
 Received: 16-06-2024 | Accepted: 23-11-2024 | Published Online: 28-12-2024

788

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

Vol. 8 No. 6 (2024) 788 - 798 e-ISSN: 2580-0760

IoT Security: Botnet Detection Using Self-Organizing Feature Map and

Machine Learning

Susanto1*, Deris Stiawan2, Budi Santoso3, Alex Onesimus Sidabutar4, M. Agus Syamsul A5, Mohd. Yazid Idris6,

Rahmat Budiarto7,
1,3,4Department of Informatica, Faculty of Engineering Science, Universitas Bina Insan, Lubuklinggau, Indonesia

2Department of Computer Engineering, Faculty of Computer Science, Universitas Sriwijaya, Palembang, Indoensia
5Department of Computer Engineering, Faculty of Engineering Science, Universitas Bina Insan, Lubuklinggau, Indonesia

6School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
7College of Computer Science and IT, Al-Baha University, Alaqiq, Saudi Arabia

1susanto@univbinainsan.ac.id, 2deris@unsri.ac.id, 3budisantoso@univbinainsan.ac.id, 4alextkj12@gmail.com,
5mas.arifin@univbinainsan.ac.id, 6yazid@utm.my, 7rahmat@bu.edu.sa

Abstract

The rapid advancement of Internet of Things (IoT) technology has created potential for progress in various aspects of life.

However, the increasing number of IoT devices also raises the risk of cyberattacks, particularly IoT botnets often exploited by

attackers. This is largely due to the limitations of IoT devices, such as constraints in capacity, power, and memory, necessitating

an efficient detection system. This study aims to develop a resource-efficient botnet detection system by using the Self-

Organizing Feature Map (SOFM) dimensionality reduction method in combination with machine learning algorithms. The

proposed method includes a feature engineering process using SOFM to address high-dimensional data, followed by

classification with various machine learning algorithms. The experiments evaluate performance based on accuracy, sensitivity,

specificity, False Positive Rate (FPR), and False Negative Rate (FNR). Results show that the Decision Tree algorithm achieved

the highest accuracy rate of 97.24%, with a sensitivity of 0.9523, specificity of 0.9932, and a fast execution time of 100.66

seconds. The use of SOFM successfully reduced memory consumption from 3.08 GB to 923MB. Experimental results indicate

that this approach is effective for enhancing IoT security in resource-constrained devices.

Keywords: Botnet; IoT; Feature Engineering; SOFM; Machine Learning

How to Cite: Susanto, “IoT Security: Botnet Detection Using Self-Organizing Feature Map and Machine Learning”, J. RESTI

(Rekayasa Sist. Teknol. Inf.) , vol. 8, no. 6, pp. 788 - 798, Dec. 2024.

DOI: https://doi.org/10.29207/resti.v8i6.5871

1. Introduction

The swift progress and adoption of intelligent and

Internet of Things (IoT)-based technologies have

facilitated numerous potential advancements across

various facets of life [1]. This has become a new

paradigm that transforms traditional lifestyles into high-

tech living. The IoT has brought about transformations

in the form of smart transportation, smart cities

pollution control, energy savings, smart homes, and

smart industries [2]. On the other hand, the rapid

expansion of IoT devices has resulted in a rise in

cyberattacks aimed at these devices [3]. Attacks

utilizing IoT-based botnets are becoming increasingly

common and favored by cybercriminals [4]. One of the

reasons is the inherent limitations of IoT devices, such

as restricted range, power, and memory, as well as the

absence of compatible security solutions for these

devices and their applications [5]. These limitations in

IoT systems have become a focal point in the research

domain for developing reliable detection systems that

align with the architecture of IoT devices [6].

Recently, Intrusion Detection Systems (IDS) have

become crucial components in network security

infrastructure to ensure strong protection against

cyberattacks [7]. The primary challenge in developing

IDS for IoT networks is managing high-dimensional

data, as the vast amounts of data generated can lead to

increased storage usage, longer detection times, and

reduced IDS efficiency [8]. In this context, feature

engineering has proven to be a valuable solution for

overcoming the limitations of IoT devices, particularly

when managing high-dimensional data [9]. One feature

engineering model that can be used to address high-

https://doi.org/10.29207/resti.v8i6.5871

Susanto, Deris Stiawan, Budi Santoso, Alex Onesimus Sidabutar, M. Agus Syamsul A, Mohd. Yazid Idris,

Rahmat Budiarto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 789

dimensional data issues is the dimensionality reduction

method [10].

The effectiveness of machine learning algorithms relies

on various factors, such as the quality of the dataset and

the choice of optimal feature [11]. This research

contributes to maximizing the performance of machine

learning algorithms by considering the use of feature

quantities through dimensionality reduction using the

Self-Organizing Feature Map (SOFM) method.

Subsequently, performance evaluation is reviewed

based on False Negative Rate (FNR), execution time,

accuracy, False Positive Rate (FPR), sensitivity, and

specificity.

The authors have organized this paper into six sections.

Section 2 examines related work on data dimensionality

reduction in IDS, as investigated in prior research.

Section 3 explains the datasets used in the experiment,

SOFM, classification algorithms, performance

evaluation, experiment setup, and analysis tools.

Section 4 explains the experimental results and

discusses their implications, while Section 5 delves into

the conclusions drawn and outlines further research

directions concerning IDS.

The implications of this study's findings are significant

for both the academic and industrial sectors. First, the

demonstrated effectiveness of SOFM in feature

engineering for botnet detection suggests a promising

approach for improving IoT security. The high accuracy

rate indicates that SOFM can reliably identify threats,

making it a viable solution for real-world applications.

Furthermore, the considerable reduction in memory

usage highlights the method's practicality for

deployment in resource-constrained IoT environments.

This opens the door for broader adoption of advanced

security measures in IoT devices, even those with

limited computational resources. Industries relying on

IoT technology can implement this method to enhance

their security infrastructure without the need for

substantial hardware upgrades.

To address the issue of high-dimensional data in IoT

botnet detection, many researchers have conducted

feature engineering. Bahsi et al. [12] and Alqahtani et

al. [13] employed the Fisher score method to tackle the

high-dimensional data problem in the N-BaIoT dataset,

with both studies achieving high accuracy rates.

Additionally, Alshamkhany et al. [14] applied Principal

Component Analysis (PCA) to tackle the high-

dimensional data challenge in the UNSW-NB15

dataset, showcasing significant efficacy in detecting

IoT botnets.

