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Abstract  

The rapid advancement of Internet of Things (IoT) technology has created potential for progress in various aspects of life. 

However, the increasing number of IoT devices also raises the risk of cyberattacks, particularly IoT botnets often exploited by 

attackers. This is largely due to the limitations of IoT devices, such as constraints in capacity, power, and memory, necessitating 

an efficient detection system. This study aims to develop a resource-efficient botnet detection system by using the Self-

Organizing Feature Map (SOFM) dimensionality reduction method in combination with machine learning algorithms. The 

proposed method includes a feature engineering process using SOFM to address high-dimensional data, followed by 

classification with various machine learning algorithms. The experiments evaluate performance based on accuracy, sensitivity, 

specificity, False Positive Rate (FPR), and False Negative Rate (FNR). Results show that the Decision Tree algorithm achieved 

the highest accuracy rate of 97.24%, with a sensitivity of 0.9523, specificity of 0.9932, and a fast execution time of 100.66 

seconds. The use of SOFM successfully reduced memory consumption from 3.08 GB to 923MB. Experimental results indicate 

that this approach is effective for enhancing IoT security in resource-constrained devices. 
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1. Introduction  

The swift progress and adoption of intelligent and 

Internet of Things (IoT)-based technologies have 

facilitated numerous potential advancements across 

various facets of life [1]. This has become a new 

paradigm that transforms traditional lifestyles into high-

tech living. The IoT has brought about transformations 

in the form of smart transportation, smart cities 

pollution control, energy savings, smart homes, and 

smart industries [2]. On the other hand, the rapid 

expansion of IoT devices has resulted in a rise in 

cyberattacks aimed at these devices [3]. Attacks 

utilizing IoT-based botnets are becoming increasingly 

common and favored by cybercriminals [4]. One of the 

reasons is the inherent limitations of IoT devices, such 

as restricted range, power, and memory, as well as the 

absence of compatible security solutions for these 

devices and their applications [5]. These limitations in 

IoT systems have become a focal point in the research 

domain for developing reliable detection systems that 

align with the architecture of IoT devices [6]. 

Recently, Intrusion Detection Systems (IDS) have 

become crucial components in network security 

infrastructure to ensure strong protection against 

cyberattacks [7]. The primary challenge in developing 

IDS for IoT networks is managing high-dimensional 

data, as the vast amounts of data generated can lead to 

increased storage usage, longer detection times, and 

reduced IDS efficiency [8]. In this context, feature 

engineering has proven to be a valuable solution for 

overcoming the limitations of IoT devices, particularly 

when managing high-dimensional data [9]. One feature 

engineering model that can be used to address high-
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dimensional data issues is the dimensionality reduction 

method [10]. 

The effectiveness of machine learning algorithms relies 

on various factors, such as the quality of the dataset and 

the choice of optimal feature [11]. This research 

contributes to maximizing the performance of machine 

learning algorithms by considering the use of feature 

quantities through dimensionality reduction using the 

Self-Organizing Feature Map (SOFM) method. 

Subsequently, performance evaluation is reviewed 

based on False Negative Rate (FNR), execution time,  

accuracy, False Positive Rate (FPR), sensitivity, and 

specificity. 

The authors have organized this paper into six sections. 

Section 2 examines related work on data dimensionality 

reduction in IDS, as investigated in prior research. 

Section 3 explains the datasets used in the experiment, 

SOFM, classification algorithms, performance 

evaluation, experiment setup, and analysis tools. 

Section 4 explains the experimental results and 

discusses their implications, while Section 5 delves into 

the conclusions drawn and outlines further research 

directions concerning IDS. 

The implications of this study's findings are significant 

for both the academic and industrial sectors. First, the 

demonstrated effectiveness of SOFM in feature 

engineering for botnet detection suggests a promising 

approach for improving IoT security. The high accuracy 

rate indicates that SOFM can reliably identify threats, 

making it a viable solution for real-world applications. 

Furthermore, the considerable reduction in memory 

usage highlights the method's practicality for 

deployment in resource-constrained IoT environments. 

This opens the door for broader adoption of advanced 

security measures in IoT devices, even those with 

limited computational resources. Industries relying on 

IoT technology can implement this method to enhance 

their security infrastructure without the need for 

substantial hardware upgrades. 

To address the issue of high-dimensional data in IoT 

botnet detection, many researchers have conducted 

feature engineering. Bahsi et al. [12] and Alqahtani et 

al. [13] employed the Fisher score method to tackle the 

high-dimensional data problem in the N-BaIoT dataset, 

with both studies achieving high accuracy rates. 

