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Abstract  

The Traveling Salesman Problem (TSP) is a problem that represents a difficult combinatorial optimization problem starting 

from practical problems. The ant colony optimization (ACO) algorithm is implemented in several topics, particularly in solving 

combinatorial optimization problems. ACO is inspired by the behavior of ants in searching for the shortest path between a 

food source and their nest. In this research, ACO is used to find the best path or traveling salesman problem for museums and 

historical sites in Jakarta capital city of Indonesia. This research employs an approach based on the location's coordinates or 

latitude and longitude, while another method depends on coordinate data obtained from a supplied map image. After 

implementing both models, it can be concluded that the ACO model is not very good at solving TSP using actual coordinates. 

Meanwhile, the algorithm can quickly find near-optimal paths when using coordinates from a map image. The algorithm 

generates the optimal path in 11 seconds, reducing the initial distance from 17.938 to 4.430, using 4.731 ants and 75 trips with 

a distance power of 1. Statistical random variation was also performed, which proved that the algorithm is flexible and reliable 

when tested under various conditions. 
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1. Introduction  

In metropolitan cities like Jakarta, where historical 

significance is preserved in numerous museums and 

monuments, tourists and history enthusiasts often face 

the challenge of planning efficient routes to visit 

multiple sites. This challenge becomes particularly 

complex when the aim is to minimize travel time while 

maximizing the number of locations visited. Given the 

large number of museums spread across the city, 

determining the optimal route is a combinatorial 

problem that can overwhelm manual planning methods. 

The problem of visiting all desired locations in the 

shortest possible time mirrors the well-known 

Traveling Salesman Problem (TSP). 

Optimization problems involve solving problems by 

minimizing or maximizing the function of the problem  

[1]. Each function can yield many solutions. In 

optimization problems, the aim is to find the most 

optimal result while keeping certain constraints in 

mind. An optimization problem is defined as a set of 

parameters, and with the right parameters, we can 

determine the best solution [2]. The Traveling Salesman 

Problem is one of the problems that has drawn the 

attention of many mathematician’ experts, with a 

method that is easy to explain but difficult to solve. TSP 

represents many difficult combinatorial optimization 

problems, ranging from practical problems that can be 

formulated as TSP problems. The most important and 

often occurring sub-problem in the traveling salesman 

problem is the routing problem, which requires finding 

the fastest sequence of points. 

In an ideal situation, tourists would be able to visit all 

their chosen museums with minimal travel time, 

navigating through the city efficiently without needing 

to backtrack or waste time on unnecessary detours. 

However, achieving this efficiency manually is difficult 

due to the city's traffic patterns and the scattered nature 

of historical sites. Therefore, a system that can 

intelligently suggest the shortest route would greatly 

enhance the tourist experience. 

https://doi.org/10.29207/resti.v9i1.5968
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Intelligent systems can alleviate human tasks in various 

aspects. These intelligent systems have smart 

mechanisms with various functions, including 

information processing, decision-making, problem-

solving, pattern recognition, data analysis, and many 

more [3]. Optimization problems can be easily 

addressed using various available methods. The 

optimization conducted can effectively solve the 

Traveling Salesman Problem (TSP) by selecting from a 

range of algorithms, such as genetic algorithms, ant-

colony algorithms, simulated annealing algorithms, and 

many others. 

TSP itself is a graph that has several attributes in 

problem-solving, including nodes, node edges, and 

different corner points depending on the case [4]. Each 

city must be passed through at least once. Generally, the 

length of the path represents the solution cost or can be 

said to be the total distance that the salesman must 

travel. The relevance of heuristic and bio-inspired 

solvers for such problems comes from their ability to 

find solutions that are acceptable in terms of 

time/performance balance [2]. As for the corner points, 

they represent the names of the places to be visited. 

Node edges can be used to calculate the distance 

travelled from point A to point B in the route. 

The running time of the exact TSP algorithm increases 

exponentially with the number of cities. TSP 

researchers have proposed various methods and 

algorithms. Researchers initially focused on specific 

methods, such as integer linear programming, dynamic 

programming, and graph algorithms. TSP can be solved 

using exact, heuristic, or meta-heuristic methods [5]. 

Exact algorithms can find the best solution. However, 

they are prone to getting trapped in a search space 

explosion of combinations. As a result, many 

researchers use heuristic or approximation algorithms 

for TSP. Unlike exact methods, heuristic algorithms can 

find satisfactory or nearly optimal solutions within 

reasonable computational time [6]. The Ant Colony 

Optimization algorithm is one of the meta-heuristic 

methods for solving the TSP [5]. 

Ant colony optimization is a new metaphor for solving 

optimization problems and has been widely applied. 

ACO is a metaheuristic based on the behaviour of 

biological ants proposed by Marco Dorigo in 1991 [7]. 

The ACO algorithm was first inspired by pheromone 

laying and the selection of the shortest route using 

pheromones. Since its first discovery, many researchers 

have worked and published their findings in this field. 

Although the initial results were not promising, recent 

developments have elevated this metaheuristic to the 

status of a significant algorithm in Swarm Intelligence. 

Indonesia, particularly Jakarta, is a place of great 

historical significance, which has led to the 

establishment of numerous museums and historical 

monuments. With the abundance of museums in 

Jakarta, a problem arises for history enthusiasts when 

they want to visit various museums. The Ant Colony 

Optimization method will be used to solve the traveling 

salesman problem for museums and historical sites in 

Jakarta, as it can select the most efficient route. 

In several studies, it can be found that the ant colony 

optimization (ACO) algorithm has been implemented in 

various topics. ACO has been successfully used in 

several problems, especially in solving combinatorial 

optimization problems. ACO has high capabilities in 

optimization problems, but there are still some 

shortcomings, including stagnation behaviour, long 

computation time, and premature convergence 

problems in the basic ACO algorithm [8]. 

ACO itself is inspired by a living creature, ants, in the 

process of finding the shortest path between a food 

source and their ant nest without using visual 

communication [9]. Artificial ants in ACO are 

stochastic solution construction procedures that 

probabilistically build a solution by iteratively adding 

solution components to partial solutions while taking 

heuristic information about the problem instance being 

solved and (artificial) pheromone trails that change 

dynamically at run-time to reflect the ants' acquired 

search experience into account  [10]. 

Ants communicate indirectly by using a chemical 

compound called pheromone. The process starts when 

ants are foraging for food, and during this process, ants 

drop pheromone compounds along the path they take 

from the nest. The pheromone compounds are dropped 

until the ants return to the nest after taking the food from 

the food source. The shortest distance will contain a 

stronger pheromone compound, which will make other 

ants choose that path. 

