate output based on training and test data. After 

evaluation, deep learning can make predictions on data 

[7]. One of the most commonly used deep learning 

algorithms is the convolutional neural network [7] [8]. 

Convolutional Neural Network has been utilized to 

solve high-level computation tasks related to difficult 

visual tasks and usually deals with image classification, 

segmentation, object detection, video processing, 

natural language processing, and speech recognition 

[7]. 

Convolutional Neural Network itself has a set of 

architectural layers such as convolutional layers, 

pooling layers, and fully connected layers, commonly 

referred to as the convolutional neural network model. 

Several pre-trained convolutional neural network 

models include AlexNet, ResNet50, GoogleNet, 

VGG16, ResNet101, VGG19, InceptionV3, 

InceptionResNetV2, DenseNet, CGG19, and 

MobileNet [8]. One technique commonly used in 

developing a convolutional neural network model is 

transfer learning. According to Sulistya et al. [8], 

transfer learning is a process of using pre-trained 

models on other problems to solve new problems. 

Transfer learning can greatly assist in developing a 

model because there is no need to build a model from 

scratch. Therefore, convolutional neural network 

algorithms and transfer learning techniques can be 

utilized to create a model for classifying skin cancer. 

Several previous studies have developed models to 

classification skin cancer using SVM and KNN, 

achieving an evaluation metric accuracy of 70.61% 

with KNN [9]. Another study using VGG16 with 6594 

training samples from the Kaggle dataset titled “Skin 

Cancer: Malignant vs Benign” achieved an evaluation 

metric accuracy of 93.18% [10]. A study using a 

convolutional neural network architecture achieved an 

accuracy of 96% with a dataset of 2000 images [11]. 

Further research using the ResNet152 architecture with 

the ISIC 2017 dataset containing a total of 2742 images 

achieved evaluation metrics of 90.4% accuracy, 82% 

sensitivity, 92.5% specificity, and 87.2% balanced 

accuracy [12]. Another study using the AlexNet 

architecture to classify benign and malignant cases, 

using the ISIC 2019 dataset with a total of 25,331 

images, achieved an evaluation metric of 81.26% 

accuracy, 84.66% precision, 86.71% recall, and 82.14% 

f1-score [13]. 

A study by Poornima et al. [14] using the ISIC dataset 

with the VGG16 architecture achieved 97% accuracy. 

Another study to classify skin cancer using the ISIC 

2020 dataset with a total of 33,126 images achieved an 

evaluation metric accuracy of 98.39% by combining 

three pre-trained models: ResNet, VGGNet, and 

MobileNet [15]. Lastly, a study by Rashid et al. [16] 

using the MobileNetV2 architecture with the ISIC 2020 

dataset achieved an average accuracy of 98.20%, 

utilizing evaluation metrics accuracy, precision, recall, 

f1-score, and AUC-ROC. 

For this study, the dataset to be used is the ISIC 2020 

dataset. This dataset includes ten types of skin diseases: 

unknown, nevus, melanoma, seborrheic keratosis, 

lentigo NOS, lichenoid keratosis, solar lentigo, cafe-au-

lait macule, and atypical melanocytic proliferation. 

These ten types of diseases are further divided into two 

classes: benign and malignant, with the aim of this 

dataset being to classify between the two. This dataset 

is the latest release by the International Skin Imaging 

Collaboration (ISIC), providing the largest collection of 

digital images needed by researchers for diagnosing 

skin diseases using artificial intelligence techniques, 

and it is open source [17]. The ISIC 2020 dataset is 

sourced from various sources such as Hospital Clinic de 

Barcelona, Medical University of Vienna, Memorial 

Sloan Kettering Cancer Center, Melanoma Institute 

Australia, University of Queensland, and University of 

Athens Medical School. This dataset is more varied 

than the previously released ISIC datasets, with a total 

of 33,126 images. The training images are divided into 

two categories: 32,542 benign images and 584 

malignant images. Additionally, several relevant 

datasets on the Kaggle website are sourced from the 

ISIC dataset. 

