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Abstract  

Deep learning, especially convolutional neural networks (CNN), has gained traction in the field of image classification. In the 

specific case of plant disease classification, improving the accuracy and reliability of image classification is paramount. This 

paper delves into the ensemble prediction technique using a weighted soft-voting method. Instead of assigning a generalized 

weight to each CNN model, our approach emphasizes giving weights to each label's prediction within every individual model. 

We employed three esteemed CNN architectures for our experiments: DenseNet201, InceptionV3, and Xception focusing on 

classifying various diseases affecting grapes. By harnessing transfer learning coupled with end-to-end fine-tuning, we achieved 

a streamlined and efficient training process. Notably, the f1-score for each grape disease class was used as a parameter for 

weight determination and as a metric for the final evaluation. In our study, the newly proposed method was tested across 

various datasets and ensemble scenarios, demonstrating its effectiveness by not only outperforming the conventional soft-

voting and prevalent weighted soft-voting methods, which achieved best scores of 95.68% and 95.81% respectively, but also 

by achieving a remarkable accuracy of 96.56%. This method's efficacy is heightened when ensemble models exhibit distinct 

characteristics; the more varied the model characteristics, the more enhanced the ensemble results. 
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1. Introduction 

Plant diseases have long been a major threat to global 

agriculture, impacting food security and economic 

stability. Over time, the methods used for diagnosing 

these diseases have undergone significant 

transformations. Initially, basic tools such as 

magnifying glasses and simple observational 

techniques were prevalent [1]. However, with the 

increasing demand for more efficient and scalable 

diagnostic methods, a shift toward advanced 

computational techniques has become necessary. This 

change is further driven by the growing global 

population and the corresponding rise in food demand, 

emphasizing the need for rapid and precise diagnosis of 

plant diseases  [2]. 

Deep learning, an advanced branch of machine 

learning, is swiftly emerging as a cornerstone in the 

field of modern plant pathology. This technique, 

inspired by the human brain's structure and powered by 

artificial neural networks, offers extraordinary 

computational capabilities. Deep learning algorithms 

are adept at processing extensive numbers of plant 

images, detecting intricate patterns that are often 

overlooked by the human eye. They excel not only in 

identifying plant diseases but also in comprehending the 

progression and potential impacts of these diseases [3]. 

With the evolving complexity of plant pathogens, the 

focus is increasingly shifting from mere disease 

identification to understanding their entire trajectory 

and devising effective intervention strategies. 

Traditional diagnostic methods, largely reliant on 

human expertise, struggle with the unpredictable nature 

of disease outbreaks. In stark contrast, deep learning 

leverages extensive datasets to continuously refine its 

analysis, emerging as a crucial tool capable of 

anticipating disease outbreaks. This predictive 

advantage offers agriculturists and farmers the 

opportunity for timely interventions, thereby potentially 

reducing the adverse effects on crop yields. With the 

growing recognition of its capabilities, deep learning is 
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steadily being acknowledged by researchers and 

industry professionals alike as a key to proactive 

management in the realm of plant disease control [4]. 

The application of deep learning in plant disease 

classification is not a nascent concept, and several 

pioneering works have underscored its efficacy. Zhang 

et al. [5] embarked on an exploration using 

convolutional neural networks (CNNs) to classify 

Maize leaf diseases, and their results indicated a 

remarkable 98.9% accuracy. Another noteworthy study, 

by using deep learning methods, Singh et al [6] propose 

a multilayer convolutional neural network (MCNN) to 

accurately classify Anthracnose fungal disease in 

mango leaves, with results outperforming other state-

of-the-art approaches based on a dataset of 1070 

images. Ghosal S et al [7] researched transfer learning, 

repurposing pre-trained models for rice plant disease 

classification, and achieved a reduction in training time 

without compromising on accuracy. In more recent 

research, Ho et al [8] and Yuvalatha et al [9] are using 

ensemble CNN techniques, both studies leveraged 

various transfer learning models, including ResNet and 

DenseNet architectures, to achieve high accuracies in 

identifying plant diseases early, with results showing 

promise for enhancing agricultural practices and 

reducing crop losses. 

The application of deep learning in plant disease 

classification is well-established, with several studies 

demonstrating its efficacy. Pioneering works in this 

area have included the use of convolutional neural 

networks (CNNs) for classifying various plant diseases, 

showcasing remarkable accuracies and outperforming 

other state-of-the-art approaches and traditional 

methods. Ensemble learning, particularly methods like 

soft-voting and its improved variant, weighted soft-

voting, has further enhanced model performance [10] –

[20]. 