Pheromones are a key component of the algorithm used 

to guide ants towards promising solutions in ACO. 

Pheromones are chemical substances stored on the 

ground by ants as they move through solution space. 

The pheromone trail is updated at each iteration of the 

algorithm based on the quality of the ant's solution. 

Pheromone updates are typically performed using local 

or global update rules, which determine how much 

pheromone is stored by ants along their path. Local 

update rules only update the pheromone trail on one 

ant's path, while global update rules update the 

pheromone trail on all ants' paths. The pheromone trail 

fades over time, preventing the algorithm from 

becoming trapped in local optima. This evaporation 

process allows the algorithm to explore new areas of 

solution space and eventually converge to a solution 

that is close to optimal. Overall, the use of pheromones 

in ACO allows the algorithm to efficiently search 

solution space and quickly converge to a solution that is 

close to optimal. 

ACO is widely known has advantages in satisfactory 

robustness, distributed parallel processing, and 

seamless integration with other algorithms [11]. 

Although ACO can be utilized in a variety of areas, it 

was first introduced to TSP through a proof-of-concept 

application [12]. In this study, we propose an ACO 
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algorithm for solving TSP to determine the distance 

between museums and historical monuments in Jakarta, 

to facilitate tourists and history enthusiasts in 

determining the most effective destination route to 

minimize the time used. Each historical place will be 

used as a node or destination for the subject. In addition 

to making the time used more effective, the distance 

travelled to visit historical museums in Jakarta will be 

shorter. Nevertheless, conventional ant colony 

optimization (ACO) suffers from limitations such as 

slow convergence and low efficiency, necessitating the 

need for algorithmic modifications [13]. 

There are several ACO algorithms developed in various 

literature studies, especially in solving TSP. In each 

step of ACO, ants use the pseudorandom-proportional 

action choice rule in selecting the next destination 

(museum). When at location i, ant k will choose 

museum j based on the Equation 1.  

𝐽 =  𝑎𝑟𝑔 𝑚𝑎𝑥𝜐𝜀𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘(𝑖){[𝜏𝑖𝑗]𝛼. [𝜂𝑖𝑗]
𝛽

} 𝑖𝑓 𝑞 <  𝑞0       (1) 

q is a uniformly distributed random variable in [0,1]. 

𝑞0(0 ≤ 𝑞0 ≤ 1) is a predetermined pheromone trail 

parameter. η_ij= 1/d_ij 𝜂𝑖𝑗 =  1/𝑑𝑖𝑗 is heuristic 

information, where 𝑑𝑖𝑗 is the distance between museum 

i and museum j, 𝞪 and 𝞫 are two adjustable positive 

parameters that regulate the magnitude of pheromone 

trail and heuristic information, and 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘(𝑖) is a 

museum that has not yet been visited by Ant K when 

the ant is at Museum i. J is selected according to the 

transition probability selected by Equation 2. 

𝑃𝑦
𝑘(𝑡) =  

[𝜏𝑖𝑗(𝑡)]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑙(𝑡)]𝛼[𝜂𝑖𝑙]
𝛽

𝑙𝜖𝐽𝑘(𝑖)
 𝑖𝑓 𝑗 𝜖 𝐽𝑘(𝑖) 

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑃𝑦
𝑘(𝑡)  = 0                (1) 

To improve future equations, the pheromone trail needs 

to be updated to reflect the performance of ants and the 

quality of solutions found. There are two processes for 

updating pheromone trails, namely local and global. For 

local updates, each ant that has chosen a city will update 

the amount of pheromone on each edge according to 

Equation 3. 

𝜏𝑖𝑗(𝑡 + 1)  =  (1 − 𝜌)𝜏𝑖𝑗(𝑡) +  𝜌. 𝜏0             (2) 

 0 < 𝜌 ≤  1 is a parameter decay, 𝜏0 = 1/𝑛. 𝐿𝑛𝑛"is the 

initial value of the pheromone trail, where n is the 

number of museums in TSP and 𝐿𝑛𝑛 is the cost incurred 

by the nearest heuristic neighbour. After the angle 

between museum i and j have been visited by all ants, 

the local update rule reduces the level of pheromone at 

the angle. Therefore, the effect of the local update rule 

is to make the angle less attractive to the next ants. 

For global updates, after all ants have explored all 

museums, the amount of pheromone is only updated on 

the optimal path by Equation 4. 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + 𝛥𝜏𝑖𝑗(𝑡) (4) 

In Equation 5, 

𝛥𝜏𝑖𝑗(𝑡)  =  ∑ 𝛥𝜏𝑖𝑗
𝑘 (𝑡)𝑚

𝑘=1                (5) 

Intelligent systems have been widely used for various 

purposes, such as information processing, decision-

making, problem-solving, and many more [3]. After 

being processed by intelligent systems, technology has 

been created that greatly assists human work in this 

modern era. There is an intelligent system-based 

technology for detecting the development and 

evaluating COVID-19 using deep neural networks [14]. 

With the technology introduced in research [14]. 

COVID-19 can be detected more quickly and easily by 

considering various parameters. There is also an 

intelligent system technology through a location-based 

approach that is used to enhance more efficient airport 

infrastructure management [15] 

The Ant Colony Algorithm has been widely applied for 

route planning and produces good solutions with fewer 

parameters than other algorithms. This algorithm takes 

a long time to search and easily falls into local optima, 

stagnation, or deadlock conditions. Many experts have 

tried to solve this problem. Y. Wang. et al proposed the 

ACO algorithm to solve vehicle routing problems. The 

usefulness of its implementation is to reduce the 

number of vehicles and reduce the delivery distance 

between warehouses and customers [16]. 

The research [17] evaluates the effectiveness of ACO 

procedures in improving the reuse of information. 

State-of-the-art ACO for static optimization (MAX-

MIN Ant System, MMAS) and the most relevant ACO 

algorithm proposed for dynamic optimization (P-ACO) 

are used. A variant of TSP with dynamic demands 

(DTSP) is used as the testing benchmark. This work is 

important for three reasons: it acknowledges that DCOP 

requires specially configured parameter settings, 

directly compares MMAS and P-ACO, isolates local 

search as an experimental factor, and conducts 

experimental investigation on the specific DCOP 

component proposed for ACO. Results show that the 

component contributes very little to performance when 

algorithms are allowed to use local search but is highly 

effective when there is none. Research [18] presents an 

improved Ant Colony Optimization (ACO) algorithm 

for solving the Travelling Salesman Problem. The 

algorithm uses three novel techniques to enhance 

performance, reduce execution time, and address issues 

associated with ACO-based methods. These techniques 

include clustering of nodes, adaptive pheromone 

evaporation, and a new termination condition. 