Considering the data imbalance between benign and 

malignant classes in the ISIC 2020 dataset, a further 

analysis is needed to choose a model with a pre-trained 

convolutional neural network architecture and the 

evaluation metrics to be used. According to previous 

studies, the MobileNet architecture has better 

performance compared to other architectures. This is 

also supported by research conducted by Duman and 

Tolan [17] which found that although MobileNet has a 

smaller size, it can have better performance compared 

to other architectures such as ResNet and NasNet. 

Based on this explanation, the architecture to be used in 

this study is MobileNet, specifically the 

MobileNetV3Large variation which can perform more 

complex training. The evaluation metrics to be used in 

this study are accuracy, precision, recall, f1-score, and 

AUC-ROC. 

To assist in model training, several additional methods 

will be employed such as morphological 

transformations, techniques to address data imbalance, 

optimization selection, and the implementation of 

mixed precision. Morphological transformation using 

black-hat operation is conducted to detect and remove 

hair or noise obstructing the images to help the model 

recognize diseases. This approach is based on the study 

conducted by Khan et al. [11], which compared models 

trained on datasets with and without black-hat 
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application, finding that the model trained on the dataset 

with black-hat application performed better. 

To address the data imbalance between benign and 

malignant classes, this study will use the oversampling 

technique. Oversampling is a method to balance data by 

adding samples to the minority class. The reason for 

using this technique is based on research conducted by 

Werner et al. [18] which compared preprocessing 

techniques and found that oversampling is the most 

commonly used technique and effective in maintaining 

data integrity. The optimization technique to be used is 

the Adam optimizer, which is based on the study by 

Valova et al. [19] that sought the best optimization 

method for image classification on imbalanced datasets, 

finding that Adam optimizer provided good 

performance in training. The importance of skin cancer 

classification in medical diagnosis has led to extensive 

research utilizing deep learning techniques, particularly 

convolutional neural networks (CNNs). However, 

many existing methods struggle with long training 

times and computational inefficiencies. One approach 

that seeks to address these challenges is mixed precision 

implementation, which involves the combination of 

float32 and float16 data types. Float16 is leveraged to 

enhance performance and speed up training, while 

float32 is employed to store variables and ensure 

numerical stability [20]. Despite the success of CNNs 

in skin cancer classification, there remains room for 

improvement in terms of training efficiency and model 

scalability.  

This study, titled "Skin Cancer Classification Using 

Convolutional Neural Network With Mixed Precision 

Implementation," is motivated by the need to overcome 

the limitations of conventional methods in skin cancer 

detection, such as high computational costs and 

prolonged training times. Mixed precision offers a 

potential solution by balancing speed and accuracy, 

making it suitable for medical applications where quick 

and reliable diagnoses are critical. In addition to 

exploring the benefits of mixed precision, this research 

also builds on previous literature that has successfully 

applied deep learning and CNNs to skin cancer 

classification, offering a comparative analysis of 

performance metrics such as accuracy, precision, and 

recall with and without mixed precision. 

2. Research Methods 

The collection of the dataset that will be used for model 

training. Then, preprocessing the dataset using black-

hat morphology and oversampling from the existing 

classes. At this stage, the class data will also be split 

into training and validation sets. Next is training the 

model using transfer learning with the 

MobileNetV3Large architecture. MobileNetV3Large is 

the latest version of the MobileNet architecture, and the 

reason for choosing MobileNet is that research 

conducted by Singha and Roy [15] and Rashid et al. 

[16] showed that MobileNet achieved the best accuracy 

when compared to other models. Finally, evaluating the 

model's performance using metrics such as accuracy, 

precision, recall, F1-score, AUC-ROC, and training 

time. Figure 1, displaying the workflow of developing 

a skin cancer classification model: 

Data Collection

Resize Image

256 x 256

Hair Removal

Oversampling

Validation 10%Training 90%

Digital Image

Processing

Mix Precision

Transfer Learning

MobileNetV3Large

Transfer Learning

MobileNetV3Large

Evaluation Evaluation

 
Figure 1. Flow Research 

The model development will be conducted twice. The 

first development will not use mixed precision, while 

the second development will use mixed precision in the 

training. The model with mixed precision and the model 

without mixed precision will be compared with the 

hypothesis that the model applying mixed precision will 

have better performance and shorter training time. 

