
 Received: 02-09-2023 | Accepted: 29-01-2024 | Published Online: 18-02-2024

88

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

Vol. 8 No. 1 (2024) 88 - 99 e-ISSN: 2580-0760

A Novel Framework for Information Security During the SDLC

Implementation Stage: A Systematic Literature Review

Mikael Octavinus Chan1, Setiadi Yazid2
1Information Technology, Computer Science, Universitas Indonesia, Jakarta, Indonesia
2Information Technology, Compter Science, Universitas Indonesia, Jakarta, Indonesia

1m.octavinus@ui.ac.id, 2setiadi@cs.ui.ac.id

Abstract

This research delves into the critical aspects of information security during the implementation stage of the Software

Development Life Cycle (SDLC). Using a systematic review of the literature, the study synthesizes the findings of various digital

repositories, including IEEE Xplore, ACM Digital Library, Scopus, and ScienceDirect, to outline a comprehensive framework

that addresses the unique security challenges of the implementation stage. This research contributes to the field by proposing

a novel assurance model for software development vendors, focusing on improving information security measures during the

implementation stage. The study's findings reveal 12 key steps organizations can adopt to mitigate security risks and improve

information security measures during this critical phase. These steps provide actionable insights and strategies designed to

support security protocols effectively. The paper concludes that by incorporating these steps, organizations can significantly

improve their security posture, ensuring the integrity and reliability of the software development process, particularly during

the implementation stage. This approach not only addresses immediate security concerns but also sets a precedent for future

research and practice in secure software development, particularly in the critical implementation stage of the SDLC.

Keywords: information security; implementation; system development life cycle (SDLC); secure software development life

cycle (SSDLC)

How to Cite: Mikael Octavinus Chan and Setiadi Yazid, “A Novel Framework for Information Security During the SDLC

Implementation Stage: A Systematic Literature Review”, J. RESTI (Rekayasa Sist. Teknol. Inf.) , vol. 8, no. 1, pp. 88 - 99,

Feb. 2024.

DOI: https://doi.org/10.29207/resti.v8i1.5403

1. Introduction

Numerous academic works have been published to

address information security within the system

development life cycle (SDLC), encompassing a broad

spectrum of phases. The demand for security in

software development has led to the establishment of

what is known as the Secure Software Development

Life Cycle (SSDLC) [1]. The SSDLC places a strong

emphasis on integrating security throughout the entire

Software Development Life Cycle. The importance of

this research lies in its focused examination of

information security at the SDLC implementation stage

[2]. This stage, often overlooked, is critical to ensuring

the overall security of software systems [3].

Achieving secure software is a challenging undertaking,

and research has shown that improving software

development processes can effectively reduce the

prevalence of vulnerabilities. However, the SSDLC

process encompasses a multitude of security practices

and activities aimed at achieving security objectives.

The proper adoption of these activities to improve

software security represents a critical concern [4]. The

benefits of this research to scientific improvement are

multifold. Provides a nuanced understanding of

implementation-stage security practices, proposes a

novel assurance model for software development

vendors, and offers actionable steps and insights to

mitigate information security concerns. This

comprehensive approach seeks to augment the existing

body of knowledge and contribute robust strategies for

future developments in secure software practices [1],

[3], [5], [6].

This paper specifically focuses on the aspect of

information security during the implementation stage of

the System Development Life Cycle (SDLC). The

implementation stage of the Software Development

https://doi.org/10.29207/resti.v8i1.5403

Mikael Octavinus Chan, Setiadi Yazid

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)

This is an open access article under the CC BY-4.0 license 89

Life Cycle (SDLC) is a critical phase in which

information security plays a crucial role in ensuring the

success of subsequent stages and protecting sensitive

data [1]. Addressing the criticality of this stage is

paramount, as it directly influences the robustness and

reliability of software systems. By identifying and

mitigating risks at this point, research contributes

significantly to the broader field of information security

and offers a template for improving practices in various

development environments [7], [8].

Addressing vulnerabilities and ensuring information

security during implementation can be challenging, as

they often stem from user behavior rather than technical

deficiencies within software [9]. Previous research has

explored various factors that encompass both technical

and social perspectives to achieve a secure software

system [1]-[3], [5], [6], [9]-[18].

 SDLC is a structured framework used by organizations

to plan, design, implement, test, deploy, and maintain

software systems, as presented in Figure 1. SDLC is

comprised of several distinct phases, each serving a

specific purpose. One of the fundamental phases of the

SDLC is the implementation stage. The implementation

stage is the phase in which the system is installed and

deployed in its intended business environment.

This includes activities such as user training, hardware

and software installation, and integration of the system

into daily operational processes. During this phase, the

performance of the system is closely monitored and

compared to the performance objectives set during the

planning phase. This stage continues until the system is

fully operational and aligns with the defined user

requirements [19], [20].

Figure 1. System Development Life Cycle (SDLC)

Addressing this stage is of paramount importance

because the success of implementation is intricately tied

to the subsequent maintenance and protection of

information. In reality, many instances of information

leakage and security breaches are identified during this

phase. For example, the implementation stage may

involve resolving issues such as the management of

scattered paper records by implementing a more

centralized and organized digital system to improve

data management [20].

Additionally, it may involve measures to prevent and

detect the presence of viruses on flash drives used for

data transfer, as well as procedures to ensure data

integrity and prevent data duplication [21], [22]. These

proactive steps are instrumental in ensuring that the

system not only meets user requirements, but also offers

a more efficient and reliable means of managing

information [23].

The novelty of this research lies in its systematic

literature review approach, which gathers data from

multiple digital repositories such as IEEE Xplore, ACM

Digital Library, Scopus, and ScienceDirect. The general

objective of the study is to provide a comprehensive

overview of existing research on software security and

identify knowledge gaps [1]. This research also aims to

contribute to the field by proposing a novel assurance

model for software development providers, which

focuses on improving information security measures

during the implementation stage [11]. By comparing its

findings with existing research, this study offers

valuable insights and recommendations to improve

information security practices during this critical phase

of SDLC [6].

Research uses a problem analysis method using the

"5W1H" framework [24]. This method serves as a

structured guide that features a set of essential questions

to facilitate information gathering and problem

resolution. These questions include: Why is the

preservation of information security crucial during the

implementation stage of the SDLC process? Where

within the SDLC implementation stage are the specific

areas that demand information security protection?