Furthermore, Pokhrel et al. [15] evaluated the

effectiveness of the chi-square method for feature

engineering in addressing the high-dimensional data

challenge within the BoT-IoT dataset. The experiment

successfully addressed the problem and achieved high

accuracy rates. Susanto et al. [16]–[18] used methods

such as Fast Independent Component Analysis (Fast-

ICA), random projection, and Linear Discriminant

Analysis (LDA) to resolve high-dimensional data

issues. Their results showed high effectiveness in

detecting IoT botnets using the N-BaIoT dataset.

Deris et al. [19] used an autoencoder to address high-

dimensional data issues in the medBIoT dataset,

achieving very high accuracy in IoT botnet detection.

Nomm and Bahsi [20] utilized feature engineering to

detect IoT botnets using methods such as Entropy,

Variance, and Hopkins. Their experiment, conducted on

the N-BaIoT dataset, resolved high-dimensional data

problems with relatively high accuracy.

Moreover, Duan et al. [21] employed autoencoder

neural networks for feature engineering to resolve high-

dimensional data problems in IoT botnet detection.

Using the Information Security Centre of Excellence

(ISCX)-botnet dataset, their experiment demonstrated

high accuracy rates. Haq and Khan [22] utilized PCA to

reduce high-dimensional data in the N-BaIoT dataset,

and their feature engineering results showed reasonable

accuracy in detecting IoT botnets. A summary of

feature engineering research addressing high-

dimensional data issues in IoT botnet detection is

presented in Table 1.

Table 1. Summary of Research on Feature Engineering in IoT

Botnet Detection

Authors,

Year

Feature

Engineering

Methods

Classification Methods

[12], 2018 Fisher score Decision tree nd k- Nearest

Neighbor (k-NN),

[13], 2020 Fisher score Extreme gradient boosting +

Genetica algorithm

[14], 2020 PCA Decision tree, Support

Vector Machine, k-NN,

Naïve bayes

[15], 2021 Chi-square k-NN, Multi-Layer

perception, Gausian naïve

bayes,

[16], 2023 Fast ICA Random Forest, k-NN,

Decision tree, Gradient

Boosting, Adaboost,

[17], 2021 Random

Projection

Gradient Boosting, Random

Forest, k-NN, Decision tree,

Adaboost,

[18], 2024 LDA Gradient Boosting, Random

Forest, k-NN, Decision tree,

Adaboost,

[20], 2019 Entropy,

Variance,

Hopkins

Support vector machine,

Isolation forests

[19], 2023 Autoencoder Artificial Neural Networks

(ANN)

[21], 2022 Autoencoder

Neural

Network

Decision tree, Gradient

boosting,

[22], 2022 PCA Deep Neural Network

[12], 2018 Fisher score k-NN, Decision tree

2. Research Methods

This research is an experimental study aimed at

developing and testing a botnet detection system for

resource-constrained IoT devices by combining Self-

Organizing Feature Map (SOFM) techniques for feature

engineering with various machine learning algorithms.

Susanto, Deris Stiawan, Budi Santoso, Alex Onesimus Sidabutar, M. Agus Syamsul A, Mohd. Yazid Idris,

Rahmat Budiarto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 790

This experimental study involves hypothesis testing

using a series of controlled experiments to evaluate the

effectiveness of the proposed method.

2.1 System Workflow

The proposed workflow of the IoT security system is

illustrated in Figure 1. The IoT botnet detection system

uses SOFM for feature engineering, followed by a

multi-classifier classification process. In this process,

dimensionality reduction is performed, reducing the

data from 100 features to 10 features. The dimensions

or features used for reduction can be selected randomly,

as stated by [23], [24]. The final step involves validation

using k-Fold Cross Validation. This technique ensures

that the experimental error closely approximates the

actual prediction error on the IDS [25]. It is also used to

detect overfitting issues [26].

The experiment conducted in this research adopts

existing methods and combines them into a new model.

Based on our literature review, the proposed model has

not been previously explored by other researchers.

Figure 1. Proposed experimental workflow

2.2 Dataset

This study uses the MedBIoT dataset [27]. The dataset

extraction process employs the incremental statistics

method [28], with a total of 100 features, indicating that

the dataset has a high-dimensional nature. Furthermore,

the dataset is generated from three physical devices and

80 virtual devices. It comprises four types of traffic:

benign traffic and attack traffic (bashlite, torii, and

mirai), totaling 17.845.567 traffic data points. The

MedBIoT dataset has high dimensionality,

necessitating feature engineering to optimize the

detection process. This is evident from several studies.

For instance, Kalakoti et al. [29] employed feature

engineering methods such as Pearson’s correlation-

based technique, Fisher score, Analysis of Variance

(ANOVA) F-test, mutual information, recursive feature

elimination, sequential forward selection, and

sequential backward selection to reduce the

dimensionality of the MedBIoT data. Deris et al. [19]

used Autoencoder for feature engineering on the

MedBIoT dataset. Additionally, Manzanares et al. [30]

applied PCA to reduce the dimensionality of the

MedBIoT data. Furthermore, Malik et al. [31] utilized

feature selection methods such as Univariate Filter,

Multivariate Filter, Forward Feature Selection, and

Backward Feature Elimination for feature engineering

on the MedBIoT data.

This study utilizes approximately 15.29% of the total

traffic data. The distribution of the MedBIoT dataset is

presented in Table 2.

Table 2. MedBIoT Dataset Distribution

New Label Traffic Type Amount of data The amount

of power used

Attack BashLite 4143276 841843

Mirai 842674 733856

Torii 319139 64755

Benign Benign 12540478 1087832

2.3. Self-Organizing Feature Map

The Self-Organizing Feature Map (SOFM) is a type of

a type of Artificial Neural Network (ANN) introduced

by [32] and subsequently reviewed in studies [33]–[35].

Self-Organizing Maps (SOFMs) are a type of neural

network architecture where processing units are

organized on a grid with n dimensions [36], which can

be used for dimensionality reduction [37]. Essentially,

SOFM is employed to recognize the spatial distribution

of a dataset using a network of neurons. This outlines

the steps involved in training a basic version of a neural

network with a grid-based architecture [38].

Network Initialization: The initial network can be

structured in a hexagonal or rectangular shape,

characterized by longitudinal and latitudinal lines. The

training input vector for SOFM is represented as

Equation 1.

𝑥 = [𝑥𝑖]𝑛 𝑥 2𝑖=1….𝑛 (1)

Each user event has a location represented by a vector

denoted by 𝑥𝑖. Here, 𝑖-th indicates the specific user

event (i = 1 to N), and N represents the total number of

user events. The Self-Organizing Map (SOFM) is

initialized as a 𝑝 𝑥 𝑞 grid, where each node (also called

a neuron) has a weight vector. These weight vectors are

Susanto, Deris Stiawan, Budi Santoso, Alex Onesimus Sidabutar, M. Agus Syamsul A, Mohd. Yazid Idris,

Rahmat Budiarto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 791

initially distributed uniformly within the minimum

bounding box of the city map. The neuron vectors (or

weight vectors) are denoted by Equation 2.