This research contributes to the field of plant disease 

classification by addressing a critical gap in the 

application of ensemble learning methodologies. 

Existing literature predominantly focuses on the 

effectiveness of ensemble methods like soft-voting and 

its more sophisticated variant, weighted soft-voting. 

However, these methods typically rely on the 

assumption that a model's performance is consistent 

across all classes, an assumption that this study 

challenges. We propose that a model may exhibit 

suboptimal performance in most classes but excel in 

specific ones. To capitalize on this insight, our research 

refines the weighted soft-voting approach by assigning 

unique weights to each label within a model, rather than 

applying a uniform weight across the entire model. This 

strategy aims to significantly improve the precision and 

accuracy of plant disease classification by harnessing 

the distinct strengths of individual models in their areas 

of competence. By adopting this more granular 

approach to weight distribution, we anticipate not only 

enhanced predictive performance in complex 

classification scenarios but also the establishment of a 

new benchmark in the utilization of ensemble learning 

techniques. 

In the field of plant disease classification, ensemble 

learning has become a pivotal approach, harnessing the 

collective strengths of multiple models to enhance 

prediction accuracy and robustness [21]. Among these 

methods, soft-voting and its advanced form, weighted 

soft-voting, stand out for their effectiveness in complex 

classification tasks. These techniques integrate diverse 

model predictions, adjusting the influence of each based 

on its demonstrated accuracy. However, this approach 

often overlooks the varying performance of models 

across different classes. This research aims to refine this 

aspect by introducing a novel adaptation to weighted 

soft-voting, assigning individual weights to each label 

of a model, thereby enhancing precision in plant disease 

classification. 

Ensemble learning is increasingly favoured in machine 

learning due to its ability to leverage the strengths of 

multiple models, thereby enhancing overall 

performance. This approach is particularly effective in 

complex tasks where a single model might not capture 

all aspects of the data or may be prone to overfitting. By 

combining predictions from multiple models, ensemble 

methods often achieve higher accuracy and robustness 

compared to individual models. This makes them 

especially suitable for applications in fields like plant 

disease classification, where the accuracy and reliability 

of predictions can have significant practical 

implications  

In the broader scope of ensemble methods, soft voting 

stands out as a popular technique. Soft-voting is an 

ensemble method that combines the predictions of 

multiple models by averaging each prediction score and 

using the maximum score as the label output [22]. 

Studies have shown the simplicity and effectiveness of 

the soft-voting method in improving the performance of 

machine-learning models [10], [18]. 

As advancements in ensemble techniques continued, 

soft-voting underwent refinements to further enhance 

its classification results. Recognizing that different 

models exhibit varying levels of performance, some 

being strong and others weak, it became logical to 

assign more influence to stronger models in the voting 

process. This led to the development of weighted soft-

voting, where each prediction from a model is given a 

weight based on its prior prediction accuracy [23]. 

Research employing this method has demonstrated 

improved performance across various applications [12], 

[13], [15], [17], [19], [20]. 

In prior research, the application of weighted soft-

voting for plant disease classification has been 

investigated, with weights being assigned at the model 

level [24], [25]. These studies, however, are based on 

the critical assumption that a model's performance is 

uniformly effective across all classifications, a 

presumption that may not always hold. This 

conventional approach tends to overlook instances 



Octavian, Ahmad Badruzzaman, Muhammand Yusuf Ridho, Bayu Distiawan Trisedya 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 2 (2024)  

 

This is an open access article under the CC BY-4.0 license                                                                                 274 

 

where a model, despite its overall average performance, 

could exhibit exceptional accuracy in specific classes. 

Our study addresses this oversight by introducing a 

refined version of the weighted soft-voting method, 

wherein weights are allocated to each label within a 

model independently. This modification aims to 

enhance the granularity and accuracy of classification 

outcomes, particularly in complex scenarios where the 

strengths and weaknesses of models vary markedly 

across different tasks. By adopting this tailored 

approach, our research endeavours to bring a more 

sophisticated and precise dimension to the field of plant 

disease classification using ensemble learning 

techniques. 

In the initial phase of our research, we embarked on a 

preliminary experiment to assess the individual 

performance of various models in classifying specific 

labels within a grape disease dataset, the detail can be 

seen in Figure 3, in section 3. This was crucial to 

understanding the unique strengths and weaknesses of 

each model. Ensuring data variation and balance is 

crucial in this phase. Balance is achieved by equalizing 

data across all labels to prevent f1-score bias while 

varying the data characteristics enhances the robustness 

of the f1-score. 