Experimental results show that the proposed algorithm 

outperforms other ACO-based methods in most cases. 

The impact of these techniques on the algorithm's 

behavior is thoroughly analyzed and discussed. 

In research [19], an ACO-based method called ACO 

with Adaptive Visibility (ACOAV) is proposed, which 

intelligently adopts a general formula of heuristic 

visibility related to the final destination city. It uses a 

new distance metric that incorporates proximity and the 

final destination to select the next city, reducing the tour 
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cost. ACOAV is evaluated on a set of 35 benchmark 

TSP instances and compared rigorously with ACO. It 

was found to be the best for 29 TSP instances out of 35 

instances, with optimal solutions achieved in 22 

instances. Statistical tests comparing the performance 

revealed the significance of the proposed ACOAV 

compared to bio-inspired methods. 

Although ACO is a natural TSP solving algorithm, it 

also has some drawbacks in its solving process such as 

slow convergence speed and prone to falling into local 

optima. Therefore, research [20] proposes an improved 

ant colony optimization based on graph convolutional 

network: Graph Convolutional Network Improved Ant 

Colony Optimization (GCNIACO). GCNIACO is 

introduced to produce better solutions, and better 

solutions are converted into pheromones on the ACO 

initial path. The algorithm's ability to jump out of local 

optima is improved, and the optimization results are 

compared with other classic algorithms. 

According to research from P. Du, N. Liu, H. Zhang, 

and J. Lu in paper [21], the paper proposes an improved 

ACO algorithm called AHACO for solving the TSP. 

AHACO incorporates three enhancements including 

city classification using k-means, a modified 2-opt local 

optimizer, and a mechanism to escape local optima. 

Experimental results show that AHACO outperforms 

other algorithms, achieving an average solution quality 

improvement of 83.33% and superior performance for 

large-scale TSP instances. 

Research [22] proposed a hybrid approach using the 

advanced sine-cosine algorithm (ASCA) and the 

advanced ant colony optimization (AACO) technique to 

achieve optimal path search and control for multiple 

mobile robots in both static and dynamic unknown 

environments. In research [23], an improved ACO 

algorithm based on particle swarm optimization 

developed to determine the optimal path for an AUV to 

reach its designated destination in a complex 

underwater environment for autonomous underwater 

vehicle. Then, R. Behmanesh and I. Rahimi address the 

multi-resource job shop scheduling problem (MRJSP) 

with resource flexibility aimed at minimizing 

makespan, using a mixed integer linear programming 

(MILP) model and an enhanced ant colony optimization 

(ACO) algorithm incorporating a pheromone update 

strategy inspired by selfish herd (SH) theory [24]. 

Research [25] proposed parallelization strategies for 

GPU-Based ACO solving the TSP. Parallelization of 

ACO is necessary for larger TSP instances due to the 

high number of calculations involved. Many parallel 

approaches have been proposed for ACO, particularly 

for modern hardware like GPUs. This paper compares 

and analyzes the performance of ACO implementations 

with different parallelization strategies for solving TSP 

instances of varying sizes. The results show that there 

is no overall best strategy and highlight the importance 

of factors like GPU occupancy and workload 

distribution among threads in reducing execution time. 

Unlike for research [26], this paper presents a new 

variant called Focused ACO (FACO) that improves 

performance by controlling differences between 

solutions and integrating with problem-specific local 

search. Computational studies show that FACO 

outperforms state-of-the-art ACOs for large Traveling 

Salesman Problem (TSP) instances, finding high-

quality solutions in less than an hour on an 8-core CPU. 

The ACO algorithm was one of the first nature-inspired 

algorithms and it mimicked actual ant colony behaviors 

[27]. According to research on ant behavior in the wild, 

ants can find the shortest path between their nest and a 

food source. The evaporation rate, chemical matter of 

pheromone that ants drop on the route that they have 

chosen, is the most important feature in seeking the 

shortest path. Ants in a colony will typically choose a 

path with a high pheromone rate [27]. The algorithm 

consists of a number of iterations. In each iteration, 

several ants build a complete solution using heuristic 

information and experience collected from previous ant 

populations [28]. Heuristic information is critical in the 

metaphase and telophase, guaranteeing that ACO 

converges with good performance [29]. The collected 

experiences are represented using pheromone trails, 

which are stored on solution components. Pheromones 

can be stored on components and/or connections in the 

solution depending on the problem being solved. The 

ACO algorithm simulates optimization in route search. 

The ACO algorithm procedure will be illustrated in 

Figure 1. 

Research [30] developed improved heuristic 

mechanism ACO (IHMACO) overcomes the 

limitations of traditional ACO by integrating adaptive 

pheromone concentration, directional judgment, an 

enhanced pseudo-random transfer strategy, and 

dynamic pheromone evaporation adjustment, leading to 

more effective path planning and confirmed 

performance through experimental validation. In the 

wild, ants search for the shortest path between their nest 

and food source. They leave a chemical trail, known as 

a pheromone, along the path so that other ants can easily 

find the food source. Furthermore, ants reinforce this 

pheromone trail as they return to their nest, although the 

pheromone evaporates over time, reducing its influence 

on other ants. The density of pheromones along the tour 

is determined by the tour selection time, especially the 

last one. Other ants can find the shortest route by taking 

the path with the highest pheromone density [31]. 

By addressing these challenges, this study contributes a 

refined version of the ACO algorithm tailored 

specifically to the problem of tourist route optimization 

in Jakarta. The goal is to minimize travel distances 

between museums, thereby saving time and improving 

the overall tourist experience. The proposed approach 

will build on the foundational work in ACO-based 

optimization while addressing its limitations to ensure 

robust performance in real-world applications. Through 

this work, we aim to offer a practical solution that helps 
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visitors explore Jakarta's rich historical offerings with 

ease and efficiency. 

 

Figure 1. ACO Algorithm Flowchart 

2. Research Methods 

The stages of this research are as follows: 1) preliminary 

study; 2) data gathering and pre-processing, 3) model 

construction, 4) evaluation, and 5) result analysis. 

 

Figure 2. Proposed Research Methodology 

Figure 2 represents the proposed research methodology 

flowchart. The preliminary study aims to gain a full 

understanding of the use of ACO to solve TSP, which 

is the problem that has been selected for this research. 