When is the need for information security established

and executed during the implementation stage of the

SDLC process? Who plays a role in maintaining

information security during the implementation stage of

the SDLC process? What measures are required to

protect information security at the implementation stage

of the SDLC process? How can information security be

effectively ensured during the implementation stage of

the SDLC process? From these inquiries, the researcher

has formulated the following central research question:

"What are the actionable steps that can be taken to

mitigate information security concerns during the

implementation stage, ultimately contributing to the

achievement of a successful implementation?"

2. Research Methods

A systematic review of the literature (SLR) constitutes

a method for the synthesis and concise summarization

of findings derived from existing research on a specific

topic or research question. It embodies a systematic and

transparent approach to the identification, assessment,

and amalgamation of available evidence relevant to a

given research inquiry or subject matter. The primary

aim of an SLR is to provide a comprehensive overview

of the prevailing body of knowledge concerning a

particular topic while also pinpointing areas within the

existing research that warrant exploration in subsequent

Mikael Octavinus Chan, Setiadi Yazid

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)

This is an open access article under the CC BY-4.0 license 90

studies. According to Kitchenham [25], the process of

performing an SLR typically includes three main

phases, as delineated in Table 1.

Table 1. Phases of SLR

Phase Stages

Planning Identification of need

Specifying research question(s)

Developing review protocol
Conducting Selection of primary studies

Data extraction and monitoring

Data Synthesis
Reporting Specifying Dissemination Mechanism

Formatting the main report

Evaluating the report
Documenting

The discussion is about the basic explanation,

relationship, and generalization shown by the results.

The description answers a research question. If there are

dubious results, then show them objectively.

2.1. Planning

Planning involves several critical components. First, it

involves defining the research question or topic of

interest and subsequently establishing the inclusion and

exclusion criteria for the studies to be included in the

review. At the same time, it requires the development

of a meticulous search strategy to effectively identify

relevant studies [25].

Identification of Need: The initial step in planning a

research study revolves around identifying the need for

research. This includes the recognition of a gap within

the current body of knowledge or understanding [26]. It

signifies the determination that further research is

indispensable to effectively address this gap.

Specifying Research Question(s): Once the need for

research is discerned, the subsequent step involves the

precise specification of the research question(s) that the

study seeks to resolve. These questions must be sharply

focused, explicitly defined, and intimately informed by

the identified knowledge or understanding gap [25],

[27].

Developing Review Protocol: After the research

question(s) are meticulously delineated, the subsequent

phase involves the formulation of a comprehensive

review protocol. This protocol meticulously describes

the strategic steps that will guide the research process

[28]. It should encompass a detailed blueprint for data

collection and analysis, coupled with a well-structured

timeline that governs the completion of various research

stages.

Furthermore, the review protocol should include a

robust strategy to spread the research results, potentially

through avenues such as publication in scientific

journals or presentation at conferences.

2.2. Data Source

This research employs an automated search technique

to systematically gather data from multiple digital

repositories. The use of automated search techniques is

a common practice among researchers when collecting

data from online sources, as it offers greater efficiency

and completeness when searching for relevant literature

[29].

The construction of the search string used in the

automated search process is of paramount importance.

It must be meticulously designed to ensure the

identification of the most relevant literature.

Furthermore, the selection of repositories for search is

contingent on their relevance to the research topic and

the quality of the information they house. It is essential

to rigorously assess the information sources to

determine their reliability and relevance to the ongoing

research effort [30].

The following digital sources have been chosen for this

study: IEEE Xplore (IEEE) = 38, ACM Digital Library

(ACM) = 44 papers, Scopus (Scopus) = 4,

ScienceDirect (SD) = 0. These repositories have been

selected based on their alignment with the research

topic and their proven quality in containing pertinent

information.

2.3. Search String

Search strings were generated using keywords derived

from research questions and existing literature [10].

This study used Boolean “OR” and “AND” operators to

concatenate the keywords into search strings. The

following string was used to scan the digital

repositories: ("implementation" AND ("phase" OR

"stage")) AND "information security" AND ("SDLC"

OR "System Development Life Cycle"). Our data

inclusion criteria align with the parameters established

by previous researchers. To determine data exclusion,

we adhered to guidelines based on established criteria

from previous research. These conditions are shown in

Table 2.

Table 2. Criteria for Inclusion and Exclusion Data

Inclusion Criteria Exclusion Criteria

Articles written in
English.

Papers not written in English.

Papers published

between 2012 and 2023.

Duplicate papers were excluded.

Articles related to the

domain of software

engineering.

Papers that lack detailed descriptions

of software security risks in software

development.
The articles must provide

at least one risk or

practice relevant to the
software development

process, specifically the

coding phase.

Papers that do not address software

risks in software development and

are not relevant to the research
questions.

The articles were peer-

reviewed in conferences

and journals.

Publications that are not peer

reviewed and do not constitute

complete books, abstracts, editorials,
or letters.

These stringent inclusion and exclusion criteria were

diligently applied to ensure data selection that aligns

closely with research objectives and quality standards.

Mikael Octavinus Chan, Setiadi Yazid

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)

This is an open access article under the CC BY-4.0 license 91

2.4. Conducting

The conducting phase, as described by Kitchenham et

al. [25], encompasses active search and identification of

pertinent research studies, critical evaluation of their

quality and relevance, and systematic extraction of data

that are of significance for research. Furthermore, Khan

et al. [26] provide information on identifying relevant

studies in software engineering, which is essential for a

comprehensive research process.

The research articles identified during the selection of

the primary study underwent a meticulous refinement

process using the Tollgate approach presented by

Mousa et al. [28]. Table 3 outlines this approach, which

is structured into three pivotal phases.

Phase 1 (Ph-1): In this initial phase, the quest involves

finding relevant articles through the application of well-

defined search terms.

Phase 2 (Ph-2): The subsequent phase involves a

meticulous evaluation of articles based on criteria such

as title, abstract, and keywords, allowing the inclusion

of articles that meet the predefined criteria while

excluding those that do not.

Phase 3 (Ph-3): In this conclusive phase, the inclusion

and exclusion process is further refined, this time based

on a comprehensive examination of the full-text

content. It culminates in the definitive selection of

primary studies that are to be included in the systematic

review of the literature (SLR).