Additionally, Alshamkhany et al. [14] applied Principal 

Component Analysis (PCA) to tackle the high-

dimensional data challenge in the UNSW-NB15 

dataset, showcasing significant efficacy in detecting 

IoT botnets. 

Furthermore, Pokhrel et al. [15] evaluated the 

effectiveness of the chi-square method for feature 

engineering in addressing the high-dimensional data 

challenge within the BoT-IoT dataset. The experiment 

successfully addressed the problem and achieved high 

accuracy rates. Susanto et al. [16]–[18] used methods 

such as Fast Independent Component Analysis (Fast-

ICA), random projection, and Linear Discriminant 

Analysis (LDA) to resolve high-dimensional data 

issues. Their results showed high effectiveness in 

detecting IoT botnets using the N-BaIoT dataset. 

Deris et al. [19] used an autoencoder to address high-

dimensional data issues in the medBIoT dataset, 

achieving very high accuracy in IoT botnet detection. 

Nomm and Bahsi [20] utilized feature engineering to 

detect IoT botnets using methods such as Entropy, 

Variance, and Hopkins. Their experiment, conducted on 

the N-BaIoT dataset, resolved high-dimensional data 

problems with relatively high accuracy.  

Moreover, Duan et al. [21] employed autoencoder 

neural networks for feature engineering to resolve high-

dimensional data problems in IoT botnet detection. 

Using the Information Security Centre of Excellence 

(ISCX)-botnet dataset, their experiment demonstrated 

high accuracy rates. Haq and Khan [22] utilized PCA to 

reduce high-dimensional data in the N-BaIoT dataset, 

and their feature engineering results showed reasonable 

accuracy in detecting IoT botnets. A summary of 

feature engineering research addressing high-

dimensional data issues in IoT botnet detection is 

presented in Table 1. 

Table 1. Summary of Research on Feature Engineering in IoT 

Botnet Detection 

Authors, 

Year 

Feature 

Engineering 

Methods 

Classification Methods 

[12], 2018 Fisher score Decision tree nd k- Nearest 

Neighbor (k-NN),  

[13], 2020 Fisher score Extreme gradient boosting + 

Genetica algorithm 

[14], 2020 PCA Decision tree, Support 

Vector Machine, k-NN, 

Naïve bayes 

[15], 2021 Chi-square k-NN, Multi-Layer 

perception, Gausian naïve 

bayes,  

[16], 2023 Fast ICA Random Forest, k-NN, 

Decision tree, Gradient 

Boosting, Adaboost, 

[17], 2021 Random 

Projection 

Gradient Boosting, Random 

Forest, k-NN, Decision tree, 

Adaboost, 

[18], 2024 LDA Gradient Boosting, Random 

Forest, k-NN, Decision tree, 

Adaboost, 

[20], 2019 Entropy, 

Variance, 

Hopkins 

Support vector machine, 

Isolation forests 

[19], 2023 Autoencoder Artificial Neural Networks 

(ANN) 

[21], 2022 Autoencoder 

Neural 

Network 

Decision tree, Gradient 

boosting, 

[22], 2022 PCA Deep Neural Network 

[12], 2018 Fisher score k-NN, Decision tree 

2. Research Methods 

This research is an experimental study aimed at 

developing and testing a botnet detection system for 

resource-constrained IoT devices by combining Self-

Organizing Feature Map (SOFM) techniques for feature 

engineering with various machine learning algorithms. 
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This experimental study involves hypothesis testing 

using a series of controlled experiments to evaluate the 

effectiveness of the proposed method. 

2.1 System Workflow 

The proposed workflow of the IoT security system is 

illustrated in Figure 1. The IoT botnet detection system 

uses SOFM for feature engineering, followed by a 

multi-classifier classification process. In this process, 

dimensionality reduction is performed, reducing the 

data from 100 features to 10 features. The dimensions 

or features used for reduction can be selected randomly, 

as stated by [23], [24]. The final step involves validation 

using k-Fold Cross Validation. This technique ensures 

that the experimental error closely approximates the 

actual prediction error on the IDS [25]. It is also used to 

detect overfitting issues [26]. 

The experiment conducted in this research adopts 

existing methods and combines them into a new model. 

Based on our literature review, the proposed model has 

not been previously explored by other researchers. 