In the second d stage, data will be collected and 

processed so the data is suitable for a machine learning 

model. The two ACO models that were used to solve 

TSP will then be compared to evaluate their algorithm 

reliability in finding the best route available. 

2.1 Preliminary Study 

The first step of this research is to first investigate a 

research including the literature review. The purpose of 

a literature review is to identify the previous research, 

clarify foundational theories, and explain the 

methodology used in this research.  

Journal articles related to the use of ant colony 

optimization to solve the traveling salesman problem 

will be searched and reviewed as part of the literature 

study. 

2.2 Data Gathering and Pre-Processing 

This paper used two types of ACO algorithms to solve 

the traveling salesman problem. The first one uses the 

original coordinates of historical locations, while the 

second one uses the coordinates of points on a map. The 

first and final point used is the Soekarno-Hatta Airport. 

For the first algorithm, the dataset with .csv extension 

consist of 53 drop-point with all the data belonging to 

cluster 0, and each data contains information about 

longitude and latitude. The tracking_id is a unique id 

that is used for each row of data. Table 1 is a list of 

locations used and their coordinates. 

Table 1. List of Museum and Historical Locations in Jakarta 

No Name Address 

1  
Museum Nasional / 

Museum Gajah 

Jl. Medan 

Merdeka Barat 

No.12, Gambir, 

Kota Jakarta 

Pusat 

2  
Museum Bank 

Indonesia 

Jalan Jembatan 

Batu No.3, 

Pinangsia, 

Tamansari, 

RT.3/RW.6, 

Pinangsia, 

Tamansari, Kota 

Jakarta Barat 

3  

Museum 

Fatahillah/Museum 

Sejarah jakarta 

Jalan Taman 

Fatahillah No.1, 

Pinangsia, 

Tamansari, Kota 

Jakarta Barat 

4  Museum Bank Mandiri 

Jl. Lapangan 

Stasiun No. 1, 

RT. 3 / RW. 6, 

Pinangsia, 

Tamansari, 

RT.3/RW.6, 

Pinangsia, 

Tamansari, Kota 

Jakarta Barat 

5  Museum Wayang 

Jl. Lada No.23, 

RT.7/RW.7, 

Pinangsia, 

Tamansari, Kota 

Jakarta Barat 
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No Name Address 

6  Museum Keramik 

Jl. Pos Kota, 

RT.9/RW.2, 

Daerah Khusus 

Ibukota Jakarta, 

Jakarta Barat 

7  Museum Polri 

Jl. Trunojoyo 

No.3, 

RT.5/RW.2, 

Selong, Kby. 

Baru, Kota 

Jakarta Selatan 

8  
Museum Layang - 

Layang 

Jalan Haji 

Kamang No.19, 

RT.2/RW.1, 

Pondok Labu, 

Cilandak, 

RT.2/RW.10, Pd. 

Labu, Cilandak, 

Kota Jakarta 

Selatan 

9  
Museum Taman 

Prasasti 

Jl. Tanah Abang I 

No.1, Kelurahan 

Petojo Selatan, 

Kecamatan 

Gambir, 

RT.11/RW.8, 

Petojo Selatan, 

Gambir, 

RT.11/RW.8, 

Petojo Sel., 

Gambir, Kota 

Jakarta Pusat 

10  Museum Tekstil 

Jl. Aipda KS 

Tubun No.2-4 

Jakarta Pusat 

11  
Museum Kebangkitan 

Nasional 

Jl. Abdul 

Rachman Saleh 

No.26, 

RT.4/RW.5, 

Senen, Kota 

Jakarta Pusat 

12  Monumen Nasional 

Jl. Tugu Monas, 

Gambir, Jakarta 

Pusat, DKI 

Jakarta 

13  Museum katedral 

Jl. Katedral 

No.7B, Ps. Baru, 

Sawah Besar, 

Kota Jakarta 

Pusat 

14  
Museum Perumusan 

Naskah Proklamasi 

Jl. Imam Bonjol 

No.15, 

RT.9/RW.4, 

Menteng, Kota 

Jakarta Pusat 

15  
Museum Sumpah 

Pemuda 

Jalan Kramat 

Raya No.106, 

Kwitang, Senen, 

RT.2/RW.9, 

Kwitang, Senen, 

Kota Jakarta 

Pusat 

16  Museum Satria Mandala 

Jl. Jend. Gatot 

Subroto No.14, 

RT.6/RW.1, 

Kuningan Bar., 

Mampang Prpt., 

Kota Jakarta 

Selatan 

17  Museum Bahari 

Jl. Pasar Ikan 

No.1, 

RT.11/RW.4, 

Penjaringan, 

No Name Address 

Kota Jakarta 

Utara 

18  Museum Joang 45 

Jl. Menteng Raya 

No.31, 

RT.1/RW.10, Kb. 

Sirih, Menteng, 

Kota Jakarta 

Pusat 

19  
Taman Mini Indonesia 

Indah 
Jakarta Timur 

20  Museum Antara 

Antara 

61, Kelurahan 

Pasar 

Baru, Kecamatan 

Sawah 

Besar, Jakarta 

Pusat, DKI 

Jakarta 

21  
Museum Jendaral Besar 

Dr. A.H Nasution 

Jl Teuku Umar 

No. 40, Jakarta 

Pusat 

22  
Museum Mohammad 

Hoesni Thamrin 

jl. Kenari II No. 

15 

23  

Sasmita loka Pahlawan 

Revolusi Jendral 

Ahmad Yani 

Jl. Lembang 

No.58 dan jl 

Laruharhari No. 

65, Jakarta Pusat 

24  
Galeri Nasional 

Indonesia 

Jl. Medan 

Merdeka Timur 

No. 14, Jakarta 

Pusat 

25  
Museum Santa Maria 

Juanda 

Jl. Ir. H. Juanda 

No.29, Kebon 

Kelapa, Gambir, 

Jakarta Pusat 

26  
Bible Museum & 

Library 

Lantai 2-3 

Gedung Pusat 

Alkitab Jalan 

Salemba Raya 

No.12 2, 

RT.2/RW.6, 6, 

Paseban, Senen, 

Central Jakarta 

City, Jakarta 

10430 

27  Museum DPR RI 

Jl. Jendral Gatot 

Subroto, 

Senayan, Jakarta 

Pusat 

28  

Museum Kehutanan “Ir. 