Table 3. Selection of articles using the tollgate approach

Database Ph-1 Ph-2 Ph-3

IEEE i=38; e=0 i=34; e=4 i=31; e=3

ACM i=44; e=0 i=38; e=6 i=33; e=5
Scopus i=4; e=0 i=4; e=0 i=3; e=1

SD i=0; e=0 i=0; e=0 i=0; e=0

Total i=86; e=0 i=76; e=10 i=67; e=9

Legend: i = included papers; e = excluded papers.

2.5. Reporting

The reporting phase, as described by Kitchenham et al.

[25], constitutes the culmination of the systematic

literature review process. During this phase, the data

gleaned from the selected studies are synthesized and

meticulously presented clearly and concisely. This

presentation includes a detailed exploration of the

review findings, including a discussion of their

implications. Furthermore, this phase may also provide

recommendations for future research endeavors based

on the insights derived from the review.

In essence, the overarching objective of a systematic

literature review (SLR) is to provide a comprehensive

and contemporaneous overview of the existing body of

research on a specific topic. Simultaneously, it aims to

pinpoint the gaps in the current knowledge landscape,

thus paving the way for prospective studies that can

further contribute to the advancement of understanding

within the field [27].

2.6. Comparison Studies

The methodology employed in this study is grounded in

an extensive review of the literature. The research was

carried out through a structured sequence of phases,

described as follows.

Software security is of great importance. Often, security

considerations are postponed until after the software has

been fully developed, with minimal attention given to

security in the early stages of the software development

life cycle (SDLC). Regrettably, there is currently no

established methodology for quantifying the security of

SDLC artifacts when security is integrated from the

very beginning of the software development process.

Assessment of the security levels for SDLC artifacts in

each stage of software development requires a

quantifiable approach. To mitigate vulnerabilities and

improve security within software applications, the

allocation of resources is imperative. Quantification

plays a pivotal role in aiding software developers in this

endeavor.

In a recent series of articles [31]-[37], a methodology is

presented that leverages vulnerability events to

calculate a vulnerability index and combines this with

an assessment of the potential damage attributable to

these vulnerabilities to determine a comprehensive

security index. This approach provides valuable

information on the security landscape, offering a

foundation on which software developers can make

informed decisions to improve security throughout the

development process.

The comparative study presented in the articles [8],

[22], [38]- [58] serves as a valuable guide for software

developers in selecting specific methodologies for

building secure software applications. In this study, we

conduct a thorough comparison and contrast of various

development processes, focusing on key characteristics

essential to an effective secure software development

process.

In addition, this paper conducts an in-depth analysis of

the desirable attributes associated with security

specification languages. Furthermore, to obtain

complete security requirements, identification of

activities within the security requirements engineering

process is imperative. On the basis of this foundation,

the research compares the engineering processes of

various security requirements methodologies. The

analysis reveals that certain desired properties, critical

to many secure software requirements engineering

methods, are absent from some of the methodologies

under examination.

The objective of the research articles [59], [60], [61],

[62], [26], [63], [64], [65], [66], [67], [68] was to

comprehensively assess the landscape of secure

software development through the implementation of a

systematic mapping study (SMS). This SMS included

the identification of pertinent literature based on

rigorous inclusion and exclusion criteria, the extraction

Mikael Octavinus Chan, Setiadi Yazid

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)

This is an open access article under the CC BY-4.0 license 92

of pertinent data from these sources, and the subsequent

classification of these articles using various criteria.

These criteria included considerations such as quality

assessment, software security methodologies, software

development life cycle (SDLC) phases, publication

venues, and SWOT analysis (Strengths, Weaknesses,

Opportunities, and Threats) analysis.

This comprehensive study sheds light on a compelling

landscape – one that calls for intensive research in the

field of Secure Software Development (SSD) [59], [60],

[61], [62], [26], [63], [64], [65]. In particular, research

reveals a dearth of empirically validated solutions,

indicating a substantial gap between theoretical security

measures and their application and validation in real-

world scenarios [66], [67], [68].

This gap underscores the dynamic nature of secure

software engineering, where advances in theory and

practice must continuously adapt to the evolving

landscape of threats and technological advancements

[65]. Consequently, the study findings highlight the

urgent need for continuous refinement of security

measures and strategies, advocating a more empirical

approach to validate and refine these methods in

practical contexts [69].

In essence, the call for further research, as illuminated

by this study, transcends mere academic pursuit. It

represents a critical imperative for both industry and

academia to prioritize the empirical validation of

security methodologies [60], [61] [62] [26] [63] [64]

[65] [66] [67]. By embracing this approach, we can

ensure that theoretical models and strategies are not

only conceptually sound but also demonstrably

effective in practice, ultimately paving the way for the

development of robust and resilient secure software

systems [65].

Software vulnerabilities can emanate from diverse

sources, encompassing technical flaws within the

software's design or implementation, as well as insecure

practices exhibited by users. User-side vulnerabilities

arise when users fail to adhere to established security

protocols and practices. Addressing these

vulnerabilities can be challenging, as they often stem

from user behavior rather than inherent technical

deficiencies within the software.

In articles [1]-[3], [5], [6], [9]-[18], a comprehensive

exploration is carried out to elucidate the multifaceted

factors that encompass both technical and social

perspectives. These factors are crucial considerations in

achieving a secure software system, necessitating a

delicate equilibrium between technical fortifications

and user-centered security measures.

Prioritizing security within the design phase of the

software development life cycle (SDLC) is of

paramount importance for software development

organizations. To facilitate this crucial emphasis on

security, a Secure Software Design Maturity Model

(SSDMM) has been developed. This model serves as an

invaluable tool for evaluating and enhancing an

organization's security practices throughout the design

phase of the SDLC. SSDMM functions as a

comprehensive framework, allowing organizations to

assess their maturity levels with respect to secure design

practices, as outlined in articles [23], [69], [70], [71].

By employing this model, software development

organizations can systematically advance their security

posture and ensure the integration of robust security

measures during the design phase of their software

development processes.