𝑊 = [𝑊𝑖𝑗]
𝑝 𝑥 𝑞 𝑥 2𝑖=1,…..,𝑝,𝑗=1,…..,𝑞 (2)

Identifying the Winning Neuron: During training, the

algorithm finds the most suitable neuron for a given

input data point. This neuron, known as the Best

Matching Unit (BMU) or Best Matching Cell [34], has

the weight vector closest to the input vector based on a

distance metric like Euclidean distance

Adjusting Neuron Weights: During each training step,

the algorithm: Selects an input: It picks a data point

(denoted by 𝑥𝑘)from the training data. Identifies the

winning neuron (BMU): It finds the neuron with the

weight vector (𝑤(𝑘)) closest to 𝑥𝑘, typically using a

distance metric like Euclidean distance. Updates

neighboring neurons: The weights of neurons within a

specific neighborhood surrounding the BMU are

adjusted to become more similar to the input data point

(𝑥𝑘). The size of this neighborhood typically decreases

over time during training. The process of updating a

neuron can be formulated as Equation 3.

∀𝑤𝑖 ∈ ℵ (𝑤𝑘) 𝑤𝑖
(𝑡+1)

= 𝑤𝑖
𝑡 − 𝛼𝑖,𝑘

𝑡 (𝑥𝑘
(𝑡)

− 𝑤𝑖
𝑡) (3)

𝜘 (𝑤𝑘) is a neighboring set of neurons from 𝑤(𝑘) and

𝛼𝑖,𝑘
𝑡 is a scalar value ranging between 0 and 1. The

research in [35] suggests a feasible choice for 𝛼𝑖,𝑘
𝑡 ,

which is Equation 4.

𝑎𝑖,𝑘
𝑡 = 𝑐(𝑡) exp {

𝑑𝑖𝑠𝑡2 (𝑤𝑖,𝑤𝑘)

2𝜎𝑡(𝑡)
} (4)

𝑑𝑖𝑠𝑡 (𝑤𝑖 . 𝑤𝑘) represents the Euclidean distance

between 𝑤𝑖 and 𝑤(𝑘), 𝑐(𝑡) and 𝜎(𝑡) are two

monotonically decreasing functions of 𝑡, and the initial

value of 𝜎(𝑡) is sufficiently large.

In this study, the use of SOFM was chosen because

[39]: It can be applied to non-normally distributed data;

It can reveal non-linear relationships between variables;

It is relatively robust against missing data; The output

visualization produces a projection of high-dimensional

data in a two-dimensional space while maintaining the

topological structure of the input data, thus mapping

similar samples together; SOFM provides an easy way

to identify potential outliers. Outliers can be isolated in

a single node, indicating a large distance from

neighboring nodes, or scattered across the map.

Moreover, SOFM has better capabilities compared to

other feature engineering methods, such as:

SOFM features allow for the extraction of meaningful

information from large and complex data. In

comparison, when analyzing large datasets using

techniques like PCA, the graphical representation of the

results must be optimized using density scatter plots to

enable visual exploration [40].

SOFM has the advantage of visualization features and

the ability to maintain data topology and handle noisy

and missing data, compared to PCA [41].

T-distributed stochastic Neighbor Embedding (T-SNE)

can be computationally expensive for large datasets,

whereas SOFM can be more scalable with appropriate

optimizations [42].

Methods like T-SNE and clustering are unsupervised,

but SOFM provides a structured representation of the

clusters on a 2D map, offering more interpretability

[43].

2.4 Classification algorithm

Machine learning is emerging as a powerful tool for

effectively identifying cyberattacks on diverse

platforms Machine learning is emerging as a powerful

tool for effectively identifying cyberattacks on diverse

platforms [44]. Kiran et al. [45] have utilized machine

learning in developing an IDS model to detect attacks

on IoT networks. Additionally, Nugroho et al. [46] state

that addressing vulnerabilities in IDS involves

employing machine learning techniques. This serves as

a reference for researchers in developing IDS for IoT,

particularly for botnet detection.

In this experiment, several machine learning algorithms

are employed, namely Multi-Layer Perceptron (MLP),

Random Forest, Naïve Bayes, Logistic Regression

(LR), and Decision Tree (DT). Different algorithms are

used to ensure a comprehensive evaluation [47].

Additionally, different algorithms may perform

differently on various datasets and tasks. Comparing

them can help identify the best-performing algorithm

[48]. Some algorithms may be more robust to noise or

different data distributions [49].

MLP was chosen because it can capture complex non-

linear relationships in data due to its neural network

architecture and is widely used in many applications,

providing a solid foundation for comparison [50].

Random Forest was used in this experiment because it

can combine multiple decision trees to enhance

accuracy and control overfitting. It also performs well

on various datasets with different characteristics [51].

Naïve Bayes was selected for this research analysis

because it is often used as a baseline due to its simplicity

and effectiveness in many classification problems [52].

Additionally, Logistic regression was used in this study

because it can provide clear insights into the

relationships between features and the target variable

[53]. Finally, Decision Tree was employed in this

experiment because it is easy to understand and

interpret, as decisions are based on simple if-then rules

[54].

2.5 Performance Evaluation

Table 3 illustrates how a confusion matrix can be used

to assess the effectiveness of feature engineering within

a machine-learning model [55].

Susanto, Deris Stiawan, Budi Santoso, Alex Onesimus Sidabutar, M. Agus Syamsul A, Mohd. Yazid Idris,

Rahmat Budiarto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 792

Table 3. Confusion Matrix

 Predicted

 Possitive (P) Negative (N)

Actual True (T) TP FP

False (F) FN TN

Based on Table 3, in detecting IoT botnet, the process

is described as follows:

True Positive (TP): In machine learning classification

for binary problems (positive vs negative), TP refers to

the number of actual positive data points that were

correctly predicted as positive. So instead of "benign,"

it should be "positive" for a general classification task.

False Positive (FP): It represents the number of actual

negative data points that were incorrectly predicted as

positive (attack).

False Negative (FN): This refers to the number of actual

positive data points (attacks) that were incorrectly

predicted as negative (benign).

True Negative (TN): This indicates the number of actual

negative data points that were correctly predicted as

negative (benign).