Djamaludin 

Suryohadikusumo” 

Kompleks 

Manggala 

Wanabakti, 

RT.01/03, 

Gelora, 

Tanahabang, 

Jakarta Pusat 

29  Museum Istiqlal 

Jl. Raya Taman 

Mini Indonesia 

Indah Pintu 1 

Jakarta Timur 

30  
Monumen Pancasila 

Sakti 

Jl. Raya Pondok 

Gede 

RT.4/RW.12, 

Lubang Buaya, 

Cipayung, 

Jakarta Timur 

31  

Museum Anatomi 

Universitas Katolik 

(Unika) Atmajaya 

Gedung Klara 

Asisi Lantai 2, 

Fakultas 

Kedokteran 

Universitas Atma 

Jaya, Jl. Pluit 

Raya No. 2, 

Jakarta Utara 
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No Name Address 

32  
Museum Basoeki 

Abdullah 

Jl. Keuangan 

Raya No. 19 

Cilandak Barat, 

Jakarta Selatan 

33  
Museum Benda-Benda 

Alkitab Yerushalayim 

Jl. Raya Rawa 

Sengon No. 35 

RT.001 / 

RW.022, Kelapa 

Gading Barat, 

Kelapa Gading, 

Kota Jakarta 

Utara, Daerah 

Khusus Ibukota 

Jakarta 

34  Museum BNI 1946 

Jl. Lada No.1, 

Kota Tua, 

Pinangsia, 

Tamansari, 

Jakarta Barat 

35  
Museum Ciputra 

Artpreneur 

Jl. Prof. DR. 

Satrio Kav. 3-5, 

Ciputra World 1, 

Retail Podium 

Level 11-13, 

Kuningan, 

Jakarta Selatan 

36  
Museum Purna Bhakti 

Pertiwi 

Jl. Taman Mini 

Indonesia Indah, 

RW.3, Pinang 

Ranti, Kec. 

Makasar, Kota 

Jakarta Timur 

37  
Museum di Tengah 

Kebun 

Jl. Kemang 

Timur Raya 

No.66, 

RT.7/RW.3, 

Bangka, 

Mampang 

Prapatan, Jakarta 

Selatan 

38  
Museum Komodo dan 

Taman Reptil 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

Mini, Jakarta 

Timur 

39  
Museum FKUI-

Indonesia 

Jl. Salemba Raya 

No. 6 Kenari, 

Senen, Jakarta 

Pusat 

40  
Museum Graha Widya 

Patra 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

Mini, Jakarta 

Timur 

41  
Museum Hakka 

Indonesia 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

Mini, Jakarta 

Timur 

42  Museum Harry Darsono 

Jl. Cilandak 

Tengah No.71, 

RT.2/RW.13, 

Cilandak Barat, 

Cilandak, Jakarta 

Selatan 

43  Museum Indonesia 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

Mini, Jakarta 

Timur 

44  Museum Keprajuritan 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

No Name Address 

Mini, Jakarta 

Timur 

45  
Museum Listrik dan 

Energi Baru 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

Mini, Jakarta 

Timur 

46  

Museum MACAN 

(Modern and 

Contemporary Art in 

Nusantara) 

AKR Tower 

Level M, Jl. 

Panjang No. 5 

Kebon Jeruk, 

Jakarta Barat 

47  
Museum Olahraga 

Nasional 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

Mini, Jakarta 

Timur 

48  Museum Penerangan 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

Mini, Jakarta 

Timur 

49  
Museum Perangko 

Indonesia 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

Mini, Jakarta 

Timur 

50  Museum Pusaka 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

Mini, Jakarta 

Timur 

51  Museum Serangga 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

Mini, Jakarta 

Timur 

52  

Museum Tragedi 12 

Mei ’98 Universitas 

Trisakti 

Jl. Kyai Tapa 

No.1, 

RT.6/RW.16, 

Tomang, Grogol 

Petamburan, 

Kota Jakarta 

Barat, DKI 

Jakarta 

53  Museum Transportasi 

Taman Mini 

Indonesia Indah, 

Jl. Raya Taman 

Mini, Jakarta 

Timur 

For the second algorithm, the location points of each 

historical location are collected, and then the x and y 

values based on the image are collected into one array. 

Next, the plotting process will be executed for the TSP 

points on the map of Jakarta that has been imported as 

shown in Figure 3. 

Data pre-processing in this research was carried out in 

several stages. The first stage, data cleaning, involves 

removing missing or inconsistent data that may cause 

the Ant Colony Optimization (ACO) algorithm to 

malfunction. This process includes tasks such as data 

imputation, standardization, or normalization. 

Following data cleaning, data transformation is 

conducted, which entails converting the input data into 

a format that can be utilized by the ACO algorithm. 

Specifically, for the Traveling Salesman Problem 

(TSP), the input data, consisting of a collection of cities 
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and their coordinates, is transformed into a structure 

that the ACO algorithm can effectively use. 

Overall, data pre-processing is an important step in any 

optimization algorithm, including ACO, because it can 

have a major impact on the performance of the 

algorithm and the quality of the solutions. It is possible 

to improve the efficiency and effectiveness of the ACO 

algorithm and generate better solutions in a shorter 

amount of time by carefully performing data pre-

processing. 

 

Figure 3. Map of Jakarta with Plotting of Location Points 

2.3 Model Construction 

This paper applies the ACO algorithm through two 

approaches. The first approach involves experimenting 

with ACO using GPS coordinates, and the second 

approach involves experimenting with ACO using map 

images. To increase efficiency for the first approach, 

this algorithm is used to optimize last-mile distribution 

routes by reducing the driver's travel distance. This 

study tackles the TSP problem by combining 

population-based ACO methods with a new 

hierarchical pheromone update to improve solution 

quality.  

The algorithm will first read the data and load it into the 

pandas dataframe, after which the data will be grouped 

by cluster and the amount of data in each cluster will be 

calculated. Then, the algorithm will prepare a distance 

matrix based on the haversine of the latitude and 

longitude data. We use haversine to get the distance 

between geo-locations. Then the results will be 

displayed in kilometres. 

The haversine formula is used to calculate the distance 

between two points on a sphere, such as the Earth. The 

formula takes into account the radius of the sphere and 

the latitude and longitude coordinates of the two points. 

The law of haversines states that the sides of a spherical 

triangle are proportional to the sine of the opposite 

angles. The Haversine formula is widely used in 

applications such as navigation systems, geographic 

information systems (GIS), and location-based services 

that involve calculating distances between points on the 

earth's surface. 

The core process of this algorithm is ACO which tries 

to get the best solution. First of all, the parameters nk, 

maxIteration, beta, zeta, rho, q0, plot, and verbose are 

assigned values. After that, the optimizer object is 

created from the ACO class, and the fit method is used 

to get the best result and path. Finally, the convergence 

matrix of the optimization process is plotted. 