In the preprocessing stage, several actions will be taken. 

First, the dataset will be resized to a uniform size of 256 

x 256, as the dataset contains images of varying sizes. 

Then, each image in each class will undergo black-hat 

morphology to remove obstructing objects from the 

images. Next, the malignant class will be augmented to 

reach 32,542 images by applying augmentation 

techniques as conducted by Rashid et al. [16] achieved 

an accuracy of 98%. These techniques include a rotation 
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range of 40° to flip the images, a width shift range of 

0.2 to shift the images horizontally, a shear range of 0.2 

to stretch the images, a horizontal flip to create mirror 

versions of the images, and a brightness range from 0.5 

to 1.5 to adjust the image brightness. Once the number 

of images in the malignant class matches that of the 

benign class, the next step is to split the dataset into 90% 

training data and 10% validation data. Table 1 shows 

the dataset distribution used for model training with a 

ratio of 90% for training and 10% for validation: 

Table 1. Ratio Split Data 

Class Training Validation 

Benign 29.288 3.254 

Malignant 29.288 3.254 

Total 58.576 6.508 

After splitting the data into training and validation sets, 

the next step is to perform image augmentation on the 

training data using the same transformations and 

settings as in the study conducted by Rashid et al. [16]. 

The training augmentations include a rotation range of 

25°, width shift range and height shift range of 0.1 each 

to shift the image width and height, a shear range of 0.2, 

a zoom range of 0.2, and a brightness range to adjust 

image brightness from 0.5 to 1.5. Additionally, a 

channel shift range of 0.05 will be applied to shift the 

color pixels in the image, and the nearest fill mode will 

be used to fill in new pixels after augmentation. 

Next, two models will be created using different 

approaches. The first model will be trained with transfer 

learning using the MobileNetV3Large architecture 

without using mixed precision. The second model will 

be trained with transfer learning using the 

MobileNetV3Large architecture and applying mixed 

precision. The parameters used in training will include 

the Adam optimizer with a learning rate of 0.001, and 

training will run for 20 epochs, as referenced in the 

study by Poornima et al. [14], which compared the 

training of various models with different epoch counts. 

Training will be conducted on Google Colab using a T4 

GPU. 

Research instruments are the measurement tools used in 

the research activities. In this study, the research 

instruments for model development are accuracy, 

precision, recall, F1-score, and AUC-ROC. 

Additionally, to help evaluate the model's performance, 

a confusion matrix (CM) and the training time for each 

model will be used. These evaluation metrics can be 

measured using the Sklearn library. 

3. Results and Discussions 

The ISIC 2020 dataset contains various types of 

diseases, including atypical melanocytic proliferation, 

cafe-au-lait macule, lentigo NOS, lichenoid keratosis, 

melanoma, seborrheic keratosis, solar lentigo, and 

unknown. 

Each of these diseases is further divided into two 

classes: benign and malignant. The aim of this dataset 

is to classify between the two. Table 2 displays the 

distribution of disease types based on their classes: 

Table 2. Distribution of Disease 

Benign Malignant 

atypical melanocytic 

proliferation, cafe-au-lait 

macule, lentigo NOS, lichenoid 

keratosis, seborrheic keratosis, 

solar lentigo, and unknown. 

Melanoma 

In prior research on skin cancer classification, the 

primary focus has been on improving model 

performance metrics such as accuracy, precision, and 

recall, with less emphasis on training efficiency or 

computational cost. For instance, various studies 

achieved impressive accuracy rates using deep learning 

architectures VGG16 reached 93.18%, while a CNN 

architecture scored 96% accuracy with smaller datasets. 

However, these studies provided limited insights into 

the models' training durations or resource requirements. 

Among the studies, Rashid et al.'s work stands out as 

particularly successful, achieving a high accuracy of 

98.2% using MobileNetV2 on the ISIC 2020 dataset. 

Their study not only achieved superior performance 

metrics but also balanced accuracy, precision, recall, f1-

score, and AUC-ROC, which together represent a 

comprehensive evaluation of model efficacy. 