Thus, the classification matrix calculation is obtained to

evaluate the performance of using SOFM in machine

learning, including Equations 5-9.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (5)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (7)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
 (8)

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒
𝐹𝑁

𝐹𝑁+𝑇𝑃
 (9)

The Receiver Operating Characteristic (ROC) curve is

a visual tool that plots the model's sensitivity (True

Positive Rate) on the y-axis against the False Positive

Rate (FPR) on the x-axis. In an ideal scenario, the ROC

curve would reach the top-left corner, indicating perfect

classification with 100% sensitivity and 0% FPR.

2.6 Analysis Tools

The simulation in this research was conducted using a

notebook with the following specifications: Intel Core

i7 9th gen processor, memory Solid-State Drive (SSD)

512GB, Video Graphics Array (VGA) NVIDIA Giga

Texel Shader eXtreme (GTX) 1660 Ti Graphic

Processing Unit (GPU), and Random Access Memory

(RAM) 16GB. The operating system used was

Windows 11, and Python was utilized for the analysis.

3. Results and Discussions

3.1 Results

This research evaluates the performance of five

machine learning classification algorithms through

experimentation. Performance measurement was

conducted using six evaluation matrices, namely

confusion matrix, accuracy, sensitivity, FPR,

specificity, and FNR. Additionally, execution time was

also measured during the botnet detection process.

Figure 2. Confusion matrix Decision tree

Figure 2 shows the results confusion matrix to evaluate

the performance of the Decision Tree classification

model derived from the SOFM method for botnet

detection. This matrix summarizes the number of

correctly and incorrectly classified benign and

malicious traffic events. The experiment results indicate

that the utilization of feature engineering with SOFM

and Decision Tree classification correctly classified

1,458,885 data points, accounting for 97.24%, and

misclassified 41,170 data points, representing 2.76%.

Figure 3. Confusion matrix Logistic regression

Meanwhile, Figure 3 shows the results confusionshows

the results confusion matrix to evaluate the performance

of the Logistic regression classification model derived

from the SOFM method for botnet detection. This

matrix summarizes the number of correctly and

incorrectly classified benign and malicious traffic

events. The experiment results reveal that the

application of feature engineering with SOFM and

Logistic Regression classification correctly classified

1,445,563 data points, amounting to 96.75%, and

misclassified 48,492 data points, representing 3.25%.

Susanto, Deris Stiawan, Budi Santoso, Alex Onesimus Sidabutar, M. Agus Syamsul A, Mohd. Yazid Idris,

Rahmat Budiarto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 793

Figure 4. Confusion matrix MLP

Figure 4 shows the results confusionshows the results

confusion matrix to evaluate the performance of the

MLP classification model derived from the SOFM

method for botnet detection. This matrix summarizes

the number of correctly and incorrectly classified

benign and malicious traffic events. The experiment

results indicate that the utilization of feature

engineering with SOFM and MLP classification

correctly classified 1,644,243 data points, accounting

for 96.30%, and misclassified 63,249 data points,

representing 3.70%.

Figure 5. Confusion matrix naïve bayes

Figure 5 shows the results confusionshows the results

confusion matrix to evaluate the performance of the

Naïve bayes classification model derived from the

SOFM method for botnet detection. This matrix

summarizes the number of correctly and incorrectly

classified benign and malicious traffic events. The

experiment results indicate that the utilization of feature

engineering with SOFM and Naïve Bayes classification

correctly classified 1,397,104 data points, accounting

for 81.82%, and misclassified 310,388 data points,

representing 18.18%.

Figure 6 shows the results confusionshows the results

confusion matrix to evaluate the performance of the

Random Forest classification model derived from the

SOFM method for botnet detection. This matrix

summarizes the number of correctly and incorrectly

classified benign and malicious traffic events. The

experiment results indicate that the utilization of feature

engineering with SOFM and Random Forest

classification correctly classified 164,975 data points,

accounting for 96.63%, and misclassified 57,617 data

points, representing 3.37%.

Figure 6. Confusion matrix random forest

Based on the experiment results presented through the

confusion matrices from Figure 2 to Figure 6, the

accuracy, sensitivity, specificity, FPR, and FNR values

are calculated and presented in Table 4. The

experimental results of applying feature engineering

using SOFM in the IoT botnet classification process

show that Decision Tree has the highest accuracy rate,

reaching 97.24%. Furthermore, Naïve Bayes has the

highest sensitivity rate with a value of 0.9753.

Additionally, MLP has the highest specificity value

with a value of 0.9947. On the other hand, the lowest

FPR and FNR values are owned by Random Forest and

Naïve Bayes, with values of 0.0049 and 0.0247,

respectively. Naive Bayes stands out as the most

efficient algorithm for botnet detection in this

experiment, completing the task in just 74.64 seconds.

Despite Naïve Bayes having the fastest detection time,

its accuracy rate still significantly lags behind Decision

Tree.

Table 4. Comparison of Evaluation Results

C
lassificatio

n

A
ccu

racy

S
en

sitiv
ity

S
p

ecificity

F
P

R

F
N

R

E
x
ecu

tio
n

tim
e (s)

Decision

tree

97.24% 0.9523 0.9932 0.0067 0.0476 100.66

MLP 96.30% 0.9325 0.9947 0.0053 0.0675 308.76

Naïve

bayes

81.82% 0.9753 0.6548 0.3452 0.0247 74.64

Random

forest

96.63% 0.9385 0.9951 0.0049 0.0615 613.63

LR 96.75% 0.9509 0.9848 0.0151 0.0491 101.52

The next performance evaluation process is based on

the ROC curve. According to Hogan and Adams [56],

ROC curves offer a valuable tool for evaluating

classification models across different classification

Susanto, Deris Stiawan, Budi Santoso, Alex Onesimus Sidabutar, M. Agus Syamsul A, Mohd. Yazid Idris,

Rahmat Budiarto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 794

thresholds. They visualize the trade-off between True

Positive Rate (TPR) and False Positive Rate (FPR) as

the threshold is adjusted. The Area Under the Curve

(AUC) summarizes this performance by capturing the

total area beneath the ROC curve. A higher AUC

translates to a stronger ability of the model to

distinguish between classes. In ideal scenarios, an AUC

of 1 signifies perfect classification, while an AUC of 0.5

represents random guessing. For instance, a high AUC

in attack traffic detection indicates the model's

proficiency in separating normal traffic from attacks.

Figure 7 show results the performance of the Decision

Tree classification model derived from the SOFM

method for botnet detection by analyzing its ROC AUC

value. This metric summarizes the model's ability to

differentiate between malicious and benign traffic

events. The experiment results indicate that the

utilization of feature engineering with SOFM and

Decision Tree classification can effectively

differentiate between attack and normal traffic, with

AUC values of 1 for both.