 
Figure 1. Proposed experimental workflow 

2.2 Dataset 

This study uses the MedBIoT dataset [27]. The dataset 

extraction process employs the incremental statistics 

method [28], with a total of 100 features, indicating that 

the dataset has a high-dimensional nature. Furthermore, 

the dataset is generated from three physical devices and 

80 virtual devices. It comprises four types of traffic: 

benign traffic and attack traffic (bashlite, torii, and 

mirai), totaling 17.845.567 traffic data points. The 

MedBIoT dataset has high dimensionality, 

necessitating feature engineering to optimize the 

detection process. This is evident from several studies. 

For instance, Kalakoti et al. [29] employed feature 

engineering methods such as Pearson’s correlation-

based technique, Fisher score, Analysis of Variance 

(ANOVA) F-test, mutual information, recursive feature 

elimination, sequential forward selection, and 

sequential backward selection to reduce the 

dimensionality of the MedBIoT data. Deris et al. [19] 

used Autoencoder for feature engineering on the 

MedBIoT dataset. Additionally, Manzanares et al. [30] 

applied PCA to reduce the dimensionality of the 

MedBIoT data. Furthermore, Malik et al. [31] utilized 

feature selection methods such as Univariate Filter, 

Multivariate Filter, Forward Feature Selection, and 

Backward Feature Elimination for feature engineering 

on the MedBIoT data. 

This study utilizes approximately 15.29% of the total 

traffic data. The distribution of the MedBIoT dataset is 

presented in Table 2. 

Table 2. MedBIoT Dataset Distribution 

New Label Traffic Type Amount of data The amount 

of power used 

Attack BashLite 4143276 841843 

Mirai 842674 733856 

Torii 319139 64755 

Benign Benign 12540478 1087832 

2.3. Self-Organizing Feature Map 

The Self-Organizing Feature Map (SOFM) is  a type of 

a type of  Artificial Neural Network (ANN) introduced 

by [32] and subsequently reviewed in studies [33]–[35]. 

Self-Organizing Maps (SOFMs) are a type of neural 

network architecture where processing units are 

organized on a grid with n dimensions [36], which can 

be used for dimensionality reduction [37]. Essentially, 

SOFM is employed to recognize the spatial distribution 

of a dataset using a network of neurons. This outlines 

the steps involved in training a basic version of a neural 

network with a grid-based architecture [38]. 

Network Initialization: The initial network can be 

structured in a hexagonal or rectangular shape, 

characterized by longitudinal and latitudinal lines. The 

training input vector for SOFM is represented as 

Equation 1. 

𝑥 =  [𝑥𝑖]𝑛 𝑥 2𝑖=1….𝑛              (1) 

Each user event has a location represented by a vector 

denoted by 𝑥𝑖. Here, 𝑖-th indicates the specific user 

event (i = 1 to N), and N represents the total number of 

user events. The Self-Organizing Map (SOFM) is 

initialized as a 𝑝 𝑥 𝑞 grid, where each node (also called 

a neuron) has a weight vector. These weight vectors are 
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initially distributed uniformly within the minimum 

bounding box of the city map. The neuron vectors (or 

weight vectors) are denoted by Equation 2. 

𝑊 =  [𝑊𝑖𝑗]
𝑝 𝑥 𝑞 𝑥 2𝑖=1,…..,𝑝,𝑗=1,…..,𝑞             (2) 

Identifying the Winning Neuron: During training, the 

algorithm finds the most suitable neuron for a given 

input data point. This neuron, known as the Best 

Matching Unit (BMU) or Best Matching Cell  [34], has 

the weight vector closest to the input vector based on a 

distance metric like Euclidean distance 

Adjusting Neuron Weights: During each training step, 

the algorithm: Selects an input: It picks a data point 

(denoted by 𝑥𝑘 )from the training data. Identifies the 

winning neuron (BMU): It finds the neuron with the 

weight vector (𝑤(𝑘)) closest to 𝑥𝑘, typically using a 

distance metric like Euclidean distance. Updates 

neighboring neurons: The weights of neurons within a 

specific neighborhood surrounding the BMU are 

adjusted to become more similar to the input data point 

(𝑥𝑘). The size of this neighborhood typically decreases 

over time during training. The process of updating a 

neuron can be formulated as Equation 3. 