A convergence matrix is a table or plot showing the 

progress of an optimization algorithm over time, 

usually in relation to the objective function. The 

convergence matrix usually contains information such 

as the iteration number, the objective function value, 

and the termination criteria used to stop the algorithm. 

The convergence matrix can be used to evaluate the 

performance of the algorithm and determine whether it 

has reached a satisfactory solution. A good optimization 

algorithm should, in general, converge to a solution 

quickly and efficiently, with objective function values 

that are close to the optimal value. 

Convergence matrices can also be used to diagnose 

algorithm problems such as slow convergence or 

oscillations in the objective function. This data can be 

used to improve the algorithm or fine-tune its 

parameters to improve performance. Overall, the 

convergence matrix is an effective tool for analyzing 

and evaluating the performance of optimization 

algorithms and is frequently used in research papers and 

engineering applications. 

For the second approach, ACO can be applied to TSP 

with the city location shown on the map. In such cases, 

the map or image can be converted into a graphical 

structure that can be used as input to the ACO 

algorithm. The basic idea is to represent each city or 

location on the map as a node in a graph and connect 

the nodes with edges that represent the distance between 

them. The ACO algorithm will then use this graph 

structure as input to find the shortest or most optimal 

path through the graph. 

The logic of the algorithm used is that we first send ants 

out on random walks to complete the Traveling 

Salesman task for themselves. The ant_count parameter 

in the numpy array determines how many ants there are, 

and the ant_speed parameter determines how many 

steps each ant takes per epoch. Individual ants will keep 

an eye on a list of cities they have visited along their 

"path", a list of "remaining" locations they still need to 

see, the "distance" to the next location, the number of 

"round_trips" they have made to the colony, and the 

"path_cost" of how many steps they have taken. There 

is a "distance" vector countdown as the ant moves. 

When an ant reaches a node, it randomly selects a new 

location from a list of choices left by other ants. This 
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decision is weighed by the amount of pheromone left 

behind by other ants. Pheromone_power determines 

how strongly the ant is affected by small differences in 

the pheromone. Distance_power determines whether 

ants prioritize visiting closer nodes first. Reward_power 

determines how the best/current path is used when 

leaving a new pheromone. This parameter encourages 

the ants to explore longer paths around the path of the 

strongest pheromone. Decay_power determines how 

quickly old pheromone trails decay; after an ant has 

visited all the nodes on its list, it returns home. 

As soon as an ant returns home, it updates its "self. 

pheromones" map for its completed journey, letting the 

others know that the path traveled is a popular one. 

Pheromone_reward grows with "self.round_trips" 

which has the effect of gradually eroding the previous 

pheromone pathway. Ants will update the 

"self.round_trips" count and the "self.ants_used" count, 

then reset itself and start solving the traveling salesman 

problem again. 

If an ant finds a new best route, it informs the queen, 

which tracks the best route. The queen will then double 

the pheromone along this new optimal path, increasing 

the likelihood that the ants will follow it. The multiplier 

that the queen uses when a new best path is found is 

controlled by the "best_path_smell" variable. 

The first ants quickly find a usable route, and the colony 

then rapidly assembles on a route that is close to ideal. 

Ants use the 1/distance metric to decide which city to 

go to next, in addition to following and laying a 

pheromone trail. The ants will keep doubling their 

efforts until they run out of options. 

Ant multiplication effort is a technique used in ACO to 

increase the number of ants or iterate the algorithm until 

the optimal path is found. The goal is to improve 

algorithm performance and find the best path in less 

time. The first step in implementing ant multiplication 

is to start with a small number of ants or iteration in the 

ACO algorithm. These initial values can be selected 

based on prior knowledge of the problem or by 

experimenting with various values to find the best 

starting point. 

The next step is to run the algorithm and record the best 

path found so far. This path represents the best solution 

of the algorithm in the current iteration. The number of 

ant or algorithm iterations is then doubled. Increasing 

the number of ants or iterations allows the algorithm to 

explore more paths in the search space, thereby 

increasing the probability of finding the optimal path. 

The ACO algorithm ran again in the fourth step, starting 

with the pheromone trail from the previous run. This is 

done to store previous run information and use it as a 

starting point for a new run. 

If the best path found in this process is not better than 

the previous best path, the algorithm is stopped, and the 

previous best path is used as the final solution. It is 

important to note that the optimal number of ants or 

iterations will vary depending on the problem at hand, 

and trying to multiply ants does not always produce 

better results. As a result, it is very important to test and 

validate the results of the algorithms using appropriate 

statistical techniques, as well as to evaluate the 

performance of the algorithms carefully for the specific 

problem being solved. 

The ACO algorithm that we use is also tested using 

statistical random variation to assess the robustness and 

reliability of the solution. The natural variability or 

uncertainty present in any data set or measurement due 

to chance or random factors is referred to as statistical 

random variation. Random variation is often quantified 

in statistical analysis using measures such as the 

standard deviation or variance. Random variations in 

experimental results can occur due to factors such as 

measurement error, differences in experimental 

conditions, or natural variations in the response of the 

system being studied. Random variation is an important 

consideration in statistical analysis because it can 

influence data interpretation and conclusions. 

Understanding and accounting for random variation is 

an important aspect of statistical analysis and is 

necessary to draw valid and reliable conclusions from 

data. 

Using statistical random variation, researchers can 

assess how the ACO algorithm performs under different 

conditions and identify its strengths and weaknesses by 

introducing randomness into the test environment. This 

can help improve the algorithm and its effectiveness in 

real-world applications. In addition, testing with 

random variation helps in determining whether the 

solution obtained is not simply local optimal and checks 

the convergence of the algorithm. 

2.4 Evaluation 

In this section, we explain the specific evaluation 

criteria and methodologies for evaluating the ACO 

algorithm's performance and reliability when applied to 

the TSP. The evaluation is divided into two 

experiments, one using GPS coordinates as input data 

and the other using a map image. 

In the evaluation of the ACO Algorithm using GPS 

Coordinates, our primary focus lies in evaluating the 

quality of the paths generated. To achieve this, we 

calculate the total distance or cost of the routes created. 