Cloud computing has emerged as a widely preferred

platform for fostering innovative applications, but it is

not immune to inherent risks and vulnerabilities

throughout its life cycle. In response to these

challenges, it becomes imperative to establish a

comprehensive framework for self-governing cloud

security, one that spans all phases of the SDLC. This

framework, aptly named the Cloud Secure Software

Development Life Cycle (Cloud SSDLC), seamlessly

incorporates essential cloud security domains and their

associated risks into every facet of the SDLC. Within

the planning phase of Cloud SSDLC, a critical

undertaking is the identification of security

requirements and the attendant risks specific to the

cloud application.

Subsequently, a comprehensive plan is devised to

address these identified risks. This may require a

thorough risk assessment and the identification of

potential vulnerabilities. Additionally, it involves the

development of the necessary security controls and

procedural measures to effectively mitigate these

identified risks. In its entirety, the cloud SSDLC

framework serves as an instrumental means to ensure

that cloud applications are designed and maintained

with the utmost security in mind, thus diminishing

susceptibility to vulnerabilities and potential security

threats, as elaborated in articles[21], [72]-[75].

In several studies, [8], [64], [76] R.A. Khan et al.

underscored the criticality of security as an integral

facet of software quality. In recent years, the frequency

and impact of security attacks have increased

significantly. Consequently, there is a pressing need for

new paradigms of software development to create

inherently secure software [33]. Regrettably, numerous

organizations still relegate security to an afterthought,

perpetuating persistent security vulnerabilities.

Integration of security measures into the Software

Development Lifecycle (SDLC) has become an urgent

imperative, with a plethora of methodologies,

strategies, and models proposed [35].

However, only a select few of these approaches are

supported by credible evidence to promote the

development of genuinely secure software applications

[43]. Effectively integrating security protocols into the

SDLC continues to pose a formidable challenge.

Mikael Octavinus Chan, Setiadi Yazid

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)

This is an open access article under the CC BY-4.0 license 93

In a separate investigation [77], conducted by Mazni

Mohamed Jakeri and Mohd Fadzil Hassan, the pivotal

role of security in protecting data from unauthorized

access was underscored. In response to security

concerns, multiple security frameworks have been

introduced for the Secure Software Development Life

Cycle (SSDLC). Secure SDLC is achieved by

integrating security-related activities into each phase of

widely employed development methodologies, such as

the Waterfall or Agile models.

However, these frameworks often face under-use due to

factors such as rigidity, complexity, and resource

intensity [4], [9], [36], [65], [78]. The consensus

remains that integrating security, particularly during the

requirements and design phases, represents the most

effective and cost-effective approach to developing

secure web applications. The disparities resulting from

the identification of key variables in previous research

articles are delineated in Table 4.

Table 4. Identification Key Variables

Literature
Variables

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[1] ✓

✓

✓

✓

[9] ✓

✓

✓

✓

[10] ✓

✓

✓

✓

[11] ✓ ✓ ✓ ✓ ✓ ✓

✓

[3]
✓

✓ ✓

✓

[14] ✓

✓

✓

✓

[2] ✓ ✓ ✓ ✓ ✓ ✓

✓

✓

[31] ✓ ✓ ✓ ✓ ✓ ✓

[33] ✓ ✓ ✓ ✓ ✓ ✓

✓

✓

[34] ✓ ✓ ✓ ✓ ✓ ✓

✓

✓

[35] ✓ ✓

✓

[36]
✓

✓

✓

[38]
✓

✓

✓

✓

[39] ✓ ✓

✓

[44]
✓ ✓ ✓ ✓

✓

[45]
✓

✓

✓

[47]
✓ ✓

✓

[34] ✓

✓

✓

[50]
✓ ✓ ✓ ✓

[22]
✓

✓ ✓ ✓ ✓

[8] ✓

✓

✓ ✓ ✓ ✓

✓

[55]
✓ ✓ ✓ ✓

[56]
✓ ✓ ✓ ✓

[57] ✓ ✓ ✓ ✓ ✓

✓

✓

[59]
✓ ✓ ✓

[60] ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓

✓

✓ ✓

[65]
✓ ✓ ✓

✓

✓

[66] ✓

✓

✓

✓ ✓

✓

✓

[68] ✓

✓

✓

[69]
✓ ✓ ✓ ✓ ✓

✓ ✓

Literature
Variables

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[78]
✓

[23]
✓

✓ ✓ ✓ ✓

✓

✓

✓ ✓ ✓ ✓

[72] ✓

✓

✓ ✓

✓ ✓

✓ ✓ ✓

[74] ✓

✓

✓ ✓

✓ ✓

✓ ✓ ✓

[4] ✓

✓

✓ ✓

✓

✓ ✓

[19] ✓

✓

✓ ✓ ✓ ✓

✓

✓

✓ ✓

[20] ✓

✓

✓ ✓

✓

✓ ✓

[77]
✓

✓

✓

Mikael Octavinus Chan, Setiadi Yazid

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)

This is an open access article under the CC BY-4.0 license 94

This research introduces a novel perspective by

specifically honing in on the implementation stage

within the Software Development Life Cycle (SDLC),

distinguishing itself from previous related studies that

encompassed all phases of the SDLC [22], [31], [47],

[57]-[71]. We provide a comprehensive delineation of

the intricacies involved in executing the SDLC. It

constitutes an invaluable resource for those seeking to

enhance the success of their implementation efforts.

The correlation of the literature, as well as the grouping

of identified key variables, is illustrated in Table 5, with

the corresponding references provided in the reference

list.

Table 5. Code of Variables

Variable Description

1 Security requirements
2 Security analysis

3 Security design, Security Architecture, Security

configuration
4 Security implementation

5 Security testing
6 Security monitoring

7 Security training

8 Security tools
9 Security policies

10 Security procedures

11 Security control
12 Security awareness

13 Security assurance

14 Security culture
15 Security budget, Security cost, Security Investment

16 Security risk analysis

17 Security incident response
18 Security mitigation, Security mechanism

19 Security measures, Security metrics

3. Results and Discussions

This chapter systematically addresses the questions that

have arisen within the scope of this study, providing

comprehensive responses.

3.1. Why is information security protection vital

during the implementation stage in the SDLC process?

Ensuring the security of information during the

implementation stage of the Software Development

Life Cycle (SDLC) is of paramount importance. This

phase marks the actual construction and deployment of

the software, making it a pivotal point for protecting

against vulnerabilities and weaknesses [38]-[61].

Several compelling reasons underscore the importance

of information security protection at this stage.