∀𝑤𝑖 ∈  ℵ (𝑤𝑘) 𝑤𝑖
(𝑡+1)

=  𝑤𝑖
𝑡 − 𝛼𝑖,𝑘

𝑡  (𝑥𝑘
(𝑡)

− 𝑤𝑖
𝑡)     (3)  

𝜘 (𝑤𝑘) is a neighboring set of neurons from 𝑤(𝑘) and 

𝛼𝑖,𝑘
𝑡   is a scalar value ranging between 0 and 1. The 

research in  [35] suggests a feasible choice for 𝛼𝑖,𝑘
𝑡  , 

which is Equation 4. 

𝑎𝑖,𝑘
𝑡 = 𝑐(𝑡) exp {

𝑑𝑖𝑠𝑡2 (𝑤𝑖,𝑤𝑘)

2𝜎𝑡(𝑡)
}              (4) 

𝑑𝑖𝑠𝑡 (𝑤𝑖 . 𝑤𝑘) represents the Euclidean distance 

between 𝑤𝑖 and 𝑤(𝑘), 𝑐(𝑡) and 𝜎(𝑡) are two 

monotonically decreasing functions of 𝑡, and the initial 

value of 𝜎(𝑡) is sufficiently large. 

In this study, the use of SOFM was chosen because 

[39]: It can be applied to non-normally distributed data; 

It can reveal non-linear relationships between variables; 

It is relatively robust against missing data; The output 

visualization produces a projection of high-dimensional 

data in a two-dimensional space while maintaining the 

topological structure of the input data, thus mapping 

similar samples together; SOFM provides an easy way 

to identify potential outliers. Outliers can be isolated in 

a single node, indicating a large distance from 

neighboring nodes, or scattered across the map. 

Moreover, SOFM has better capabilities compared to 

other feature engineering methods, such as: 

SOFM features allow for the extraction of meaningful 

information from large and complex data. In 

comparison, when analyzing large datasets using 

techniques like PCA, the graphical representation of the 

results must be optimized using density scatter plots to 

enable visual exploration [40]. 

SOFM has the advantage of visualization features and 

the ability to maintain data topology and handle noisy 

and missing data, compared to PCA [41]. 

T-distributed stochastic Neighbor Embedding (T-SNE) 

can be computationally expensive for large datasets, 

whereas SOFM can be more scalable with appropriate 

optimizations [42]. 

Methods like T-SNE and clustering are unsupervised, 

but SOFM provides a structured representation of the 

clusters on a 2D map, offering more interpretability 

[43]. 

2.4 Classification algorithm 

Machine learning is emerging as a powerful tool for 

effectively identifying cyberattacks on diverse 

platforms Machine learning is emerging as a powerful 

tool for effectively identifying cyberattacks on diverse 

platforms [44]. Kiran et al. [45] have utilized machine 

learning in developing an IDS model to detect attacks 

on IoT networks. Additionally, Nugroho et al. [46] state 

that addressing vulnerabilities in IDS involves 

employing machine learning techniques. This serves as 

a reference for researchers in developing IDS for IoT, 

particularly for botnet detection.  

In this experiment, several machine learning algorithms 

are employed, namely Multi-Layer Perceptron (MLP), 

Random Forest, Naïve Bayes, Logistic Regression 

(LR), and Decision Tree (DT). Different algorithms are 

used to ensure a comprehensive evaluation [47]. 

Additionally, different algorithms may perform 

differently on various datasets and tasks. Comparing 

them can help identify the best-performing algorithm 

[48]. Some algorithms may be more robust to noise or 

different data distributions [49]. 

MLP was chosen because it can capture complex non-

linear relationships in data due to its neural network 

architecture and is widely used in many applications, 

providing a solid foundation for comparison [50]. 

Random Forest was used in this experiment because it 

can combine multiple decision trees to enhance 

accuracy and control overfitting. It also performs well 

on various datasets with different characteristics [51]. 

Naïve Bayes was selected for this research analysis 

because it is often used as a baseline due to its simplicity 

and effectiveness in many classification problems [52]. 

Additionally, Logistic regression was used in this study 

because it can provide clear insights into the 

relationships between features and the target variable 

[53]. Finally, Decision Tree was employed in this 

experiment because it is easy to understand and 

interpret, as decisions are based on simple if-then rules 

[54]. 

2.5 Performance Evaluation 

Table 3 illustrates how a confusion matrix can be used 

to assess the effectiveness of feature engineering within 

a machine-learning model [55]. 
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Table 3. Confusion Matrix 

  Predicted 

  Possitive (P) Negative (N) 

Actual  True (T) TP FP 

False (F) FN TN 

Based on Table 3, in detecting IoT botnet, the process 

is described as follows: 

True Positive (TP): In machine learning classification 

for binary problems (positive vs negative), TP refers to 

the number of actual positive data points that were 

correctly predicted as positive. So instead of "benign," 

it should be "positive" for a general classification task. 