Comparing Rashid et al.'s results to those from models 

using architectures like ResNet152 or AlexNet, which 

achieved slightly lower accuracies, highlights Rashid et 

al.'s model as a top performer, particularly for balancing 

high classification accuracy with generalizability across 

evaluation metrics. 

Our study builds on these performance achievements by 

incorporating mixed precision to improve training 

efficiency without a substantial loss in accuracy. 

Additionally, we applied black-hat morphology as a 

preprocessing step to reduce noise and remove hair 

artifacts from the images, following the methodology 

described in Khan et al.'s study. Black-hat morphology 

is particularly effective for enhancing the visibility of 

skin lesion boundaries by suppressing darker regions in 

the image, which often include hair or shadows. By 

using this technique, we could enhance image clarity 

and ensure that noise did not interfere with the model’s 

ability to identify critical features of benign and 

malignant lesions. 

By analyzing both model accuracy and training time, 

we provide a more holistic perspective that can guide 

future research in optimizing not only the accuracy of 

skin cancer classification models but also their 

computational efficiency. This approach allows us to 

maintain high performance in image classification 

while also addressing practical concerns in model 

training, such as resource usage and processing time, 

which are crucial for large datasets like ISIC 2020. 

The convolutional neural network model used for 

transfer learning is the latest variation of the MobileNet 
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architecture, namely MobileNetV3Large. The 

TensorFlow library is used to import 

MobileNetV3Large, and after importing it, parameters 

such as input_shape set to (224, 224, 3) will be added 

according to the recommended size for 

MobileNetV3Large. 

Next, include_top will be set to false as the default 

dense layers are not needed. Additional layers are also 

added, including GlobalAveragePooling2D to 

transform 3D metrics into a 1D vector, Dense layers to 

learn data representations, and a Dropout layer to 

reduce overfitting. Finally, another Dense layer is added 

to produce interpretable outputs from the model. Figure 

2 shows the summary of the first model that has been 

created: 

 

Figure 2. Model summary 

3.1 Preprocessing Result 

After resizing the images to 256 x 256 pixels, the next 

step is to apply transformations to reduce noise in the 

images. One way to reduce noise is by applying black-

hat morphology. Figure 3 shows the result of applying 

black-hat morphology to an image. Then, oversampling 

will be applied to the malignant class to balance the 

number of samples between the benign and malignant 

classes. Table 3 shows the results of applying the 

oversampling technique: 

Table 3. Comparison of The Number of Images 

Stages Benign Malignant 

Original 32.542 584 

Oversampling 32.542  32.542 

Oversampling applies augmentation to duplicate 

images by creating new variations through several 

techniques: a rotation range of 40° to flip the images, a 

width shift range of 0.2 to shift the images horizontally, 

a shear range of 0.2 to stretch the images, horizontal flip 

to create mirror versions of the images, and a brightness 

range from 0.5 to 1.5 to adjust the image brightness. 

 

Figure 3. Transformation result 

3.2 Training Result 

The first convolutional neural network model to be 

evaluated is the one that does not use mixed precision 

and only applies transfer learning with the 

MobileNetV3Large architecture. This model achieved 

a significant validation loss of approximately 6.6% and 

attained an accuracy of 98%. 

The next convolutional neural network model for skin 

cancer classification to be evaluated is the one that uses 

mixed precision during training. This model achieved a 

validation loss of 8.9% and a validation accuracy of 

97%. Figure 4 will show the visual comparison of the 

two models: 

 

Figure 4. Performance Visualization of Both Models 
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The evaluation metric AUC-ROC for both models 

shows a value of 1.0 on the ROC curve, indicating 

excellent and reliable performance in differentiating 

between positive and negative classes. This can be seen 

in Figure 5. 

 

Figure 5. The evaluation metric AUC-ROC for both models 

Both models are able to surpass or match 6 out of 8 

other studies considered state-of-the-art. However, the 

models still lag behind compared to the research 

conducted by Singha and Roy [15], which achieved an 

accuracy of 98.39% using a combined model of ResNet, 

VGGNet, and MobileNet. Lastly, the study by Rashid 

et al. [16] achieved an accuracy of 98.2% using 

MobileNetV2. 

The model without mixed precision had a total training 

time of 19,603 seconds (326 minutes and 43 seconds). 