Table 1. Accuracy and f1-score of each model for preliminary 

experiment testing 

Label InceptionV3 DensNet201 Xception 

0 0.90307 0.74425 0.61842 
1 0.90821 0.81169 0.76364 

2 0.82022 0.98246 0.94737 

3 0.86242 0.99762 0.98361 
Accuracy 0.87500 0.88690 0.83690 

 

Figure 1. Confusion Matrix of each model for preliminary 

experiment testing 

The results from this Preliminary Experiment can be 

seen in Table 1 and Figure 1. Models such as 

DenseNet201 and Xception displayed a propensity for 

accurately classifying labels 2 and 3, but their 

performance was less effective for labels 0 and 1. 

Interestingly, despite their similarities, DenseNet201 

generally outperformed Xception. On the other hand, 

Inception-V3 showed a contrasting strength, being 

more adept at classifying labels 0 and 1, compared to 3 

and 4.  

These findings underscored the importance of a 

nuanced approach in the subsequent phase of the 

research. By assigning weights based on the 

demonstrated strengths of each model in classifying 

specific labels of grape diseases, we anticipate an 

enhancement in the overall accuracy of the ensemble. 

The next step involves the application of these insights 

to compute weight values for each model label, as 

outlined in Formula 5. This step is a key part of 

enhancing our ensemble method for the main 

experiment discussed in section 3. 

2. Research Methods 

2.1 Soft-voting and Weighted Soft-voting 

Soft-voting distinguishes itself as a key technique in 

ensemble methods. This approach averages the 

prediction scores from multiple models, using the 

highest score for the final classification. Further 

refinement led to the development of weighted soft-

voting, where predictions are weighted based on a 

model's accuracy, thus improving the method's 

precision in various applications. 

Let ℎ𝑖 be the ensemble score result for label-i, T be the 

count of models, 𝑝𝑚,𝑖 be the prediction score from 

model-m for label-i, and 𝑤𝑚 be the weight for 

prediction of model-m then to calculate the ensemble 

prediction of the CNN model for image classification, 

the normal soft-voting formula can be written as 

Formula 1, and for the weighted soft-voting as Formula 

2. 

ℎ𝑖 =
1

𝑇
∑ 𝑃𝑚,𝑖
𝑇
𝑚−1                  (1) 

Based on [20], let 𝑎𝑛 be the accuracy of model-n and 

𝑤𝑚 be the weight for model-m; the weight of the model 

can be calculated by using Formula 2. 

𝑤𝑚 =
𝑎𝑚

∑𝑎𝑖
             (2) 

2.2 Proposed Method 

The proposed method in this paper is that, rather than 

giving weight to the models like Formula 2, giving 

weight to labels inside the models will give a chance to 

make the ensemble result more robust and better.  

The architecture proposed methods in Figure 2 can 

explain Formula 3 which is the formula to calculate the 

ensemble prediction score by our proposed method. 

Where ℎ𝑖 is the ensemble score result for label-i, T is 

the count of models, 𝑝𝑚,𝑖 is the prediction score from 

model-m for label-i, and 𝑤𝑚,𝑖 is the weight for 

prediction of model-m for label-i. 

ℎ𝑖 =
∑ (𝑤𝑚,𝑖𝑝𝑚,𝑖)
𝑇
𝑚=1

∑ 𝑤𝑚,𝑖
𝑇
𝑚=1

              (3) 
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Figure 2. The proposed method of modifying the weighted soft-

voting 

Additionally, instead of using the accuracy score for 

calculating the weight of each label, using the f1-score 

is a better choice, since the f1-score is a metric that can 

describe the performance of the model in predicting 

each label or class.  The formula can be written as 

Formula 4 where 𝑤𝑚,𝑖 be the weight of prediction for 

model-m for label-i, 𝑓𝑚,𝑖 be the f1-score of model-m for 

label-i.  

𝑤𝑚,𝑖 =
𝑓𝑚,𝑖

∑𝑓𝑛,𝑖
                  (4) 

2.3 CNN Architectures 

A convolutional neural network (or CNN) is a special 

type of multilayer neural network or deep learning 

architecture inspired by the visual system of living 

beings [26]. There are so many advanced architectures 

of CNN that have been discovered in recent years. In 

this paper, the experiment uses three CNN architectures 

to be ensembled. Those architectures are DenseNet201, 

InceptionV3, and Xception. 