Figure 7. ROC AUC Decision tree

Figure 8. ROC AUC Logistic regression

Figure 8 depicts the ROC AUC values for botnet

detection using the Logistic Regression classification

from the SOFM method. The experiment results reveal

that the utilization of feature engineering with SOFM

and Logistic Regression classification effectively

distinguishes between attack and normal traffic, with

AUC values of 0.99 for both.

Figure 9 illustrates the ROC AUC values for botnet

detection using the MLP classification from the SOFM

method. The experiment results show that the

utilization of feature engineering with SOFM and MLP

classification effectively distinguishes between attack

and normal traffic, with AUC values of 1 for both.

Figure 10 displays the ROC AUC values for botnet

detection using the Naïve Bayes classification from the

SOFM method. The experiment results indicate that the

utilization of feature engineering with SOFM and Naïve

Bayes classification effectively distinguishes between

attack and normal traffic, with AUC values of 0.98 for

attack traffic and 0.85 for normal traffic.

Figure 9. ROC AUC MLP

Figure 10. ROC AUC Naïve bayes

Figure 11 presents the ROC AUC values for botnet

detection using the Random Forest classification from

the SOFM method. The experiment results demonstrate

that the utilization of feature engineering with SOFM

and Random Forest classification effectively

distinguishes between attack and normal traffic, with

AUC values of 0.99 for both.

Table 4 presents the validation results of the IoT botnet

detection process using feature engineering with SOFM

and machine learning. Upon comparison with the

accuracy results in Table 5 and the validation results

with k-fold cross-validation, it is evident that the

Susanto, Deris Stiawan, Budi Santoso, Alex Onesimus Sidabutar, M. Agus Syamsul A, Mohd. Yazid Idris,

Rahmat Budiarto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 795

differences are not significant. According to statements

by Li et al. [57] and Vabalas et al. [58], if the accuracy

results do not significantly differ from those of k-fold

cross-validation, it can be concluded that there is no

overfitting.

Figure 11. ROC AUC Random forest

Table 5. Classification Validation Results Using Cross Validation

Iteration DT MLP Naïve

bayes

Random

forest

LR

1 97.24 96.48 81.68 97.19 96.83

2 97.29 96.42 80.64 97.22 96.76

3 97.29 96.38 81.82 97.20 96.78

4 97.21 96.43 81.99 97.25 96.79

5 96.24 96.47 81.77 97.20 96.75

6 97.23 96.43 81.97 97.16 96.82

7 97.27 96.44 81.68 97.22 96.76

8 97.28 96.43 81.84 97.22 96.76

9 97.15 96.41 80.66 97.23 96.67

10 97.24 96.43 81.77 97.15 96.72

Average 97.14 96.43 81.58 97.20 96.76

Furthermore, the dimensionality reduction process

using feature engineering can reduce the dataset

dimensions from the original 100 columns to 10

columns. As a result, the size of the initial dataset,

which was 3.08 GB, was reduced to 923 MB after

undergoing the feature engineering process with

dimensionality reduction. This clearly demonstrates

that employing feature engineering can effectively

decrease memory usage during the botnet detection

process.

3.2 Comparison with previous research

Table 6 shows the comparison results of the proposed

methods with previous research (state of the art).

Table 6. Comparison with previous research in IoT Botnet Detection

Authors,

Year

Feature

Engineering

Methods

Classification

Methods
Accuracy

[14], 2020 PCA k-NN 90.40

Naïve Bayes 96.40

[15], 2021 Chi-square k-NN 99.60

Multi-Layer

perception

87.40

Gausian naïve

bayes

99.40

[22], 2022 PCA Deep Neural

Network

91.44

Authors,

Year

Feature

Engineering

Methods

Classification

Methods
Accuracy

[59], 2022 Recursive

feature

elimination

XGBoost 94.00

[60], 2023 Information

Gain

Recurrent Neural

Network

97.00

[61], 2024 Feature

significance

k-NN 78.00

This work SOFM Decision tree 97.24

3.3 Discussions

Based on the experiment results presented, several

observations can be made regarding the effectiveness of

feature engineering with SOFM and machine learning

algorithms in IoT botnet detection.

Firstly, the accuracy results obtained from the

experiments, as shown in Table 4, demonstrate

promising performance across all classification

algorithms, with Decision Tree achieving the highest

accuracy of 97.24%. This indicates the efficacy of

Decision Tree in accurately classifying benign and

attack instances.

Moreover, the sensitivity values, which represent the

ability to correctly identify attack instances, are notably

high across all algorithms. Naïve Bayes, in particular,

exhibited the highest sensitivity of 0.9753, indicating its

proficiency in minimizing false negatives and ensuring

fewer attacks go undetected.

Additionally, the specificity values, indicating the

ability to accurately classify benign instances, were also

commendable. MLP recorded the highest specificity of

0.9947, indicating its capability to reduce false positives

and minimize misclassifications of benign data as

attacks.

Based on the evaluation results provided in Table 4, it

can be argued that the decision tree algorithm offers the

best overall performance compared to the other four

algorithms (MLP, Naïve Bayes, Random Forest, and

Logistic Regression) for the given features. The

decision tree has the highest accuracy, indicating that it

correctly classifies the most instances. While Naïve

Bayes has the highest sensitivity, the decision tree still

performs very well, demonstrating its effectiveness in

identifying positive instances. The decision tree has a

high specificity, meaning it correctly identifies negative

instances, although Random Forest and MLP have

slightly higher specificity. The decision tree has a low

FPR, indicating fewer incorrect positive classifications,

though Random Forest and MLP have slightly lower

FPR.

Furthermore, the decision tree has a low FNR, meaning

fewer missed positive instances. Only Naïve Bayes has

a lower FNR, but its overall accuracy and specificity are

much worse. The decision tree has a reasonable

execution time, much lower than MLP and Random

Forest, and slightly lower than Logistic Regression,

making it efficient. The decision tree provides the best

balance of high accuracy, good sensitivity, high

Susanto, Deris Stiawan, Budi Santoso, Alex Onesimus Sidabutar, M. Agus Syamsul A, Mohd. Yazid Idris,

Rahmat Budiarto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 796

specificity, low FPR, low FNR, and reasonable

execution time. While other algorithms might excel in

one or two metrics, the decision tree consistently

performs well across all evaluation criteria, making it

the best choice for the given features.

Furthermore, the ROC AUC values, as illustrated in

Figures 7 to 11, consistently demonstrated excellent

performance in distinguishing between attack and

normal traffic for all classification algorithms, with

AUC values predominantly close to 1. This indicates

the robustness of the models in effectively

discriminating between the two classes.