Protection of sensitive data: In cases where software

handles sensitive data, such as financial or personal

information, it becomes imperative to secure these data,

protecting them from unauthorized access or

manipulation [38].

Prevention of vulnerabilities and cyber-attacks:

Software that lacks robust security measures can

become susceptible to various forms of cyber threats,

including malware, ransomware, and other malicious

attacks [38]-[61]. These threats pose severe risks,

potentially compromising the software's integrity and

resulting in repercussions such as data loss or theft.

Compliance obligations: Many organizations are bound

by legal and regulatory mandates on information

security, exemplified by regulations such as the General

Data Protection Regulation (GDPR) and the Payment

Card Industry Data Security Standard (PCI DSS) [38]-

[61]. Non-compliance with these regulations can result

in fines, legal penalties, and substantial reputation

damage.

Taking proactive measures to protect information

security during the implementation stage allows

organizations to fortify their software security posture,

adhere to compliance standards, and protect sensitive

data effectively [38].

3.2. Where should information security be applied

within the implementation stages of the SDLC process?

Within the software development life cycle (SDLC)

process, the implementation stage encompasses various

critical aspects that require robust information security

measures [59] - [75]. These include the following.

Codebase: The codebase serves as the central repository

that houses all the source code relevant to a software

project [62], [72]. Preserving the integrity of the

codebase is essential to protect against unauthorized

access or tampering, as such breaches can introduce

vulnerabilities in the software [73]-[75].

Build and Test Environments: Build and test

environments are integral to compiling, building, and

rigorously testing software [59], [60]. It is imperative to

fortify these environments against unauthorized access

or tampering, as any such compromise could result in

the injection of vulnerabilities into software [72]-[76].

Deployment and Production Environments:

Deployment and production environments signify the

arenas where the software is ultimately deployed and

utilized by end-users. Ensuring the security of these

environments is paramount to thwart unauthorized

access or tampering, as any breach could compromise

both the integrity and security of the software [61], [62],

[72]-[76].

Communication and Collaboration Tools: Many

software development teams rely on communication

and collaboration tools, including chat and project

management software, to facilitate project collaboration

[72]. Protection of these tools against unauthorized

access or manipulation is crucial to maintaining the

security of the entire software development process

[59]- [62], [73]- [76].

By diligently protecting these critical components

within the SDLC process implementation stage,

organizations can significantly improve the security and

compliance of their software while also ensuring the

protection of sensitive data [59]- [71], [72]-[74].

Mikael Octavinus Chan, Setiadi Yazid

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)

This is an open access article under the CC BY-4.0 license 95

3.3. When is information security essential during the

SDLC process implementation stage?

Information security should be an integral consideration

and practice throughout the software development life

cycle (SDLC) process, with particular emphasis on the

implementation stage. This phase marks the active

construction and deployment of the software, making it

a pivotal juncture to guarantee the software's security

while identifying and mitigating vulnerabilities or

weaknesses. Several key junctures within the

implementation stage necessitate a steadfast

commitment to information security [59]-[71]:

Commencement of the implementation stage: At the

start of the implementation stage, it is imperative to

define the security requirements of the software.

Ensuring that these requirements are fully integrated

into design and development processes is critical [58],

[73].

During the Coding Process: Throughout the

development phase, strict adherence to secure coding

practices is imperative. Detecting and addressing any

vulnerabilities or weaknesses within the code is

essential during this stage [27], [61].

Throughout Testing: As the software undergoes

rigorous testing, the inclusion of security testing is

paramount. This step helps to systematically uncover

and rectify any vulnerabilities or weaknesses that may

exist [4], [19].

Pre-Deployment: Before deployment, meticulous tests

should follow to confirm that the software has been

rigorously evaluated, with all vulnerabilities and

weaknesses diligently addressed [60], [69].

By steadfastly implementing information security

measures at these pivotal points within the SDLC

process implementation stage, organizations can

substantially fortify the security and compliance of their

software, while simultaneously protecting sensitive

data [58].

3.4. Who participates in protecting information

security during the implementation stage of the SDLC

process?

The protection of information security within the

implementation stage of the software development life

cycle (SDLC) process typically requires the

collaboration of a team consisting of professionals with

distinct roles and responsibilities. Several key

individuals who may play pivotal roles in maintaining

information security during this stage include [59] -

[62]:

Software Developers: Software developers assume the

responsibility of coding and building software. Their

proficiency should extend to secure coding practices

and have a deep understanding of the importance of

integrating security into the software development

process [78].

Quality Assurance (QA) Testers: QA testers are

charged with the task of meticulously evaluating the

software to ensure its quality and adherence to the

specified requirements. Proficiency in security testing

techniques is imperative, along with greater awareness

of the importance of identifying and rectifying

vulnerabilities or weaknesses in software [23].

Information Security Professionals: Information

security experts, including security analysts or security

engineers, may contribute by reviewing the software for

vulnerabilities and weaknesses. They are instrumental

in the development and implementation of security

measures designed to protect software [70].

Project Managers: Project managers have the

responsibility of overseeing the entire software

development process, ensuring its timely completion

and adherence to budget constraints. They should also

recognize the paramount importance of integrating

security measures into the process and take measures to

ensure that all team members are well versed in their

security responsibilities [71].

Through collaborative efforts, these professionals can

effectively fortify the security and compliance of the

software, ultimately protecting sensitive data

throughout the SDLC process implementation stage

[70].

3.5. What is required to protect information security

during the implementation stage of the SDLC process?

To maintain information security during the

implementation stage of the software development life

cycle (SDLC) process, several imperative measures

must be diligently embraced [31]-[37]:

Secure coding practices: Ensuring that software

developers are well versed in secure coding practices is

fundamental. They must adhere to industry best

practices when developing software, thus avoiding the

introduction of vulnerabilities or weaknesses into the

software architecture [35].

Security testing: Integrating comprehensive security

testing is paramount within the testing process. Security

testing encompasses techniques such as vulnerability

detection, penetration testing, and code review. These

practices are essential for the identification and

subsequent mitigation of vulnerabilities or weaknesses

within the software [36].

Secure development environment: The development

environment itself must be fortified against

unauthorized access or manipulation. This may involve

the implementation of strict access controls,

strengthened network security protocols, and robust

data encryption mechanisms [33].