This metric serves as a crucial indicator of route 

efficiency and provides insights into the algorithm's 

capability to improve route efficiency when compared 

to the initial path length. Additionally, we conduct a 

convergence analysis to gain a deeper understanding of 

how the algorithm evolves over iterations. This analysis 

monitors the solution's progress and assists us in 

determining whether the algorithm exhibits convergent 

optimization or approaches near-optimal solutions. We 

use statistical measures such as standard deviation to 

ensure the stability and consistency of the algorithm's 

performance. A lower standard deviation indicates that 

the algorithm produces consistent reliable results. 
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Finally, we evaluate the algorithm's computational 

efficiency, including execution time. This evaluation 

assists us in understanding the algorithm's speed in 

producing results as well as its computational resource 

requirements. 

In the evaluation of the ACO Algorithm using Map 

Image, we once again prioritize the assessment of path 

quality. Similar to the GPS coordinates-based 

experiment, we calculate the total distance or cost of the 

routes generated. Lower path costs are indicative of 

better solutions. Additionally, we conduct an effort-

doubling analysis to understand the impact of 

increasing computational effort on solution quality. 

This analysis tracks changes in path cost, ant count, 

epochs, round trips, and time with each doubling of 

effort, providing valuable insights into the algorithm's 

behavior. We explore the algorithm's sensitivity to 

parameter changes, particularly examining how it 

responds to variations in parameters like pheromone 

power, distance power, and reward power, all of which 

can significantly affect its performance. Furthermore, 

we assess computational effectiveness, including 

execution time, to gauge the algorithm's speed in 

producing results. This evaluation also involves a 

comparative analysis with the GPS coordinate 

experiment to determine which input method yields 

superior results under varying conditions.  

2.5 Result Analysis 

The evaluation of experimental results is a critical step 

in determining the dependability of the proposed 

algorithms. The evaluation process for this study is 

centered on quantifying the performance of the ACO 

algorithms in addressing the Traveling Salesman 

Problem. A variety of metrics are carefully considered 

to comprehensively assess the performance of the 

algorithms. 

In metrics evaluation, two critical criteria are used to 

evaluate the effectiveness of the ACO algorithms in 

dealing with the TSP. The first, path length, is a direct 

indicator of the algorithms' ability to generate optimized 

routes. A shorter path length indicates a more efficient 

and optimal solution. The evaluation uses the difference 

between the initial path length and the path length 

obtained after optimization to assess the algorithms' 

ability to improve route efficiency. Convergence 

analysis is also useful in understanding the behavior of 

the algorithms during the iterative optimization process. 

We can determine how quickly the algorithms stabilize 

and whether they improve steadily over iterations by 

studying convergence matrices and graphs. 

Convergence matrices and graphical representations are 

critical tools for this analytical task. 

Other than direct metrics, statistical analysis plays a 

critical role in interpreting the results. This analysis is 

comprised of two major components: standard 

deviation and random variation tests. The standard 

deviation, an essential statistical measure, plays the role 

of revealing the variability and consistency of the 

algorithms’ performance. Lower standard deviation 

values indicate a higher degree of consistency and 

reliability in the results, highlighting the dependability 

of the algorithms. Similarly, statistical random variation 

tests are used to investigate how algorithms respond to 

fluctuations, uncertainties, and variations. We can 

determine the resilience of the algorithms to different 

scenarios and the degree of reliability achieved by 

injecting randomness into the test environment. 

3. Results and Discussions 

3.1 Results of ACO Algorithm Implementation with 

GPS Coordinate 

This algorithm utilizes GPS coordinate data from 

historical locations to solve the TSP. Using the 

haversine formula, the initial data of latitude and 

longitude coordinates is processed and transformed into 

a distance matrix. The ACO algorithm then uses this 

distance matrix as an input. The ACO algorithm 

iteratively explores the solution space, employing 

pheromone trails and heuristic principles to find the best 

solution that optimizes the travel route. 

Both algorithms use Soekarno-Hatta Airport in Jakarta 

as the starting and ending points of the traveling 

salesman's journey. 

[0, 20, 13, 25, 24, 12, 11, 18, 15, 21, 22, 39, 9, 1, 14, 10, 

23, 5, 33, 26, 6, 34, 3, 2, 4, 17, 31, 52, 28, 46, 27, 7, 16, 

35, 48, 43, 47, 29, 19, 50, 53, 38, 44, 37, 42, 32, 8, 36, 

30, 40, 49, 41, 45, 51], the sequence number represents 

the path results from the first algorithm 

The sequence is based on Table 1. This algorithm 

requires about 3.02 seconds for 100 iterations and 54 

data points. The best path and distance obtained are 254 

km. The convergence matrix of the results is shown in 

Figure 4. 

 
Figure 4. The Convergence Matrix of The First Algorithm 

 

The X-axis represents the number of iterations, while 

the Y-axis represents the total distance value or the best 

score found. The blue line represents the progression of 

the best solution from iteration to iteration. In the 

context of ACO, this is the smallest value of the total 

distance found by the ants in the population. The red 

line depicts the ants' best solution at a given iteration. 

This means that at that iteration, the best ant in the 
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population discovered the best solution. The horizontal 

green line represents the average distance traveled by 

all of the ants in the population at a given iteration. This 

indicates how well the population performs in an 

iteration. 

Convergence occurs when the algorithm stabilizes, and 

further iterations do not improve the solution 

significantly. The convergence criterion has been met 

in this case, and the best distance found remains 

relatively constant after a certain number of iterations. 

The algorithm converged before reaching the 40th 

iteration because it found a satisfactory solution before 

reaching the 40th iteration. 

3.2 Results of ACO Algorithm Implementation with 

Map Image 

The input for this algorithm is a map image depicting 

historical locations as shown in Figure 5. Each city or 

location on the map is represented as a node in a graph 

in this algorithm, and these nodes are connected by 

edges that represent the distances between the cities. 

This graph structure is then used as input by the ACO 

algorithm to find the shortest or most optimal path 

through the graph. 

Table 2. Effort Doubling Process 

Path cost Ant used Epoch Round 

trips 

Time 

8256 1 7444 1 0 

7221 65 15252 2 0 

6808 130 23119 3 0 

6580 143 24680 3 0 

6125 148 24933 3 0 

5997 198 30063 4 0 

5755 200 30345 4 0 

5490 230 32363 4 0 

5467 259 35337 5 0 

5454 260 35359 5 0 

5374 265 35833 5 0 

5349 282 36928 5 0 

5203 287 37156 5 0 

5156 303 38226 5 0 

5111 332 41183 6 1 

5016 367 43112 7 1 

4952 373 43606 6 1 

4878 394 45796 7 1 

4843 420 47515 8 1 

4783 452 49712 8 1 

4781 458 50463 8 1 

4655 460 50635 8 1 

4529 527 55517 9 1 

4432 549 56726 9 1 

4418 599 60335 10 1 

4410 1341 110039 22 3 

4408 2206 168210 35 4 

4430 4731 336530 75 11 

As explained in the methodology, the first ant will find 

the best path and will double its efforts until it runs out 

of options. The results of using the ACO algorithm with 

a map image as input are shown in Table 2. The table 

displays the changes in path cost, ant count, epochs, 

round trips, and time during the effort doubling process. 

