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Abstract  

Deep learning is an artificial intelligence technique that has been used for various tasks. The performance of deep learning is 

determined by its hyperparameter, architecture as well as training (connection weight and bias). Finding the right combination 

of those aspects is very challenging. Convolution Neural Networks (CNN) is a deep learning method that is commonly used for 

image classification. It has many hyperparameters therefore tuning its hyperparameter is difficult. In this research, a 

metaheuristics approach is proposed to optimise the hyperparameter of convolution neural networks. Three metaheuristics 

methods are used in this research, ant colony optimization (ACO,) genetic algorithm (GA) and Harmony Search (HS). The 

metaheuristics methods are used to find the best combination of 8 hyperparameters with 8 options each which creates 1.6. 107 

of solution space. The solution space is too big to explore using manual tuning. The Metaheuristics method will bring benefits 

in terms of finding solutions in the search space more effectively and efficiently. The performance of the metaheuristics methods 

is evaluated using MNIST datasets. The experiment results show that the accuracy of ACO, GA and HS are 99,7%, 97.7% and 

89,9% respectively.  The computational time for the ACO, GA and HS algorithms are 27.9 s, 22.3 s and 56.4 s respectively. It 

shows that ACO performs the best among the three algorithms in terms of accuracy however its computational time is slightly 

longer than GA. The experiment results reveal that the metaheuristic approach is promising for the hyperparameter tuning of 

CNN. Future research can be directed to solve larger problems or enhance the metaheuristics operator to improve its 

performance. 
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1. Introduction  

Deep learning is an artificial intelligence (AI) technique 

that is able to extract features and learn complex 

mapping. It can be used for large data sizes in which 

shallow techniques are insufficient to handle it. Deep 

learning is inspired by brain activity to learn high levels 

of feature hierarchy [1].  It learns by transforming raw 

feature space into another complex feature space [2]. 

Deep learning has been widely used such as for 

automated disease detection based on image data [3] 

[4], fake news detection [5], speech recognition [6], 

image classification [7] and image processing [8], [9].  

Even though deep learning models have been used 

widely, the models still have limitations as they require 

high computational costs. Moreover, the performance 

of deep learning is significantly determined by its 

hyperparameter, weight and bias of its models as well 

as its architecture. Finding the right combination of 

those variables is not easy. Some approaches have been 

proposed to optimise those variables, such as the use of 

Grid Search, random Search and Bayesian Optimization 

for hyperparameters configure and the use of derivative 

methods to find the optimal values of the model weight 

and bias. The applicability of the methods is limited due 

to their high computational cost. The recent 

https://doi.org/10.29207/resti.v8i3.5730


 Hindriyanto Dwi Purnomo, Tad Gonsalves, Evangs Mailoa, Fian Yulio Santoso, Muhammad Rizky Pribadi 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 3 (2024)  

 

This is an open access article under the CC BY-4.0 license                                                                                 341 

 

development of computational power enables 

researchers to explore new approaches to overcome its 

limitations.  

Recently, new studies have been proposed to automate 

the search for deep learning design and parameters. One 

of the studies is neuro-evolution, the application of 

evolutionary computation to explore the huge search 

space of deep learning optimization problems. The use 

of an evolutionary algorithm enables the search process 

to obtain a near-optimal solution within an acceptable 

time. Examples of the study are the implementation of 

metaheuristics to enhance the CNN for characterization 

of abnormalities in breast images [10], and landslide 

susceptibility mapping [11], [12]. Some review studies 

also have been conducted to investigate the 

development of evolutionary algorithms in deep 

learning optimization. Tian and Fong [13] and Fong 

et.al [14] reviewed the implementation of a 

metaheuristic algorithm for training and parameters 

optimization of deep learning. Akay et al [2] provide a 

comprehensive review of the use of metaheuristics for 

optimizing deep learning models.   

Although several research on metaheuristics algorithms 

for deep learning optimization have been proposed, 

there are several issues that still arise. First, deep 

learning models involve discrete and categorial 

parameters therefore derivation-based methods 

unsuitable for optimizing the problem. Second, deep 

learning models have high dimensions of 

hyperparameters that need to be tuned appropriately. 