Secure deployment and production environments:

Similarly, to the development environment, the

deployment and production environments must also be

secured to prevent unauthorized access or tampering.

This requires the enforcement of robust access controls,

Mikael Octavinus Chan, Setiadi Yazid

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)

This is an open access article under the CC BY-4.0 license 96

comprehensive network security measures, and vigilant

data encryption practices [37].

By implementing these measures firmly, organizations

can actively ensure that their software remains securely

anchored, in compliance with relevant standards, and

secure in protecting sensitive data throughout the SDLC

process implementation stage [36].

3.6. How can information security be safeguarded

during the implementation stage of the SDLC process?

Preserving information security during the

implementation stage of the software development life

cycle (SDLC) process requires the adhesion to a series

of strategic steps [1], [8], [10]-[18], [42], [48], [50],:

Establish security requirements: Right at the

commencement of the implementation stage, a pivotal

step is to define the software's security requirements.

Integration of these requirements into design and

development processes is essential to establish a strong

foundation for security [16].

Adopt secure coding practices: Software developers

must have a thorough understanding of secure coding

practices. Their adhesion to these practices during

software coding can effectively prevent the introduction

of vulnerabilities or weaknesses [12].

Integrate security testing: Comprehensive security

testing must be seamlessly integrated into the testing

phase. Techniques such as vulnerability scanning,

penetration testing, and code review are crucial to

identifying and subsequently addressing vulnerabilities

or weaknesses within software [8], [42].

Leverage a secure development environment:

Fortifying the development environment against

unauthorized access or tampering is critical.

Implementing robust measures such as access controls,

network security fortifications, and data encryption is

crucial to maintaining the integrity of the environment

[6].

Ensure a secure deployment environment: The

deployment and production environments must mirror

a similar level of security to thwart unauthorized access

or tampering. Implementing stringent access controls,

enhanced network security, and vigilant data encryption

practices is imperative [48].

By diligently following these strategic steps,

organizations can assertively safeguard their software's

security and compliance. This robust approach ensures

that sensitive data is kept consistently protected

throughout the SDLC process implementation stage

[10].

3.7. What actionable steps can be taken to mitigate

information security concerns during the

implementation stage, ultimately contributing to the

achievement of a successful implementation?

The culmination of responses to the aforementioned

inquiries has culminated in a comprehensive summary

that addresses the central research question posited in

this paper. When comparing our research with the body

of work presented in the related research, we have

identified nuanced insights and perspectives that further

enrich our understanding of this domain. Although

previous studies have provided valuable information,

this research sheds additional light on the specific

challenges, practices, and actionable steps related to

information security during the implementation stage. It

also describes the necessary steps that must be

meticulously carried out during the implementation

stage [35].

This nuanced perspective contributes to the growing

body of knowledge surrounding software security and

implementation practices[21], [65], and also

underscores the importance of addressing information

security comprehensively throughout SDLC [77],

particularly during the implementation stage, as

highlighted by the findings in Table 6. It is important to

note that the insights presented in Table 6 are the result

of a meticulous synthesis of existing literature.

Although not directly referenced, they represent a

valuable compilation of security measures and practices

from various sources.

Table 6. 12 Steps Implementation Stage

Steps Literature

Coordination meeting [1], [2], [4], [8], [9]-[11], [19],

[20], [33]-[36], [39], [49], [57],

[68], [72], [74],
Implementation survey [2], [4], [5], [19], [20], [22], [23],

[31], [39], [44], [55], [56], [59],

[65], [72], [74],
Installation [1], [2], [3], [8], [9]-[11], [14],

[19], [22], [23], [33]-[36], [39],

[44], [47], [49], [55], [57], [60],
[79]

Kick-off meeting [1]-[3], [4], [8], [19], [20], [33]-

[36], [39], [49], [57], [66], [68],
[72], [74]

General explanation [1]-[3], [4], [8], [14], [19], [22],

[23], [31], [33]-[35], [39], [44],
[47], [49], [55], [57], [60], [79]

Inter-department training [2], [19], [20], [22], [31], [39],
[44], [55], [56], [59], [65], [72],

[74], [79]

Operator training [4], [19], [20], [23], [65], [66],
[72], [74]

Enter master & and static

data

[1], [14], [36], [38], [44], [66],

[72], [74], [78]
System live [1], [2], [3], [4], [8], [14], [19],

[20], [22], [31], [33]-[35], [38],

[39], [44], [45], [47], [49], [56],
[57], [59], [60], [66], [68], [69],

[72], [74], [78], [79]

Implementation assistance [8], [19], [23], [28], [57], [65],
[66], [69], [78]

System audit [58], [59], [70], [71], [75], [78],

Close off meeting [1]-[3], [4], [8], [19], [20], [33]-
[35], [39], [49], [57], [66], [68],

[72], [74]

Table 6 presents the steps to mitigate information

security issues during the SDLC implementation stage.

Mikael Octavinus Chan, Setiadi Yazid

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)

This is an open access article under the CC BY-4.0 license 97

Coordination meeting: Arrange and approve the

implementation schedule between the provider and the

customer. In this meeting, both parties should introduce

each other’s team and Person in Charge (PIC) [72].

Implementation survey: In this step, the provider's team

will conduct a detailed survey of all existing

procedures, policies, and the availability of master &

and static data [56].

Installation: The Provider will install the software on

the Customer’s server. The installation of the operating

system and database is the responsibility of the

customer [23].

Kick-off meeting: This meeting is held between the

Provider’s Management and Implementation team and

the Customer’s Management team to indicate the start

of the Implementation process [10].

General explanation: In this session, the Provider will

provide a general explanation of the Software and its

background. This session aims to build good

cooperation between the provider and the customer

[10].

Inter-department training: The Provider explains the

flow of the system and the corresponding policies and

procedures of each department. During this session, the

customer will gain a complete understanding of the new

policies and procedures that will be implemented along

with the system [44].

Operator training: The employees are trained according

to their level of operational function. This training

ensures that every employee understands how to enter

transactions using the system [21].

Enter master & static data: In this step, the customer

will input Master & Staand static into the system.

Before going live, all necessary preparations and data

must be entered into the system. The complexity of this

step varies depending on the number of transactions and

the availability of data [59].