False Positive (FP): It represents the number of actual 

negative data points that were incorrectly predicted as 

positive (attack). 

False Negative (FN): This refers to the number of actual 

positive data points (attacks) that were incorrectly 

predicted as negative (benign). 

True Negative (TN): This indicates the number of actual 

negative data points that were correctly predicted as 

negative (benign). 

Thus, the classification matrix calculation is obtained to 

evaluate the performance of using SOFM in machine 

learning, including Equations 5-9. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (5) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (6) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
              (7) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝑇𝑁+𝐹𝑃
              (8) 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 
𝐹𝑁

𝐹𝑁+𝑇𝑃
            (9) 

The Receiver Operating Characteristic (ROC) curve is 

a visual tool that plots the model's sensitivity (True 

Positive Rate) on the y-axis against the False Positive 

Rate (FPR) on the x-axis. In an ideal scenario, the ROC 

curve would reach the top-left corner, indicating perfect 

classification with 100% sensitivity and 0% FPR. 

2.6 Analysis Tools 

The simulation in this research was conducted using a 

notebook with the following specifications: Intel Core 

i7 9th gen processor, memory Solid-State Drive (SSD) 

512GB, Video Graphics Array (VGA) NVIDIA Giga 

Texel Shader eXtreme (GTX) 1660 Ti Graphic 

Processing Unit (GPU), and Random Access Memory 

(RAM) 16GB. The operating system used was 

Windows 11, and Python was utilized for the analysis. 

3. Results and Discussions 

3.1 Results 

This research evaluates the performance of five 

machine learning classification algorithms through 

experimentation. Performance measurement was 

conducted using six evaluation matrices, namely 

confusion matrix, accuracy, sensitivity, FPR, 

specificity, and FNR. Additionally, execution time was 

also measured during the botnet detection process. 

 

Figure 2. Confusion matrix Decision tree 

Figure 2 shows the results confusion matrix to evaluate 

the performance of the Decision Tree classification 

model derived from the SOFM method for botnet 

detection. This matrix summarizes the number of 

correctly and incorrectly classified benign and 

malicious traffic events. The experiment results indicate 

that the utilization of feature engineering with SOFM 

and Decision Tree classification correctly classified 

1,458,885 data points, accounting for 97.24%, and 

misclassified 41,170 data points, representing 2.76%. 

 

Figure 3. Confusion matrix Logistic regression 

Meanwhile, Figure 3 shows the results confusionshows 

the results confusion matrix to evaluate the performance 

of the Logistic regression classification model derived 

from the SOFM method for botnet detection. This 

matrix summarizes the number of correctly and 

incorrectly classified benign and malicious traffic 

events. The experiment results reveal that the 

application of feature engineering with SOFM and 

Logistic Regression classification correctly classified 

1,445,563 data points, amounting to 96.75%, and 

misclassified 48,492 data points, representing 3.25%. 
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Figure 4. Confusion matrix MLP 

Figure 4 shows the results confusionshows the results 

confusion matrix to evaluate the performance of the 

MLP classification model derived from the SOFM 

method for botnet detection. This matrix summarizes 

the number of correctly and incorrectly classified 

benign and malicious traffic events. The experiment 

results indicate that the utilization of feature 

engineering with SOFM and MLP classification 

correctly classified 1,644,243 data points, accounting 

for 96.30%, and misclassified 63,249 data points, 

representing 3.70%. 

 

Figure 5. Confusion matrix naïve bayes 

Figure 5 shows the results confusionshows the results 

confusion matrix to evaluate the performance of the 

Naïve bayes classification model derived from the 

SOFM method for botnet detection. This matrix 

summarizes the number of correctly and incorrectly 

classified benign and malicious traffic events. The 

experiment results indicate that the utilization of feature 

engineering with SOFM and Naïve Bayes classification 

correctly classified 1,397,104 data points, accounting 

for 81.82%, and misclassified 310,388 data points, 

representing 18.18%. 

Figure 6 shows the results confusionshows the results 

confusion matrix to evaluate the performance of the 

Random Forest classification model derived from the 

SOFM method for botnet detection. This matrix 

summarizes the number of correctly and incorrectly 

classified benign and malicious traffic events. The 

experiment results indicate that the utilization of feature 

engineering with SOFM and Random Forest 

classification correctly classified 164,975 data points, 

accounting for 96.63%, and misclassified 57,617 data 

points, representing 3.37%. 