Automatic hyperparameter optimization is needed to 

reduce the computational cost of running each different 

configuration. Third, finding the best deep-learning 

architecture for a specific problem is difficult. More 

research on the application of metaheuristics for deep 

learning optimization is needed and worth investigating 

in order to answer the issues.  

In this research, we proposed a metaheuristics approach 

for hyperparameter tuning of Convolutional Neural 

Networks (CNN). CNN is widely used for processing 

and analyzing visual data such as video and images.  

The performance of CNN is significantly affected by 

the configuration of its hyperparameters, such as the 

number of convolutional layers, and the number of 

filters, along with the filter size, batch size, etc. For each 

problem, the CNN hyperparameter needs to be tuned as 

a CNN architecture will not generate satisfying results 

for all problems.  Therefore, there is a need for a method 

to tune the CNN hyperparameters for each problem 

automatically. However, determining the right values of 

hyperparameters for a specific problem is not easy. 

Therefore, research on optimizing the hyperparameter 

of CNN is important. We believe that this research 

would be very beneficial for research in this domain. 

The rest of the paper is organized as follows: section 2 

briefly describes the current research in this field, 

section 3 explains the proposed methods, section 4 

presents the experimental result and discussion, and 

section 5 consists of the paper conclusion. 

2. Research Methods 

Deep learning has been used in various fields. The 

performance of deep learning is influenced by its 

training, hyperparameter configuration and deep 

learning architecture. Finding the best combination of 

deep learning hyperparameter configuration, training 

and architecture is a difficult task. Researchers have 

proposed methods to solve the problems and research in 

this domain is still ongoing.   

A deep learning model that is widely used is the 

Convolutional Neural Network. It is primarily used for 

processing and analyzing visual data such as video and 

images.  The model is developed by LeCun et all  [15] 

to classify handwritten digits. The early model of CNN 

cannot perform well on more large-scale images 

because of a lack of training data and computer power. 

Several methods have been developed to overcome the 

difficulties in training CNN [16], [17]. The training will 

tune the CNN parameters (weights). Besides the 

parameter setting, the performance of CNN is highly 

dependent on its hyperparameter setting, such as the 

number of convolutional layers and filters, along with 

the filter size, batch size, etc. For each problem, the 

CNN hyperparameter needs to be tuned as a CNN 

architecture will not generate satisfying results for all 

problems.  Therefore, there is a need method to tune the 

CNN hyperparameters for each problem. However, 

determining the right values of hyperparameters for a 

specific problem is not easy.  

Optimizing the hyperparameter of CNN can viewed as 

an optimization problem. The problem belongs to an 

NP-hard problem, and it became a challenging task in 

the CNN domain. Some early methods for optimizing 

hyperparameters are random search [18], [19] and grid 

search [19], [20]. As the number of parameters 

increases, the use of random search and grid search for 

hyperparameters’ tuning requires much time and 

knowledge from the domain. Therefore, there is a need 

for more sophisticated methods for optimizing the 

hyperparameter of a CNN.  On the other hand, there is 

the metaheuristics method which is a modern 

optimization method that has been widely used for NP-

hard problems.  

However, there is only limited research that explores 

metaheuristics for hyperparameter tuning of CNN. In 

this paper, a metaheuristics approach is proposed for 

hyperparameter tuning of CNN. The performance of 

three metaheuristics methods, ant colony optimization 

genetic algorithm and harmony search are compared in 

this research.  MNIST data set is used as the benchmark 

problem. 

2.1 The Convolutional Neural Network Architecture  

In this research, a hyperparameter optimization model 

is proposed for the convolutional neural network. A pre-

trained model is used as the base model. The pre-trained 

model consists of the input layer, two convolutional 

layers, a dropout layer followed by max pooling, a 
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flattened layer, batch normalization, two dense layers, a 

dropout layer and output. The base model is given in 

Figure 1.  