System live: When all the above preparations have been

completed and all required data have been input into the

system, the Customer is ready for System Live. This

means that the customer will enter all their daily

transactions using the system. When all transactions are

up to date, all reports can be automatically generated

from the system [15].

Implementation assistance: During this period, the

implementation team will continue to assist the

customer to ensure that the customer can operate the

system smoothly [74].

System audit: Near the end of the implementation

process, the Provider's team will perform a system audit

of each user to make sure that every user fully

understands the proper use of the system [4].

Close-off meeting: This last meeting marks the end of

the implementation process. This means that the

customer will now enter the maintenance period, which

will be handled by the maintenance team [79].

4. Conclusions

In conclusion, this research has successfully addressed

critical aspects of information security within the

Software Development Life Cycle (SDLC), with a

specific focus on the implementation stage. Through the

structured 5W1H framework, the study has provided

comprehensive information on why information

security is vital at this stage, where and when it should

be implemented, who plays crucial roles, what

measures are necessary, and how effective security can

be ensured.

Research emphasizes the paramount importance of

protecting information security during implementation,

as it directly influences the success of subsequent stages

and the protection of sensitive data. Various actionable

steps and strategies have been outlined to mitigate

security concerns during this phase, which ultimately

contributes to the achievement of a successful

implementation.

This study has provided actionable steps and insights on

mitigating information security concerns during

implementation, contributing to the achievement of a

successful implementation. These findings not only

serve as valuable guidance for organizations, but also

offer opportunities for further comprehensive research

in this critical domain of software development. The

recommendations arising from this study advocate for

the continuous adaptation and assimilation of emerging

technologies and methodologies into SDLC as a means

of strengthening security postures.

This requires empirical research to rigorously evaluate

the effectiveness of integrated security measures within

diverse development environments and across industry

sectors. Furthermore, the study recommends the

development of robust and adaptable security

frameworks capable of seamless integration into

existing and future SDLC models. This fosters an

ecosystem where security co-evolves with

technological advancements, ensuring ongoing

resilience against evolving threats.

References

[1] A. Ramirez, A. Aiello, and S. J. Lincke, “A Survey and

Comparison of Secure Software Development Standards,” in
2020 13th CMI Conference on Cybersecurity and Privacy

(CMI) - Digital Transformation - Potentials and

Challenges(51275), 2020, pp. 1–6, doi:
10.1109/CMI51275.2020.9322704.

[2] J. C. S. Núñez, A. C. Lindo, and P. G. Rodríguez, “A

Preventive Secure Software Development Model for a
Software Factory: A Case Study,” IEEE Access, vol. 8, pp.

77653–77665, 2020, doi: 10.1109/ACCESS.2020.2989113.

[3] T. Thomas, M. Tabassum, B. Chu, and H. Richter Lipford,
Security During Application Development: an Application

Security Expert Perspective. 2018.

[4] K. Meridji, K. T. Al-Sarayreh, A. Abran, and S. Trudel,
“System security requirements: A framework for early

Mikael Octavinus Chan, Setiadi Yazid

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)

This is an open access article under the CC BY-4.0 license 98

identification, specification and measurement of related

software requirements,” Comput. Stand. Interfaces, vol. 66, p.

103346, 2019, doi: https://doi.org/10.1016/j.csi.2019.04.005.
[5] M. Baldassarre, V. Barletta, D. Caivano, and A. Piccinno,

Integrating Security and Privacy in HCD-Scrum. 2021.

[6] A. B. Ajmal, M. A. Shah, C. Maple, M. N. Asghar, and S. U.
Islam, “Offensive Security: Towards Proactive Threat Hunting

via Adversary Emulation,” IEEE Access, vol. 9, pp. 126023–

126033, 2021, doi: 10.1109/ACCESS.2021.3104260.
[7] T. Lopez, H. Sharp, T. Tun, A. Bandara, M. Levine, and B.

Nuseibeh, “Security Responses in Software Development,”

ACM Trans. Softw. Eng. Methodol., Sep. 2022, doi:
10.1145/3563211.

[8] R. A. Khan, S. U. Khan, M. Alzahrani, and M. Ilyas, “Security

Assurance Model of Software Development for Global
Software Development Vendors,” IEEE Access, vol. 10, pp.

58458–58487, 2022, doi: 10.1109/ACCESS.2022.3178301.

[9] L. N. Q. Do, J. R. Wright, and K. Ali, “Why Do Software

Developers Use Static Analysis Tools? A User-Centered Study

of Developer Needs and Motivations,” IEEE Trans. Softw.

Eng., vol. 48, no. 3, pp. 835–847, 2022, doi:
10.1109/TSE.2020.3004525.

[10] A. Garg, R. K. Kaliyar, and A. Goswami, “PDRSD-A

systematic review on plan-driven SDLC models for software
development,” in 2022 8th International Conference on

Advanced Computing and Communication Systems (ICACCS),

2022, vol. 1, pp. 739–744, doi:
10.1109/ICACCS54159.2022.9785261.

[11] D. Stewart, “Security versus Compliance: An Empirical Study

of the Impact of Industry Standards Compliance on
Application Security,” Int. J. Softw. Eng. Knowl. Eng., vol. 32,

pp. 1–31, Apr. 2022, doi: 10.1142/S0218194022500152.

[12] B. Aljedaani, A. Ahmad, M. Zahedi, and M. A. Babar,
“Security Awareness of End-Users of Mobile Health

Applications: An Empirical Study,” CoRR, vol. abs/2008.1,

2020, [Online]. Available: https://arxiv.org/abs/2008.13009.
[13] M. Unal and O. Bolukbas, The Acquirements of Digitalization

with RPA (Robotic Process Automation) Technology in the

Vakif Participation Bank. 2021.
[14] M. Kang and A. Hovav, “Benchmarking Methodology for

Information Security Policy (BMISP): Artifact Development

and Evaluation,” Inf. Syst. Front., May 2018, doi:
1.1007/s1079.

[15] S. G.C, T. Sake, and . A., “A Systematic Review and Catalog

of Security Metric during the Secure Software Development
Life Cycle,” Recent Adv. Electr. Electron. Eng. (Formerly

Recent Patents Electr. Electron. Eng., vol. 13, Dec. 2020, doi:

10.2174/2352096513999201201121823.
[16] Y. Perdana and D. I. Sensuse, “Knowledge Sharing System

Development: A Systematic Literature Review,” in 2021

International Conference on Advanced Computer Science and
Information Systems (ICACSIS), 2021, pp. 1–7, doi:

10.1109/ICACSIS53237.2021.9631327.