DenseNet201 is one of the architectures in the 

DenseNet family, which has 201 layers. The key idea 

behind DenseNet is to connect all layers in a feed-

forward fashion so that each layer receives the feature 

maps from all preceding layers as input. This creates a 

dense block, where the input and output of each layer 

are concatenated together. By doing this, DenseNet can 

reuse features learned at earlier layers, leading to better 

feature reuse and higher accuracy while also reducing 

the chance of gradient vanishing and the number of 

parameters [26]. DenseNet has been used in varying 

image classifications, such as in articles [27], [28] and 

[29]. 

InceptionV3 is a superior version of the basic model of 

the Inception family. The InceptionV3 model is made 

up of 42 layers, which is a bit more than the previous 

versions (the Inception V1 and V2 models). 

InceptionV3 uses a combination of 1x1, 3x3, and 5x5 

convolutions, as well as max pooling and average 

pooling, to extract features from images. It also 

introduces the inception module, which consists of 

multiple parallel convolutional branches with different 

filter sizes. By doing this, Inception-V3 can capture 

both local and global features in an image. In addition, 

Inception-v3 factorized convolution to reduce the 

number of parameters in the network. This involves 

decomposing a standard convolution into two separate 

convolutions with smaller filter sizes, which reduces the 

number of parameters without sacrificing accuracy. 

Those make the efficiency of the inceptionV3 to be 

impressive  [30]. Some of the research using this model 

can be read in articles [31] and [32]. 

The last CNN architecture is Xception. It is based on 

the Inception architecture, but it replaces the standard 

Inception modules with depthwise separable 

convolutions. Depthwise separable convolutions 

consist of two separate operations: a depthwise 

convolution and a pointwise convolution. The 

depthwise convolution applies a single filter to each 

input channel, while the pointwise convolution applies 

a 1x1 filter to combine the output of the depthwise 

convolution across all channels. By doing this, 

Xception can capture complex patterns in the input data 

using fewer parameters. In addition to depthwise 

separable convolutions, Xception also uses a series of 

residual connections, which help alleviate the problem 

of vanishing gradients during training. These 

connections allow gradients to flow more easily through 

the network, which can lead to faster convergence and 

better performance. The advantage of Xception is how 

easy the architecture is to implement in code and reduce 

the computer cost [33]. Xception has been used for 

several classification cases, such as image weather 

classification [34] and plant diseases classification [35]. 

2.4 Evaluation Models 

There are several metrics to measure how well the 

models or methods perform. In this experiment, the 

metrics that will be used are recall, precision, f1-score, 

accuracy and the confusion matrix. The formula to 

calculate all of those metrics can be seen in Formulas 5, 

6, 7, and 8. where TP is the number of true positives 

(the model predicts a positive result and the ground 

truth is also positive), TN is the number of true 

negatives (the model predicts a negative result and the 

ground truth is also negative), FP is the number of false 

positives (the model predicts a positive result, but the 

ground truth is negative), and FN is the number of false 

negatives (the model predicts a negative result, but the 

ground truth is positive). 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (5)  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (6)  

𝑓𝑙 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑥𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
             (7)  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
             (8) 

3. Results and Discussions 

3.1 Dataset 

In this study, we utilized a dataset comprising 

classification images of grape leaf diseases, provided by 
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PlantVillage [36], [37]. The focus is on four primary 

classes of grape disease: Black Rot (1,180 images), 

Esca (1,382 images), Leaf Blight (1,076 images), and 

Healthy (423 images). To create a robust dataset for 

machine learning analysis, each class has been 

augmented to a total of 2,000 images. This 

standardization ensures uniformity across all classes. 

 

Figure 3. Sample images of grape diseases dataset and their labels 

The augmented dataset is systematically divided into 

three key segments. Firstly, the training phase, which 

consists of 700 images for model training and 300 

images for validation. Secondly, the Preliminary 

Experiment testing phase utilizes a subset of 500 

images. Lastly, the Experiment testing phase also 

employs 500 images. For ease of analysis and clarity, 

each class within the dataset is distinctly labelled, as 

illustrated in Figure 3 

3.2 Training Process 

Our analysis of the training process, as illustrated in 

Figure 4 and Figure 5, reveals a stark contrast between 

models trained with and without pre-trained weights. 

The use of pre-trained models significantly accelerated 

the convergence speed, leading to faster stabilization in 

both accuracy and validation accuracy metrics. This 

suggests that the pre-trained models were able to 

leverage previously learned patterns, thereby reducing 

the time and computational resources needed to reach 

optimal performance.  