In addition, the validation results presented in Table V,

when compared with the accuracy results from Table

IV, exhibit only minor differences, suggesting that the

experiment outcomes do not indicate overfitting. This

finding aligns with the conclusions drawn by Li et al.

[57] and Vabalas et al. [58], indicating that the model

can generalize well to unseen data.

Lastly, the dimensionality reduction process through

feature engineering effectively reduced the dataset's

size from 3.08 GB to 923 MB, demonstrating the

practical benefits of feature engineering in reducing

memory usage during the botnet detection process.

Feature engineering is a critical step in the data

preprocessing phase that significantly impacts the

performance of machine learning models. The methods

compared with previous research (state of the art) in this

discussion include Principal Component Analysis

(PCA), Chi-square, Recursive feature elimination,

Information Gain, Feature significance, and Self-

Organizing Feature Maps (SOFM).

The PCA was utilized in multiple studies. PCA

combined with k-NN by Alshamkhany et al. [14]

combined PCA with k-NN to achieve 90.40% accuracy,

whereas with Naïve Bayes, it reached 96.40%. Another

study by Haq and Khan [22] used PCA with a Deep

Neural Network (DNN) to achieve 91.44% accuracy.

Furthermore, Recursive feature elimination, used by

Alissa et al. [59], yielded high accuracy with a Extreme

Gradient Boosting (XGBoost) (94.00%).

Chi-square, as reported by Pokhrel et al. [15], achieved

a remarkable 99.60% accuracy when paired with k-NN.

Other combinations included Multi-Layer Perception

(MLP) with 87.40% and Gaussian Naïve Bayes with

99.40%. In the research by Bojarajulu et al. [60]

Information Gain was paired with a Recurrent Neural

Network, showing the result accuracy achieved

97.00%. On the other hand, research by Sharma et al.

using the Feature significance method produced an

accuracy level of 78.00%. Meanwhile, the proposed

method achieved a high detection accuracy of 97.24%.

The experiments highlight the effectiveness of feature

engineering with SOFM and machine learning

algorithms in IoT botnet detection, showcasing high

accuracy, sensitivity, specificity, and robustness in

distinguishing between attack and normal traffic while

mitigating the risk of overfitting and reducing memory

usage.

4. Conclusions

The IoT botnet detection system leverages a

combination of feature engineering with the SOFM

method and machine learning. Experiment results

indicate that the application of SOFM can reduce the

dataset size to a relatively smaller scale compared to the

original data, thus conserving memory usage.

Moreover, the utilization of the Decision Tree

classification proves to be quite effective in detecting

IoT botnets compared to Logistic Regression, Naïve

Bayes, MLP, and Random Forest. Through the

Decision Tree algorithm, the classification results yield

an accuracy rate of 97.24%, sensitivity of 0.9523,

specificity of 0.9932, FPR of 0.0067, and FNR of

0.0476%, with an execution time of 100.66 s. For future

research, the authors intend to explore the utilization of

artificial intelligence techniques to autonomously

identify, detect, and mitigate various forms of cyber

attacks on IoT networ.

Acknowledgements

To ensure transparency, the authors affirm no

conflicting interests in this research. The study was

independently funded by the researchers and did not

involve grants from public, commercial, or non-profit

funding agencies.

References

[1] S. Nižetić, P. Šolić, D. López-de-Ipiña González-de-Artaza,

and L. Patrono, “Internet of Things (IoT): Opportunities,

issues and challenges towards a smart and sustainable

future,” J. Clean. Prod., vol. 274, 2020, doi:

10.1016/j.jclepro.2020.122877.

[2] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is

a revolutionary approach for future technology

enhancement: a review,” J. Big Data, vol. 6, no. 1, 2019, doi:

10.1186/s40537-019-0268-2.

[3] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K.

Sakurai, “Machine learning-based IoT-botnet attack

detection with sequential architecture,” Sensors

(Switzerland), vol. 20, no. 16, pp. 1–15, 2020, doi:

10.3390/s20164372.

[4] I. Ali et al., “Systematic Literature Review on IoT-Based

Botnet Attack,” IEEE Access, vol. 8, pp. 212220–212232,

2020, doi: 10.1109/ACCESS.2020.3039985.

[5] P. Williams, I. K. Dutta, H. Daoud, and M. Bayoumi, “A

survey on security in internet of things with a focus on the

impact of emerging technologies,” Internet of Things

(Netherlands), vol. 19, p. 100564, 2022, doi:

10.1016/j.iot.2022.100564.

[6] G. Eric and A. Jurcut, “Intrusion Detection in Internet of

Things Systems : A Review on Design Approaches

Leveraging Multi-Access Edge,” Sensors, vol. 22, pp. 1–33,

2022.

[7] A. Binbusayyis and T. Vaiyapuri, “Comprehensive analysis

and recommendation of feature evaluation measures for

intrusion detection,” Heliyon, vol. 6, no. 7, p. e04262, 2020,

doi: 10.1016/j.heliyon.2020.e04262.

[8] A. Adnan, A. Muhammed, A. A. A. Ghani, A. Abdullah, and

F. Hakim, “An intrusion detection system for the internet of

things based on machine learning: Review and challenges,”

Symmetry (Basel)., vol. 13, no. 6, pp. 1–13, 2021, doi:

Susanto, Deris Stiawan, Budi Santoso, Alex Onesimus Sidabutar, M. Agus Syamsul A, Mohd. Yazid Idris,

Rahmat Budiarto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 797

10.3390/sym13061011.

[9] Z. Azam, M. M. Islam, and M. N. Huda, “Comparative

Analysis of Intrusion Detection Systems and Machine

Learning-Based Model Analysis Through Decision Tree,”

IEEE Access, vol. 11, no. July, pp. 80348–80391, 2023, doi:

10.1109/ACCESS.2023.3296444.

[10] S. Velliangiri, S. Alagumuthukrishnan, and S. I. Thankumar

Joseph, “A Review of Dimensionality Reduction Techniques

for Efficient Computation,” in Procedia Computer Science,

2019, vol. 165, pp. 104–111.

[11] M. Farhan and M. G., “Efficient Botnet Detection using

Feature Ranking and Hyperparameter Tuning,” Int. J.

Comput. Appl., vol. 182, no. 48, pp. 55–60, 2019, doi:

10.5120/ijca2019918739.

[12] H. Bahsi, S. Nomm, and F. B. La Torre, “Dimensionality

Reduction for Machine Learning Based IoT Botnet

Detection,” in Proc. 2018 15th International Conference on

Control, Automation, Robotics and Vision, ICARCV, 2018,

pp. 1857–1862.