This is calculated based on the duration of training for 

each epoch. Meanwhile, the model that used mixed 

precision during training had a total training time of 

17,957 seconds (299 minutes and 17 seconds). This is 

calculated based on the duration of training for each 

epoch. Table 4 will display the comparison of the 

training times for the two models. 

Table 4. Comparison of Training Time 

Epoch Model 1 Model 2 

1 990 911 

2 977 902 

3 982 892 

4 977 896 

5 981 901 

6 974 902 

7 982 908 

8 977 893 

9 974 904 

10 985 891 

11 976 895 

12 978 891 

13 974 894 

14 986 894 

15 989 899 

16 988 901 

17 980 901 

18 979 901 

19 978 897 

20 976 884 

Total 19.603 seconds 17.957 seconds 

The model using mixed precision demonstrates faster 

training due to the combined use of 16-bit and 32-bit 

floating-point types. This method optimizes 

computation by applying 16-bit (half-precision) to parts 

of the model that don't require full precision, such as 

certain matrix multiplications or weight updates. Since 

16-bit operations require less memory and bandwidth, 

the GPU can perform more operations in parallel, 

boosting overall efficiency. This reduces the model's 

memory footprint, allowing faster processing, which is 

evident in the observed 9% decrease in training time. 

However, using 16-bit precision comes with a slight 

downside. During forward and backward propagation, 

lower precision arithmetic can introduce small rounding 

errors or reduced accuracy in how values are calculated. 

While these errors are typically minimal and do not 

significantly affect simpler patterns, they can become 

more noticeable when the model deals with complex, 

nuanced tasks, such as distinguishing between benign 

and malignant lesions in medical images. 

In these cases, the small imprecisions can impact how 

effectively the model fine-tunes its weights, leading to 

a slight reduction in accuracy. Although the mixed 

precision model converges more quickly, the trade-off 

is a small performance drop, such as the 1% decrease in 

accuracy compared to the full 32-bit model. 

This trade-off between speed and precision is a typical 

characteristic of mixed precision training. While it 

accelerates computations, it can slightly hinder the 

model's capacity to capture fine-grained distinctions, 

resulting in a minor compromise in performance. For 

many applications, this is an acceptable trade-off, as the 

increased efficiency often outweighs the slight decrease 

in model performance. Table 5 is a summary of the 

performance of the two models: 

Table 5. Summary Performance 

Metric 

Evaluation 

Model 1 Model 2 

Accuracy 98% 97% 

Precision 98% 97% 

Recall 98% 97% 

F1-Score 98% 97% 

AUC-ROC 1.0 1.0 

Time 19.603  

seconds 

17.957  

seconds 

4. Conclusions 

Based on the findings of this research, it can be 

concluded that the convolutional neural network model 

using MobileNetV3Large with transfer learning and 

without mixed precision outperforms the model that 

incorporates mixed precision in terms of accuracy, 

precision, recall, and F1-score, achieving a value of 

98%. In contrast, the model with mixed precision 

achieves a slightly lower performance, with a value of 

97%. The AUC-ROC evaluation metric for both models 

remains consistent, at a value of 1.0. While the model 

utilizing mixed precision has a faster training time—

being 1,646 seconds (27 minutes and 26 seconds) 

quicker than the non-mixed precision model, it shows 

an 8.39% improvement in training speed. This research 

highlights that while mixed precision can significantly 

improve computational efficiency, it may come at the 

expense of a slight reduction in performance. The study 

contributes to the field by demonstrating how 

optimization techniques like mixed precision can 
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accelerate model training, which is particularly useful 

in clinical applications where time is critical. However, 

the trade-off between training speed and model 

accuracy needs to be carefully considered based on the 

specific use case. For future research, it is 

recommended to explore additional optimization 

methods, such as quantization or pruning, to further 

enhance both performance and efficiency. Additionally, 

applying these techniques to larger and more diverse 

datasets could validate the findings and provide insights 

into the model's generalizability across different clinical 

contexts. Finally, a detailed analysis of the limitations, 

such as the dataset size and the potential overfitting due 

to augmentation and oversampling, should be addressed 

in subsequent studies to improve robustness. 
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