The "Path cost" column in the table indicates the best 

path cost found at each iteration. A lower path cost 

value denotes a better outcome. The "Ant used" column 

shows how many ants were used in each iteration. The 

more ants used, the more likely it is that an optimal 

solution will be found. The number of iterations 

performed during the effort doubling process is 

represented in the "Epoch" column. More iterations 

allow for the exploration of more solution options. The 

"Round Trips" column shows how many round trips 

each ant took. More round trips mean more variations 

explored in search of better solutions. Finally, the 

"Time" column displays the amount of time spent 

during the effort-doubling process. 

Table 2 shows that the path cost tends to decrease with 

each doubling of effort. This indicates that the ACO 

algorithm with effort doubling successfully improves 

on the previous iteration's solution. With doubling the 

effort, the number of ants used and epochs increase, 

indicating a broader exploration of the solution space. It 

should be noted, however, that after several effort 

doublings, the reduction in path cost becomes 

insignificant. This suggests that the algorithm has 

reached a point where further improvements are 

difficult to achieve. As a result, doubling effort is 

critical for improving solutions in the early stages, but 

it should be noted that increased computational cost and 

time are associated with it. 

The second algorithm takes 11 seconds to generate the 

optimal path. The initial distance before ACO is 17938, 

and this algorithm reduces it to 4430. The number of 

ants needed is 4731, with 75 trips using distance_power 

1. 

 
Figure 5. Result of The Second Algorithm Experiment (Based on 

Longitude and Latitude & Map Image) 
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Although the algorithm cannot guarantee finding the 

optimal path, it can quickly converge on a path that is 

close to optimal, which may be acceptable in most 

cases. Furthermore, statistical random variation was 

carried out on this algorithm, with the results shown in 

Table 3. 

Table 3. Statistical Random Variation Result 

 Count Mean Std Min Max 

Results_converged 10.0 4171.1 147.5 3952.0 4348.0 

Results_timed 10.0 4155.7 152.0 3991.0 4488.0 

difference 0 15.4 -4.5 -39.0 -140.0 

Statistical analysis reveals that for convergent results, 

the standard deviation is 147.5, which means about 

0.04% of the average path distance (4171.1). The 

difference between the maximum and minimum path 

spacing is 396 (0.1%). The average time for merging is 

23.7 seconds. When run on a fixed 10-second timer, the 

standard deviation decreases slightly to about 15.4 and 

the average path distance to about 4155.7, 

approximately (<1%) slightly higher than the 

convergent results. This shows that the algorithm is 

fairly consistent and can still produce reasonably good 

results even if it is terminated early. When running the 

algorithm for a long time, the "law of diminishing" 

results apply. 

Both types of ACO take different approaches to 

representing input data, but they both use pheromone 

and heuristic principles to find the best solution in the 

TSP. Finally, these two algorithms are evaluated and 

compared in order to determine their dependability in 

determining the best available route. 

The primary novelty of this study lies in the innovative 

combination of population-based ACO methods with a 

hierarchical pheromone update mechanism. This 

unique approach enhances solution quality by 

improving pheromone trail accuracy, which encourages 

better path selections among the ants and leads to a 

faster convergence toward optimal solutions. 

Additionally, introducing hierarchical pheromone 

updates adds a robust layer of solution consistency and 

enhances stability in path distance results across 

different runs. 

Moreover, this study expands on the practical 

application of ACO in last-mile distribution, offering 

both a GPS-based and a map-image-based approach to 

route optimization. The dual approach demonstrates 

versatility in adapting to different input types, a novel 

direction in ACO applications that strengthens its 

relevance across various transportation and logistics 

scenarios. These findings validate that the ACO 

algorithm—especially when equipped with hierarchical 

updates—can produce stable, high-quality results 

suitable for real-world implementation in last-mile 

distribution challenges. 

3.3 Implications and Further Study 

This study shows that the ACO algorithm effectively 

addresses the TSP in route planning, potentially 

optimizing travel routes and improving travel 

experiences for both travel agencies and tourists. Travel 

agencies can create efficient travel itineraries by 

applying the ACO algorithm to tour planning, reducing 

travel distances between destinations and allowing 

tourists to spend more time enjoying their chosen 

destinations. This results in lower operational costs and 

higher customer satisfaction. 

The ACO algorithm helps travelers to visit more places 

in less time, avoid inefficient routes or traffic-congested 

roads, and enjoy more time savings, cost efficiency, and 

improved travel experiences. This research also paves 

the way for the creation of advanced technological 

solutions for the tourism industry, such as mobile 

applications that offer optimized route suggestions, 

estimate travel times, and provide information about 

tourist destinations. 

The research focuses on optimizing the distance 

between points in order to find the shortest path for the 

TSP. However, it has not explored the optimization of 

travel time between different locations. The spatial 

dimension of the TSP has been addressed, but the 

temporal dimension remains unaddressed. The 

incorporation of travel time optimization into the 

existing framework may improve the applicability of 

proposed solutions in real-world scenarios. Future 

research could focus on developing an algorithm that 

considers both distance and travel time at the same time, 

with the goal of finding routes that minimize both 

factors collectively. A hybrid approach could be 

investigated, combining ACO with other time-related 

optimization techniques or training machine learning 

models to predict travel times based on historical traffic 

patterns. 

4. Conclusions 

In this study, we conducted a search for the best route 

or traveling salesman problem (TSP) for museums or 

historical sites in Jakarta using ACO. ACO for TSP has 

been proven effective in finding nearly optimal 

solutions for small to medium-sized TSP instances. For 

TSP with large sizes, it may be better to add a clustering 

algorithm, such as using KNN. We used two 

algorithms, the first algorithm used coordinates or 

longitude and latitude points of the historical places, 

and the second algorithm used coordinate data from a 

provided map image. After implementing both models, 

it can be concluded that the ACO model is not very 

effective in solving TSP using actual coordinates. 

However, when using coordinates from a map image, 

the algorithm can quickly find a nearly optimal path. 

After conducting statistical random variation, the 

algorithm was also found to be flexible and reliable 

when tested under different conditions. Testing with 

statistical random variation can verify that the results 
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obtained are not only local optima and check the 

convergence of the algorithm. 
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