 

Figure 1. The Base model 

The input for the CNN model is a 28 x 28 x 3 pixel. The 

input is forwarded to two sequential convolutional 

layers. The output of the second convolutional layer is 

forwarded to the dropout and maxpooling layers. The 

dropout layer is used to avoid overfitting [21]. The 

output of the max-pooling layer was flattened and then 

it was forwarded to the batch normalization layer. The 

batch normalization is used to improve the learning 

process [22]. The output of batch normalization is 

forwarded to dense layers and the dropout layer 

followed by the output layer.  

Eight hyperparameters are optimized in this research. 

The hyperparameters are the number of neurons in the 

dense layers, dropout layers, the number of batches, the 

type of activation function, the type of optimizer and the 

type of loss function. Each hyperparameter has discrete 

values making the problem can be viewed as a 

combinatorial problem.   

2.2 The Ant Colony Optimization  

This section will focus on the description of the 

proposed ant colony optimization. An ant is a 

representation of a solution and is coded using an array 

as shown in Figure 2. Each cell is a representation of 

each hyperparameter. As each hyperparameter has its 

own option, therefore each hyperparameter is 

independent of each other.  

 

 

 

 

Figure 2. Solution representation  

Solution generation is conducted by selecting an option 

for each hyperparameter based on the alternative option 

available. As each hyperparameter is independent of the 

other, a pheromone matrix is created for each 

hyperparameter. The matrix is given in Figure 3.  

 

 

Figure 3. Pheromone matrix for each hyperparameter  

The probability that an option is selected in a 

hyperparameter is given by Formula 1. 

𝑝𝑖,𝑘 =
𝜏,𝑘𝑖

∑ 𝜏𝑗,𝑘𝑗𝜖𝑆
, ∀𝑗𝜖𝑆𝑘                                                  (1) 

𝑝𝑖,𝑘 is the probability of option i for hyperparameter k, 

𝜏𝑖,𝑘 is the pheromone of option i for hyperparameter k, 

𝑆𝑘is the set of option for hyperparameter k. 

There are two operators for pheromone update, 

evaporation and reinforcement. Evaporation operator is 

used to simulate the natural phenomena when 

pheromone trails naturally evaporate over time. The 

pheromone update is is shown in Formula 2.  

 𝜏𝑖,𝑘 = (1 − 𝜌)𝜏𝑖,𝑘                                                      (2) 

𝜌 is evaporation rate. Reinforcement is a mechanism 

used to strengthen the pheromone trails on paths when 

an ant passes the trails. The reinforcement process aims 

to guide other artificial ants in the colony toward the 

most promising and high-quality solutions found during 

the optimization process. The reinforcement used in this 

research is shown in Formula 3.  

𝜏𝑖,𝑘 =  𝜏𝑖,𝑘 + 0.5                                                         (3) 

The pseudocode for the proposed ant colony 

optimization is given as Pseudocode 1.  

Pheromone initialization 

While stopping criteria is not met 

For each ant 

Generate a solution 

Pheromone update 

Evaporation 

Reinforcement  

End for 

End While 

Each ant consists of a vector of hyperparameters. The 

hyperparameter vector is then used to configure a CNN. 

The performance of the CNN is evaluated using the  

MNIST datasets. The performance of the CNN is used 

to measure the performance of the ant (solution).  

2.3 The Genetic Algorithm  

This section describes the genetic algorithm used in this 

research. The solution representation is the same as 

used in ACO, shown in Figure 2. Each chromosome is 

a representation of a hyperparameter. The values of 

each chromosome are independent of each other. The 

work of the Genetic algorithm can be described in 

Figure 4.  

 
Figure 4. The Genetic Algorithm Framework  

Population 

Initialization  

Selection Reproduction Output 

Replacement 

1 2 3 . . . n . 

{  
  Option 1, 
  Option 2, 
  … 
  Option n  
} 
 

{  
  Option 1, 
  Option 2, 
  … 
  Option n  
} 
 

. . . 

𝜏1 𝜏2 … 𝜏𝑚 
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Population initialization is used to generate a set of 

initial individuals. An individual is a potential solution. 

The initial solution became the benchmark solution in 

the search process. Several individuals are selected 

from the population to generate new individuals. 