Additionally, the figure highlights a more stable and 

consistent decline in both loss and validation loss for 

the pre-trained models compared to their counterparts. 

This stability indicates that pre-trained models are not 

only faster in reaching convergence but also more 

reliable in maintaining performance consistency 

throughout the training process. The combined insights 

from these figures underscore the efficacy of using pre-

trained models in enhancing the efficiency and 

robustness of the training phase 

 

Figure 4. Comparison accuracy and validation accuracy of the 

training process between using and not using a pre-trained model 

 

Figure 5. Comparison loss and validation loss of training process 

between using and not using the pre-trained model 

3.3 Result 

The outcomes of applying the proposed methods in the 

experiment testing are detailed in Tables 2-5, which 

present the classification report, and Figures 6-7, 

illustrating the confusion matrices. Table 4 and Figure 

5 provide an initial assessment of each model's 

performance in the testing phase, revealing that all 

models yield results consistent with those observed in 

the Preliminary Experiment. This consistency validates 

the reliability of the Preliminary Experiment data for 

calculating the weight labels in our proposed method. A 

comprehensive summary of all ensemble testing 

experiments is documented in Tables 5-8 and Figure 6. 

These tests unequivocally demonstrate that our 
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proposed method, which involves assigning weights to 

each model's label, outperforms traditional soft-voting 

and weighted soft-voting methods. Notably, the highest 

accuracy score achieved is 0.96650, facilitated by the 

combination of Inception-V3 and DenseNet201, while 

the lowest is 0.90100, resulting from the DenseNet201 

and Xception pairing. 

One of the most intriguing aspects of our study is the 

differing outcomes produced by various ensemble 

combinations. Insights drawn from the Preliminary 

Experiment and the individual performance metrics of 

each model, as detailed in Table 1, Table 2, Figure 1, 

and Figure 6, reveal a notable distinction.  

Table 2. Accuracy and f1-score of models in experiment testing 

Label InceptionV3 DensNet201 Xception 

0 0.91360 0.77201 0.67550 

1 0.90554 0.82803 0.77942 

2 0.83759 0.98619 0.94848 

3 0.86430 0.99900 0.98912 

Accuracy 0.88100 0.89850 0.89850 

 

Figure 6. Confusion Matrix of each model for experiment testing 

Table 3. Accuracy and f1-score of ensemble models using Xception and 

InceptionV3 

Label 
Soft-voting [10], 

[18] 

weighted  

soft-voting[20] 

Proposed 

Method 

0 0.88372 0.90247 0.91536 
1 0.89748 0.90909 0.91958 

2 0.93276 0.91658 0.94737 

3 0.95420 0.93809 0.96525 
Accuracy 0.91750 0.91700 0.93700 

DenseNet201 and Xception, while sharing similar 

characteristics, differ fundamentally from Inception-

V3. This similarity between DenseNet201 and Xception 

implies a limitation in their ability to augment each 

other’s performance, as they are prone to similar 

weaknesses. In contrast, when combined with 

Inception-V3, which exhibits a different set of 

characteristics, there is a complementary interaction. 

This synergy allows for the mutual compensation of 

weaknesses, where the strengths of one model 

effectively counterbalance the shortcomings of the 

other. Such findings highlight the critical importance of 

model diversity in constructing effective ensemble 

approaches, emphasizing how distinct model 

characteristics can lead to a more robust overall system. 

Table 4. Accuracy and f1-score of ensemble models using Xception 

and DenseNet201  

Label Soft-voting 
weighted  
soft-voting 

Proposed 
Method 

0 0.74750 0.74938 0.75921 

1 0.83236 0.83221 0.83615 

2 0.99800 0.99800 0.99700 
3 0.99701 0.99800 0.99701 

Accuracy 0.89800 0.89850 0.90100 

Table 5. Accuracy and f1-score of ensemble models using 

InceptionV3 and DenseNet201 

Label Soft-voting 
weighted  
soft-voting 

Proposed 
Method 

0 0.92981 0.92762 0.93333 

1 0.93478 0.93399 0.93837 
2 0.99398 0.99498 0.99700 

3 0.99108 0.99305 0.99701 

Accuracy 0.96250 0.96250 0.96650 

Table 6. Accuracy and f1-score of Xception, InceptionV3 and 

DenseNet201 ensemble 

Label Soft-voting 
weighted soft-

voting 

Proposed 

Method 

0 0.87486 0.87982 0.89946 

1 0.89536 0.89945 0.91179 
2 0.99398 0.99498 0.99598 

3 0.99800 0.99800 0.99800 

Accuracy 0.94100 0.94350 0.95150 

 