[13] M. Alqahtani, H. Mathkour, and M. M. Ben Ismail, “IoT

botnet attack detection based on optimized extreme gradient

boosting and feature selection,” Sensors (Switzerland), vol.

20, no. 21, pp. 1–21, 2020, doi: 10.3390/s20216336.

[14] M. Alshamkhany, W. Alshamkhany, M. Mansour, M. Khan,

S. Dhou, and F. Aloul, “Botnet Attack Detection using

Machine Learning,” in Proc. 14th International Conference

on Innovations in Information Technology, IIT, 2020, no.

November, pp. 203–208.

[15] S. Pokhrel, R. Abbas, and B. Aryal, “IoT Security: Botnet

detection in IoT using Machine learning,” arXiv, pp. 1–11,

2021.

[16] Susanto et al., “Dimensional Reduction With Fast ICA for

IoT Botnet Detection,” J. Appl. Secur. Res., vol. 18, no. 4,

pp. 665–688, 2023, doi: 10.1080/19361610.2022.2079906.

[17] Susanto, D. Stiawan, M. A. S. Arifin, J. Rejito, M. Y. Idris,

and R. Budiarto, “A Dimensionality Reduction Approach for

Machine Learning Based IoT Botnet Detection,” Int. Conf.

Electr. Eng. Comput. Sci. Informatics, vol. 2021–Octob, no.

October, pp. 26–30, 2021, doi:

10.23919/EECSI53397.2021.9624299.

[18] Susanto, D. Stiawan, M. Agus Syamsul Arifin, M. Y. Idris,

and R. Budiarto, “Effective and efficient approach in IoT

Botnet detection,” Sinergi, vol. 28, no. 1, pp. 31–42, 2024,

doi: 10.22441/sinergi.2024.1.004.

[19] D. Stiawan, Susanto, A. Bimantara, M. Y. Idris, and R.

Budiarto, “IoT botnet attack detection using deep

autoencoder and artificial neural networks,” KSII Trans.

Internet Inf. Syst., vol. 17, no. 5, pp. 1310–1338, 2023, doi:

10.3837/tiis.2023.05.001.

[20] S. Nomm and H. Bahsi, “Unsupervised Anomaly Based

Botnet Detection in IoT Networks,” in Proc.- 17th IEEE

International Conference on Machine Learning and

Applications, ICMLA, 2019, pp. 1048–1053.

[21] L. Duan, J. Zhou, Y. Wu, and W. Xu, “A novel and highly

efficient botnet detection algorithm based on network traffic

analysis of smart systems,” Int. J. Distrib. Sens. Networks,

vol. 18, no. 3, 2022, doi: 10.1177/15501477211049910.

[22] M. A. Haq and M. A. R. Khan, “Dnnbot: Deep neural

network-based botnet detection and classification,” Comput.

Mater. Contin., vol. 71, no. 1, pp. 1729–1750, 2022, doi:

10.32604/cmc.2022.020938.

[23] S. Velliangiri, S. Alagumuthukrishnan, and S. I. Thankumar

Joseph, “A Review of Dimensionality Reduction Techniques

for Efficient Computation,” Procedia Comput. Sci., vol. 165,

pp. 104–111, 2019, doi: 10.1016/j.procs.2020.01.079.

[24] L. H. Nguyen and S. Holmes, “Ten quick tips for effective

dimensionality reduction,” PLoS Comput. Biol., vol. 15, no.

6, pp. 1–19, 2019, doi: 10.1371/journal.pcbi.1006907.

[25] A. McCarthy, E. Ghadafi, P. Andriotis, and P. Legg,

“Functionality-Preserving Adversarial Machine Learning for

Robust Classification in Cybersecurity and Intrusion

Detection Domains: A Survey,” J. Cybersecurity Priv., vol.

2, no. 1, pp. 154–190, 2022, doi: 10.3390/jcp2010010.

[26] H. Shafique, A. A. Shah, M. A. Qureshi, and M. K. Ehsan,

“Machine Learning Empowered Efficient Intrusion

Detection Framework,” VFAST Trans. Softw. Eng., vol. 10,

no. 2, pp. 27–35, 2022.

[27] A. Guerra-Manzanares, J. Medina-Galindo, H. Bahsi, and S.

Nõmm, “MedBIoT: Generation of an IoT botnet dataset in a

medium-sized IoT network,” ICISSP 2020 - Proc. 6th Int.

Conf. Inf. Syst. Secur. Priv., pp. 207–218, 2020, doi:

10.5220/0009187802070218.

[28] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai,

“Kitsune: An ensemble of autoencoders for online network

intrusion detection,” arXiv, no. February, pp. 18–21, 2018.

[29] R. Kalakoti, S. Nomm, and H. Bahsi, “In-Depth Feature

Selection for the Statistical Machine Learning-Based Botnet

Detection in IoT Networks,” IEEE Access, vol. 10, no. July,

pp. 94518–94535, 2022, doi:

10.1109/ACCESS.2022.3204001.

[30] A. Guerra-Manzanares, J. Medina-Galindo, H. Bahsi, and S.

Nõmm, “Using MedBIoT Dataset to Build Effective

Machine Learning-Based IoT Botnet Detection Systems,”

Commun. Comput. Inf. Sci., vol. 1545 CCIS, pp. 222–243,

2022, doi: 10.1007/978-3-030-94900-6_11.

[31] K. Malik, F. Rehman, T. Maqsood, S. Mustafa, O. Khalid,

and A. Akhunzada, “Lightweight Internet of Things Botnet

Detection Using One-Class Classification,” Sensors, vol. 22,

no. 10, pp. 1–17, 2022, doi: 10.3390/s22103646.

[32] T. Kohonen, “Self-organized formation of topologically

correct feature maps,” Biol. Cybern., vol. 43, no. 1, pp. 59–

69, 1982, doi: 10.1007/BF00337288.

[33] J. A. Kangas, T. Kohonen, and J. T. Laaksonen, “Variants of

Self-Organizing Maps,” IEEE Trans. Neural Netw., vol. I,

no. I, pp. 93–99, 1990, doi: 10.1007/978-3-642-97966-8_5.

[34] T. Kohonen, “The Self-Organizing Map,” Proc. IEEE, vol.

78, no. 9, pp. 1464–1480, 1990, doi: 10.1109/5.58325.

[35] T. Kohonen, “Essentials of the self-organizing map,” Neural

Networks, vol. 37, pp. 52–65, 2013, doi:

10.1016/j.neunet.2012.09.018.

[36] D. Miljkovic, “Brief review of self-organizing maps,” 2017

40th Int. Conv. Inf. Commun. Technol. Electron.

Microelectron. MIPRO 2017 - Proc., no. May, pp. 1061–

1066, 2017, doi: 10.23919/MIPRO.2017.7973581.