Roulette Wheel selection is used to select an individual 

from the population. The probability that an individual 

is selected is given as Formula 4. 

𝑝𝑥 =
𝑓𝑥

∑ 𝑓𝑙
𝑙=𝑀
𝑙=1

                                                                (4)  

𝑝𝑥 is the probability of individual x is selected, 𝑓𝑥 is the 

fitness value of individual x , 𝑀 is the population size. 

The fitness function used in this research is the accuracy 

of the CNN using the hyperparameter tuning given by 

the genetic algorithm. The accuracy is given as Formula 

5. 

𝑓𝑥 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
               (5) 

  

Figure 5. one point crossover 

Individuals selected from the selection process are 

called parents. The parents are used to generate new 

individuals through a reproduction mechanism. Two 

operators are used in the reproduction mechanism, 

called crossover and mutation. Crossover is a method to 

generate a new individual by involving two or more 

parents. On the other hand, mutation is a method to 

generate a new individual involving only one parent. 

The crossover used in this research is a point crossover. 

In one point crossover, each parent is divided into two 

sections. A new individual is formed from the section 

combination of its parents. The one-point crossover is 

illustrated in Figure 5.  

The mutation used in this research is a swap. The swap 

operator exchanges the values of a random point in a 

parent. The swap operator can be illustrated in Figure 6. 

The new individuals produced from the reproduction 

mechanism are then used to update the population. The 

update mechanism is called replacement or elitism. 

Only good individuals will be retained.   

 

Figure 6. Swap mutation 

The pseudocode of the genetic algorithm is given as 

Pseudocode 2. 2.  

Generate initialization PopulationP(0) 

While stopping criteria is not met 

Fitness P(t) 

I(t) = Selection (P(t)) 

If rand < probability of crossover 

A(t) = crossover (I(t)) 

If rand < probability of mutation 

A(t) = mutation (A(t)) 

Endif 

End if 

P(t) = replacement (P(t,A(t)) 

End While 

Each individual consists of a vector of hyperparameters. 

The hyperparameter vector is then used to configure a 

CNN. The performance of the CNN is evaluated using 

the  MNIST datasets. The performance of the CNN is 

used to measure the performance of the individual 

(solution).  

3.4 The Harmony Search  

This section describes the harmony search algorithm 

used in this research. The solution representation is the 

same as used in ACO, shown in Figure 2. Each harmony 

is a representation of a vector of hyperparameters. In 

harmony search, there is a collection of solutions called 

harmony memory which can be represented in Figure 7. 

 

Figure 7. The representation of harmonious memory 

The harmony search used in this research works as 

follows:  

Generate harmony memory: in the first step, the 

harmony search will generate a set of initial solutions, 

called harmony memory. The solutions are then 

evaluated to determine their quality based on the 

objective function, shown in equation 5.  

New harmony improvisation: there are three basic 

operations for harmony improvisation, random 

selection, harmony memory consideration (HMC) and 

pitch adjustment.  Random selection means selecting a 

value of decision variable 𝑣𝑖 randomly from an 

available value range of variable 𝑉𝑗. Harmony memory 

consideration means selecting a value of the decision 

variable from the harmony memory. The probability of 

choosing the element from the harmony memory is 

called the harmony memory consideration rate 

(HMCR). The probability of random selection is 1-

HMCR. It can be formulated in Formula 6. 

𝑣𝑗
, =  {

𝑣𝑗 ∈  {𝑒𝑗
1,  𝑒𝑗

2, …  ,  𝑒𝑗
𝐻𝑀𝑆} 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 𝐻𝑀𝐶𝑅

𝑣𝑗   ∈  𝑉𝑗    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 1 − 𝐻𝑀𝐶𝑅
                   (6)  
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In the pitch adjustment, the obtained variable value 

from HMC is further adjusted to its neighbors. The 

probability of pitch adjustment is called pitch 

adjustment rate (PAR). It can be formulated in Formula 

7. 