Figure 7. Confusion Matrix of the Proposed method from the 

Crossing Ensemble model 

Closer analysis reveals the reason for the significant 

outperformance of the DenseNet201 and Inception-V3 

ensemble, which achieves an accuracy of 0.96650, 

compared to the Xception and Inception-V3 

combination which attains an accuracy of 0.93700. A 

detailed analysis of Tables 1 and 4 offers a compelling 

explanation. It becomes clear that DenseNet201 

consistently surpasses Xception across a range of 

evaluation metrics. This difference in individual model 

performance becomes even more pronounced when all 

three models, DenseNet201, Inception-V3, and 

Xception, are integrated into a single ensemble, 
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achieving a collective accuracy of 0.95150. From this, 

we can deduce that Xception, while sharing similarities 

with DenseNet201, unfortunately, acts as a limiting 

factor in the ensemble configuration, thereby reducing 

the overall efficacy of the method. These findings 

highlight the crucial role of strategic model selection in 

ensemble techniques, underscoring the need for each 

component to enhance, rather than impede, the 

collective performance. 

3.4 Additional Testing 

The validation of our proposed method is extended by 

applying it to an alternative dataset [38], thereby 

examining its generalizability and consistency across 

different scenarios. This testing is crucial to ascertain 

the robustness of our ensemble approach, particularly 

when exposed to diverse data characteristics. The 

results, presented in Table 7, demonstrate a remarkable 

consistency in performance, mirroring the high 

accuracy and precision observed in the primary dataset. 

Specifically, the model combination of InceptionV3 

and DenseNet201, which yielded the highest accuracy 

in the primary testing, continues to exhibit superior 

performance with an accuracy score of 0.96562 in the 

alternate dataset. Similarly, the combination of 

DenseNet201 and Xception maintains its lower, yet 

stable, accuracy score of 0.88687.  

Table 7. Accuracy score of the proposed method in the alternative 

dataset 

Ensemble 
Models 

Soft-
voting 

weighted 
soft-voting 

Proposed 
Method 

Xception, 

Inceptionv3 
0.90313 0.90500 0.92812 

Xception, 
DenseNet201 

0.88250 0.88687 0.88687 

InceptionV3, 

DenseNet201 
0.95688 0.95813 0.96562 

Xception, 

InceptionV3, 

DenseNet201 

0.92500 0.92812 0.93375 

These findings suggest that the predictive capabilities 

of our model are not dataset-specific, but rather 

indicative of the inherent strength of the proposed 

ensemble approach. The consistent performance across 

varied datasets reinforces the validity of our initial 

hypothesis and underscores the potential of our refined 

weighted soft-voting method in diverse plant disease 

classification scenarios. 

4. Conclusions 

This research marks a significant advancement in the 

application of convolutional neural networks (CNNs) 

for the classification of plant disease images, 

particularly in grape leaves. By innovatively adapting 

the weighted soft-voting method to assign weights to 

specific label models, rather than uniformly across all 

labels, the study introduces a refined approach that 

considerably enhances classification accuracy. This 

novel method was rigorously tested on renowned CNN 

architectures such as Xception, DenseNet201, and 

Inception-V3. The results consistently demonstrated its 

superiority, outperforming traditional ensemble 

strategies like normal soft-voting and weighted soft-

voting. Among the combinations tested, the ensemble 

of DenseNet201 and Inception-V3 was particularly 

effective, delivering a commendable accuracy of 

96.65% in identifying grape plant diseases. 

The research underscores the significant influence of 

individual model characteristics on the ensemble’s 

overall performance. A critical insight from this study 

is the synergistic effect observed when models with 

contrasting strengths are paired. For instance, the 

pairing of DenseNet201 and Inception-V3, which 

exhibit complementary characteristics, resulted in a 

significant boost in accuracy. This contrasts with 

combinations like DenseNet201 and Xception, where 

similarity in model characteristics did not produce the 

same level of efficacy. Moreover, the study also 

highlights the importance of model selection in 

ensemble methods. The analysis revealed that certain 

models, though similar, could act as performance 

bottlenecks when paired inappropriately. This 

observation emphasizes the need for careful 

consideration of individual model performances and 

their interactions within an ensemble. 
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