 

Figure 6. Confusion matrix random forest 

Based on the experiment results presented through the 

confusion matrices from Figure 2 to Figure 6, the 

accuracy, sensitivity, specificity, FPR, and FNR values 

are calculated and presented in Table 4. The 

experimental results of applying feature engineering 

using SOFM in the IoT botnet classification process 

show that Decision Tree has the highest accuracy rate, 

reaching 97.24%. Furthermore, Naïve Bayes has the 

highest sensitivity rate with a value of 0.9753. 

Additionally, MLP has the highest specificity value 

with a value of 0.9947. On the other hand, the lowest 

FPR and FNR values are owned by Random Forest and 

Naïve Bayes, with values of 0.0049 and 0.0247, 

respectively. Naive Bayes stands out as the most 

efficient algorithm for botnet detection in this 

experiment, completing the task in just 74.64 seconds. 

Despite Naïve Bayes having the fastest detection time, 

its accuracy rate still significantly lags behind Decision 

Tree. 

Table 4. Comparison of Evaluation Results 

C
lassificatio

n
 

A
ccu

racy
 

S
en

sitiv
ity

 

S
p

ecificity
 

F
P

R
 

F
N

R
 

E
x
ecu

tio
n

 

tim
e (s) 

Decision 

tree 

97.24% 0.9523 0.9932  0.0067  0.0476 100.66 

MLP 96.30% 0.9325 0.9947  0.0053  0.0675 308.76 

Naïve 

bayes 

81.82% 0.9753 0.6548  0.3452  0.0247 74.64 

Random 

forest 

96.63% 0.9385 0.9951  0.0049  0.0615 613.63 

LR 96.75% 0.9509 0.9848  0.0151  0.0491 101.52 

The next performance evaluation process is based on 

the ROC curve. According to Hogan and Adams [56], 

ROC curves offer a valuable tool for evaluating 

classification models across different classification 
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thresholds. They visualize the trade-off between True 

Positive Rate (TPR) and False Positive Rate (FPR) as 

the threshold is adjusted. The Area Under the Curve 

(AUC) summarizes this performance by capturing the 

total area beneath the ROC curve. A higher AUC 

translates to a stronger ability of the model to 

distinguish between classes. In ideal scenarios, an AUC 

of 1 signifies perfect classification, while an AUC of 0.5 

represents random guessing. For instance, a high AUC 

in attack traffic detection indicates the model's 

proficiency in separating normal traffic from attacks. 

Figure 7 show results the performance of the Decision 

Tree classification model derived from the SOFM 

method for botnet detection by analyzing its ROC AUC 

value. This metric summarizes the model's ability to 

differentiate between malicious and benign traffic 

events. The experiment results indicate that the 

utilization of feature engineering with SOFM and 

Decision Tree classification can effectively 

differentiate between attack and normal traffic, with 

AUC values of 1 for both. 

 

Figure 7. ROC AUC Decision tree 

 

 

Figure 8. ROC AUC Logistic regression 

Figure 8 depicts the ROC AUC values for botnet 

detection using the Logistic Regression classification 

from the SOFM method. The experiment results reveal 

that the utilization of feature engineering with SOFM 

and Logistic Regression classification effectively 

distinguishes between attack and normal traffic, with 

AUC values of 0.99 for both. 

Figure 9 illustrates the ROC AUC values for botnet 

detection using the MLP classification from the SOFM 

method. The experiment results show that the 

utilization of feature engineering with SOFM and MLP 

classification effectively distinguishes between attack 

and normal traffic, with AUC values of 1 for both. 

Figure 10 displays the ROC AUC values for botnet 

detection using the Naïve Bayes classification from the 

SOFM method. The experiment results indicate that the 

utilization of feature engineering with SOFM and Naïve 

Bayes classification effectively distinguishes between 

attack and normal traffic, with AUC values of 0.98 for 

attack traffic and 0.85 for normal traffic. 

 

Figure 9. ROC AUC MLP 

 

Figure 10. ROC AUC Naïve bayes 

Figure 11 presents the ROC AUC values for botnet 

detection using the Random Forest classification from 

the SOFM method. The experiment results demonstrate 

that the utilization of feature engineering with SOFM 

and Random Forest classification effectively 

distinguishes between attack and normal traffic, with 

AUC values of 0.99 for both. 