[37] A. Saraswati, V. T. Nguyen, M. Hagenbuchner, and A. C.

Tsoi, “High-resolution Self-Organizing Maps for advanced

visualization and dimension reduction,” Neural Networks,

vol. 105, pp. 166–184, 2018, doi:

10.1016/j.neunet.2018.04.011.

[38] X. Chen, M. Simsek, and B. Kantarci, “Locally

reconfigurable Self Organizing Feature Map for high impact

malicious tasks submission in Mobile Crowdsensing,”

Internet of Things, no. January, pp. 1–14, 2020.

[39] S. Licen, A. Astel, and S. Tsakovski, “Self-organizing map

algorithm for assessing spatial and temporal patterns of

pollutants in environmental compartments: A review,” Sci.

Total Environ., vol. 878, no. March, p. 163084, 2023, doi:

10.1016/j.scitotenv.2023.163084.

[40] S. Licen, S. Cozzutto, and P. Barbieri, “Assessment and

comparison of multi-annual size profiles of particulate

matter monitored at an urban-industrial site by an optical

particle counter with a chemometric approach,” Aerosol Air

Qual. Res., vol. 20, no. 4, pp. 800–809, 2020, doi:

10.4209/aaqr.2019.08.0414.

[41] J. Xiao, L. Wang, N. Chai, T. Liu, Z. Jin, and J. Rinklebe,

“Groundwater hydrochemistry, source identification and

pollution assessment in intensive industrial areas, eastern

Chinese loess plateau,” Environ. Pollut., vol. 278, 2021, doi:

10.1016/j.envpol.2021.116930.

[42] A. C. Belkina, C. O. Ciccolella, R. Anno, R. Halpert, J.

Spidlen, and J. E. Snyder-Cappione, “Automated optimized

parameters for T-distributed stochastic neighbor embedding

improve visualization and analysis of large datasets,” Nat.

Commun., vol. 10, no. 1, pp. 1–12, 2019, doi:

10.1038/s41467-019-13055-y.

[43] V. Fortuin, M. Hüser, F. Locatello, H. Strathmann, and G.

Rätsch, “Som-Vae: Interpretable discrete representation

learning on time series,” 7th Int. Conf. Learn. Represent.

ICLR 2019, pp. 1–18, 2019.

[44] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and

Susanto, Deris Stiawan, Budi Santoso, Alex Onesimus Sidabutar, M. Agus Syamsul A, Mohd. Yazid Idris,

Rahmat Budiarto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)

This is an open access article under the CC BY-4.0 license 798

F. Ahmad, “Network intrusion detection system: A

systematic study of machine learning and deep learning

approaches,” Trans. Emerg. Telecommun. Technol., vol. 32,

no. 1, pp. 1–29, Oct. 2020.

[45] K. V. V. N. L. Sai Kiran, R. N. K. Devisetty, N. P. Kalyan,

K. Mukundini, and R. Karthi, “Building a Intrusion

Detection System for IoT Environment using Machine

Learning Techniques,” Procedia Comput. Sci., vol. 171, no.

2019, pp. 2372–2379, 2020, doi:

10.1016/j.procs.2020.04.257.

[46] E. P. Nugroho, T. Djatna, I. S. Sitanggang, A. Buono, and I.

Hermadi, “A Review of Intrusion Detection System in IoT

with Machine Learning Approach: Current and Future

Research,” 2020 6th Int. Conf. Sci. Inf. Technol. Embrac.

Ind. 4.0 Towar. Innov. Disaster Manag. ICSITech 2020, pp.

138–143, 2020, doi:

10.1109/ICSITech49800.2020.9392075.

[47] A. Geron, Hands-on Machine Learning with Scikit-Learn,

Keras & TensorFlow. 2019.

[48] M. A. Lones, “How to avoid machine learning pitfalls: a

guide for academic researchers,” arXiv, pp. 1–28, 2021.

[49] T. Chen and C. Guestrin, “XGBoost: A scalable tree

boosting system,” Proc. ACM SIGKDD Int. Conf. Knowl.

Discov. Data Min., vol. 13–17–Augu, pp. 785–794, 2016,

doi: 10.1145/2939672.2939785.

[50] F. Chollet, Deep learning with Python. 2017.

[51] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical

learning with sparsity: The lasso and generalizations. 2015.

[52] V. M. S Raschka, Python Machine Learning: Machine

Learning and Deep Learning with Python, scikit-learn, and

TensorFlow, vol. 69, no. 4. 2019.

[53] L. L. Kupper, D. W. Hosmer, and S. Lemeshow, Applied

Logistic Regression., vol. 85, no. 411. 2013.

[54] G. James;, D. Witten;, T. Hastie;, R. Tibshirani;, and J.

Taylor, An Introduction to Statistical Learning, vol. 102.

2023.

[55] A. Tharwat, “Classification assessment methods,” Appl.

Comput. Informatics, vol. 17, no. 1, pp. 168–192, 2021, doi:

10.1016/j.aci.2018.08.003.

[56] J. Hogan and N. M. Adams, “On Averaging ROC Curves,”

Trans. Mach. Learn. Res., pp. 1–12, 2023.

[57] H. Li, G. K. Rajbahadur, D. Lin, C.-P. Bezemer, Z. Ming,

and Jiang, “Keeping Deep Learning Models in Check: A

History-Based Approach to Mitigate Overfitting,” arXiv,

2024.

[58] A. Vabalas, E. Gowen, E. Poliakoff, and A. J. Casson,

“Machine learning algorithm validation with a limited

sample size,” PLoS One, vol. 14, no. 11, pp. 1–20, 2019, doi:

10.1371/journal.pone.0224365.

[59] K. Alissa, T. Alyas, K. Zafar, Q. Abbas, N. Tabassum, and

S. Sakib, “Botnet Attack Detection in IoT Using Machine

Learning,” Comput. Intell. Neurosci., vol. 2022, 2022, doi:

10.1155/2022/4515642.

[60] B. Bojarajulu, S. Tanwar, and T. P. Singh, “Intelligent IoT-

BOTNET attack detection model with optimized hybrid

classification model,” Comput. Secur., vol. 126, p. 103064,

2023, doi: https://doi.org/10.1016/j.cose.2022.103064.

[61] R. Sharma, S. M. ud din, N. Sharma, and A. Kumar,

“Enhancing IoT Botnet Detection through Machine

Learning-based Feature Selection and Ensemble Models,”

EAI Endorsed Trans. Scalable Inf. Syst., vol. 11, no. 2, pp.

1–6, 2024, doi: 10.4108/eetsis.3971.