𝑣𝑗
 ,  = {

𝑣𝑗(𝑘 + 𝑚)   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 𝐻𝑀𝐶𝑅 𝑥 𝑃𝐴𝑅   
 

𝑣𝑗
 ,  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏 𝐻𝑀𝐶𝑅 𝑥 (1 − 𝑃𝐴𝑅)

                (7) 

𝑣𝑗(𝑘) is the kth element in 𝑉𝑗, and m is a neighboring 

index used for discrete variables (m = … , -2, -2, 1, 2, 

...). In this research, m is either –1 or 1.  

Solution update: after a vector of hyperparameter is 

determined, the CNN with the determined 

hyperparameter is trained with the data set. The 

performance of the CNN will be used to evaluate the 

quality of the harmony. When the new harmony has a 

higher quality than the worst harmony in the harmony 

memory, the new harmony is used to replace the worst 

harmony in the harmony memory.  

3. Results and Discussions 

In this research, each hyperparameter has 8 values, 

making the search space 88 or 16.777.216. The values 

option for each hyperparameter is given Table 1. 

Table 1. Values option for each hyperparameter 

No Hyperparameters Options 

1 The number of neurons in the 

first dense layer 

16, 32, 64, 128, 256, 

512, 1024, 2048 

2 The number of neurons in the 

second dense layer 

16, 32, 64, 128, 256, 

512, 1024, 2048 

3 The values of the first 

dropout layer 

0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8 

4 The values of the second 

dropout layer 

0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8 

5 The number of batches  16, 32, 64, 128, 256, 

512, 1024, 2048 

6 The type of activation 

function  

relu, sigmoid, softplus, 

softsign, tanh, selu, gelu, 

linier 

7 The type of optimizer 

algorithm 

Adam, RMSprop, SGD, 

Adadelta, Adagrad, 

Adamax, Ftrl, Nadam 

8 The type of loss function  Sparse Categorical 

Crossentropy, 

Categorical 

Crossentropy, Binary 

Crossentropy, Mean 

Absolute Error, Mean 

Squared Error, Squared 

Hinge, 

CategoricalHinge, 

cosine similarity 

The number represents the value for each 

hyperparameter type as given in Table 1. The 

hyperparameter of the ant colony optimization is set as 

follows: the number of ants is 20, the evaporation rate 

is 0,25 and the reinforcement coefficient is 0.5. The 

performance of the ant colony optimization is compared 

to the genetic algorithm. The hyperparameter of the 

genetic algorithm is: the population size is 20, the 

crossover rate is 0.95 and the mutation rate is 0.1. The 

selection mechanism is Roulette Wheel Selection while 

one-point crossover and swap are used as the crossover 

and mutation respectively. The dataset used in this 

research is the MNIST dataset. 

The results for the ACO, GA and HS are given in Figure 

8. Using the training data, the accuracy of ACO, GA 

and HS are 99,7%, 97.7% and 89,9% respectively. 

 

a. Accuracy in training data 

 

b. Accuracy in testing data 

Figure 8. The accuracy of  ACO, GA and  HS  

The CPU time for the ACO, GA and HS are 27.9 s, 22.3 

s and 56.4 s. The experiment shows that the 

metaheuristics approach work well to tune the 

hyperparameter of CNN. Based on the algorithms used 

in this research, the ACO perform the best compared to 

GA and HS, however, the CPU time is slightly longer 

than the GA. The HS perform the worst in terms of 

accuracy and CPU time.  

4. Conclusions 

A Metaheuristics approach is proposed for the 

hyperparameter optimization tuning of CNN. The 

methods used in this research are ant colony 

optimization, genetic algorithm, and harmony search. 

The methods have similar solution representations 

where a solution represents a set of options for each 
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hyperparameter. Each hyperparameter is independent 

of each other. The experiment results show that the 

metaheuristics approach has good performance in 

tuning the hyperparameter of CNN. Ant Colony 

Optimization performs the best in terms of accuracy; 

however, its computation time is slightly longer than the 

Genetic Algorithm. The Harmony Search perform the 

least in terms of accuracy and computation time. Future 

research can be extended in several ways, such as 

finding the optimal CNN architecture for a given 

problem and enhancing the GA operator (crossover and 

mutation) to improve its performance.  
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