Table 4 presents the validation results of the IoT botnet 

detection process using feature engineering with SOFM 

and machine learning. Upon comparison with the 

accuracy results in Table 5 and the validation results 

with k-fold cross-validation, it is evident that the 
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differences are not significant. According to statements 

by Li et al. [57] and Vabalas et al. [58], if the accuracy 

results do not significantly differ from those of k-fold 

cross-validation, it can be concluded that there is no 

overfitting. 

 

Figure 11. ROC AUC Random forest 

Table 5. Classification Validation Results Using Cross Validation 

Iteration DT MLP Naïve 

bayes 

Random 

forest 

LR 

1 97.24 96.48 81.68   97.19 96.83 

2 97.29 96.42 80.64   97.22 96.76 

3 97.29 96.38 81.82   97.20 96.78 

4 97.21 96.43 81.99   97.25 96.79 

5 96.24 96.47 81.77   97.20 96.75 

6 97.23 96.43 81.97   97.16 96.82 

7 97.27 96.44 81.68   97.22 96.76 

8 97.28 96.43 81.84   97.22 96.76 

9 97.15 96.41 80.66   97.23 96.67 

10 97.24 96.43 81.77   97.15 96.72 

Average 97.14 96.43 81.58   97.20 96.76 

Furthermore, the dimensionality reduction process 

using feature engineering can reduce the dataset 

dimensions from the original 100 columns to 10 

columns. As a result, the size of the initial dataset, 

which was 3.08 GB, was reduced to 923 MB after 

undergoing the feature engineering process with 

dimensionality reduction. This clearly demonstrates 

that employing feature engineering can effectively 

decrease memory usage during the botnet detection 

process. 

3.2 Comparison with previous research  

Table 6 shows the comparison results of the proposed 

methods with previous research (state of the art). 

Table 6. Comparison with previous research in IoT Botnet Detection 

Authors, 

Year 

Feature 

Engineering 

Methods 

Classification 

Methods 
Accuracy 

[14], 2020 PCA k-NN 90.40 

Naïve Bayes 96.40 

[15], 2021 Chi-square k-NN 99.60 

Multi-Layer 

perception  

87.40 

Gausian naïve 

bayes 

99.40 

[22], 2022 PCA Deep Neural 

Network 

91.44 

Authors, 

Year 

Feature 

Engineering 

Methods 

Classification 

Methods 
Accuracy 

[59], 2022 Recursive 

feature 

elimination 

XGBoost 94.00 

[60], 2023 Information 

Gain 

Recurrent Neural 

Network 

97.00 

[61], 2024 Feature 

significance 

k-NN 78.00 

This work SOFM Decision tree 97.24 

3.3 Discussions 

Based on the experiment results presented, several 

observations can be made regarding the effectiveness of 

feature engineering with SOFM and machine learning 

algorithms in IoT botnet detection. 

Firstly, the accuracy results obtained from the 

experiments, as shown in Table 4, demonstrate 

promising performance across all classification 

algorithms, with Decision Tree achieving the highest 

accuracy of 97.24%. This indicates the efficacy of 

Decision Tree in accurately classifying benign and 

attack instances. 

Moreover, the sensitivity values, which represent the 

ability to correctly identify attack instances, are notably 

high across all algorithms. Naïve Bayes, in particular, 

exhibited the highest sensitivity of 0.9753, indicating its 

proficiency in minimizing false negatives and ensuring 

fewer attacks go undetected. 

Additionally, the specificity values, indicating the 

ability to accurately classify benign instances, were also 

commendable. MLP recorded the highest specificity of 

0.9947, indicating its capability to reduce false positives 

and minimize misclassifications of benign data as 

attacks. 

Based on the evaluation results provided in Table 4, it 

can be argued that the decision tree algorithm offers the 

best overall performance compared to the other four 

algorithms (MLP, Naïve Bayes, Random Forest, and 

Logistic Regression) for the given features. The 

decision tree has the highest accuracy, indicating that it 

correctly classifies the most instances. While Naïve 

Bayes has the highest sensitivity, the decision tree still 

performs very well, demonstrating its effectiveness in 

identifying positive instances. The decision tree has a 

high specificity, meaning it correctly identifies negative 

instances, although Random Forest and MLP have 

slightly higher specificity. The decision tree has a low 

FPR, indicating fewer incorrect positive classifications, 

though Random Forest and MLP have slightly lower 

FPR.  

Furthermore, the decision tree has a low FNR, meaning 

fewer missed positive instances. Only Naïve Bayes has 

a lower FNR, but its overall accuracy and specificity are 

much worse. The decision tree has a reasonable 

execution time, much lower than MLP and Random 

Forest, and slightly lower than Logistic Regression, 

making it efficient. The decision tree provides the best 

balance of high accuracy, good sensitivity, high 



Susanto, Deris Stiawan, Budi Santoso, Alex Onesimus Sidabutar, M. Agus Syamsul A, Mohd. Yazid Idris, 

Rahmat Budiarto 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 6 (2024)  

 

This is an open access article under the CC BY-4.0 license                                                                                 796 

 

specificity, low FPR, low FNR, and reasonable 

execution time. While other algorithms might excel in 

one or two metrics, the decision tree consistently 

performs well across all evaluation criteria, making it 

the best choice for the given features. 

Furthermore, the ROC AUC values, as illustrated in 

Figures 7 to 11, consistently demonstrated excellent 

performance in distinguishing between attack and 

normal traffic for all classification algorithms, with 

AUC values predominantly close to 1. This indicates 

the robustness of the models in effectively 

discriminating between the two classes. 

In addition, the validation results presented in Table V, 

when compared with the accuracy results from Table 

IV, exhibit only minor differences, suggesting that the 

experiment outcomes do not indicate overfitting. This 

finding aligns with the conclusions drawn by Li et al. 

[57] and Vabalas et al. [58], indicating that the model 

can generalize well to unseen data. 

Lastly, the dimensionality reduction process through 

feature engineering effectively reduced the dataset's 

size from 3.08 GB to 923 MB, demonstrating the 

practical benefits of feature engineering in reducing 

memory usage during the botnet detection process. 

Feature engineering is a critical step in the data 

preprocessing phase that significantly impacts the 

performance of machine learning models. The methods 

compared with previous research (state of the art) in this 

discussion include Principal Component Analysis 

(PCA), Chi-square, Recursive feature elimination, 

Information Gain, Feature significance, and Self-

Organizing Feature Maps (SOFM). 

The PCA was utilized in multiple studies. PCA 

combined with k-NN by Alshamkhany et al. [14] 

combined PCA with k-NN to achieve 90.40% accuracy, 

whereas with Naïve Bayes, it reached 96.40%. Another 

study by Haq and Khan [22] used PCA with a Deep 

Neural Network (DNN) to achieve 91.44% accuracy. 

Furthermore, Recursive feature elimination, used by 

Alissa et al. [59], yielded high accuracy with a Extreme 

Gradient Boosting (XGBoost) (94.00%).  

Chi-square, as reported by Pokhrel et al. [15], achieved 

a remarkable 99.60% accuracy when paired with k-NN. 

Other combinations included Multi-Layer Perception 

(MLP) with 87.40% and Gaussian Naïve Bayes with 

99.40%. In the research by Bojarajulu et al. [60] 

Information Gain was paired with a Recurrent Neural 

Network, showing the result accuracy achieved 

97.00%.  On the other hand, research by Sharma et al. 

using the Feature significance method produced an 

accuracy level of 78.00%. Meanwhile, the proposed 

method achieved a high detection accuracy of 97.24%. 

The experiments highlight the effectiveness of feature 

engineering with SOFM and machine learning 

algorithms in IoT botnet detection, showcasing high 

accuracy, sensitivity, specificity, and robustness in 

distinguishing between attack and normal traffic while 

mitigating the risk of overfitting and reducing memory 

usage. 

4. Conclusions 

The IoT botnet detection system leverages a 

combination of feature engineering with the SOFM 

method and machine learning. Experiment results 

indicate that the application of SOFM can reduce the 

dataset size to a relatively smaller scale compared to the 

original data, thus conserving memory usage. 

Moreover, the utilization of the Decision Tree 

classification proves to be quite effective in detecting 

IoT botnets compared to Logistic Regression, Naïve 

Bayes, MLP, and Random Forest. Through the 

Decision Tree algorithm, the classification results yield 

an accuracy rate of 97.24%, sensitivity of 0.9523, 

specificity of 0.9932, FPR of 0.0067, and FNR of 

0.0476%, with an execution time of 100.66 s. For future 

research, the authors intend to explore the utilization of 

artificial intelligence techniques to autonomously 

identify, detect, and mitigate various forms of cyber 

attacks on IoT networ. 
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