[17] R. E. Fairley, “Traditional Process Models for System

Development,” in Systems Engineering of Software-Enabled

Systems, IEEE, 2019, pp. 99–119.
[18] S. Sheikhi and P. Kostakos, “Cyber threat hunting using

unsupervised federated learning and adversary emulation,” in

2023 IEEE International Conference on Cyber Security and
Resilience (CSR), 2023, pp. 315–320, doi:

10.1109/CSR57506.2023.10224990.

[19] R. Fujdiak et al., “Managing the Secure Software
Development,” in 2019 10th IFIP International Conference on

New Technologies, Mobility and Security (NTMS), 2019, pp.

1–4, doi: 10.1109/NTMS.2019.8763845.
[20] Michigan Technological University, “System development

lifecycle (SDLC): Information Technology: Michigan Tech.”

[Online]. Available: https://www.mtu.edu/it/security/policies-
procedures-guidelines/information-security-program/system-

development-lifecycle/.

[21] A. D. Bhagat, S. Basia, K. Sharma, and P. Vats, “A Survey of
Cloud Architectures: Confidentiality, Contemporary State, and

Future Challenges,” in 2022 3rd International Conference on

Issues and Challenges in Intelligent Computing Techniques
(ICICT), 2022, pp. 1–8, doi:

10.1109/ICICT55121.2022.10064580.

[22] T. Eom, J. Hong, S. An, J. Park, and D. Kim, “A Systematic

Approach to Threat Modeling and Security Analysis for

Software Defined Networking,” IEEE Access, vol. PP, p. 1,
Sep. 2019, doi: 10.1109/ACCESS.2019.2940039.

[23] H. Al-Matouq, S. Mahmood, M. Alshayeb, and M. Niazi, “A

Maturity Model for Secure Software Design: A Multivocal
Study,” IEEE Access, vol. 8, pp. 215758–215776, Jan. 2020,

doi: 10.1109/ACCESS.2020.3040220.

[24] C. Quinlan, W. Zikmund, B. Babbin, J. Carr, and M. Griffin,
Business Research Methods. 2015.

[25] B. Kitchenham, L. Madeyski, and D. Budgen, “SEGRESS:

Software Engineering Guidelines for REporting Secondary
Studies,” IEEE Trans. Softw. Eng., vol. PP, p. 1, Jan. 2022, doi:

10.1109/TSE.2022.3174092.

[26] D.-R. Khan, S. U. Khan, and M. Ilyas, Exploring Security
Procedures in Secure Software Engineering: A Systematic

Mapping Study. 2022.

[27] P. Ralph, “Toward Methodological Guidelines for Process

Theories and Taxonomies in Software Engineering,” IEEE

Trans. Softw. Eng., vol. 45, no. 7, pp. 712–735, 2019, doi:

10.1109/TSE.2018.2796554.
[28] A. Mousa, M. Karabatak, and T. Mustafa, Database Security

Threats and Challenges. 2020.

[29] A. A. R. Farea, C. Wang, E. Farea, and A. B. Alawi, “Cross-
Site Scripting (XSS) and SQL Injection Attacks Multi-

classification Using Bidirectional LSTM Recurrent Neural

Network,” in 2021 IEEE International Conference on Progress
in Informatics and Computing (PIC), 2021, pp. 358–363, doi:

10.1109/PIC53636.2021.9687064.

[30] A. Shrivastava, S. Choudhary, and A. Kumar, “XSS
vulnerability assessment and prevention in web application,”

in 2016 2nd International Conference on Next Generation

Computing Technologies (NGCT), 2016, pp. 850–853, doi:
10.1109/NGCT.2016.7877529.

[31] K. Asamoah et al., “Zero-Chain: A Blockchain-Based Identity

for Digital City Operating System,” IEEE Internet Things J.,
vol. PP, p. 1, Apr. 2020, doi: 10.1109/JIOT.2020.2986367.

[32] A. Agrawal et al., “Software Security Estimation Using the

Hybrid Fuzzy ANP-TOPSIS Approach: Design Tactics
Perspective,” Symmetry (Basel)., vol. 12, pp. 1–21, Apr. 2020,

doi: 10.3390/sym12040598.

[33] R. R. Althar, D. Samanta, M. Kaur, A. A. Alnuaim, N.
Aljaffan, and M. Aman Ullah, “Software Systems Security

Vulnerabilities Management by Exploring the Capabilities of

Language Models Using NLP.,” Comput. Intell. Neurosci., vol.
2021, p. 8522839, 2021, doi: 10.1155/2021/8522839.

[34] M. Ganesh, A. Xavier, B. David, M. Sagayam, and A. Elngar,

Model Transformation and Code Generation Using a Secure
Business Process Model. 2022.

[35] S. Solms and L. Futcher, “Adaption of a Secure Software

Development Methodology for Secure Engineering Design,”
IEEE Access, vol. PP, p. 1, Jul. 2020, doi:

10.1109/ACCESS.2020.3007355.

[36] M. Siavvas, D. Tsoukalas, M. Jankovic, D. Kehagias, and D.

Tzovaras, “Technical debt as an indicator of software security

risk: a machine learning approach for software development
enterprises,” Enterp. Inf. Syst., Sep. 2020, doi:

10.1080/17517575.2020.1824017.

[37] C.-M. Mathas, C. Vassilakis, N. Kolokotronis, C. C.
Zarakovitis, and M.-A. Kourtis, “On the Design of IoT

Security: Analysis of Software Vulnerabilities for Smart

Grids,” Energies, vol. 14, no. 10. 2021, doi:
10.3390/en14102818.

[38] R. R. Althar, D. Samanta, M. Kaur, D. Singh, and H.-N. Lee,

“Automated Risk Management Based Software Security
Vulnerabilities Management,” IEEE Access, vol. 10, pp.

90597–90608, 2022, doi: 10.1109/ACCESS.2022.3185069.

[39] M. Jouini, L. Ben Arfa Rabai, and R. Khédri, “A quantitative
assessment of security risks based on a multifaceted

classification approach,” Int. J. Inf. Secur., vol. 20, Aug. 2021,

doi: 10.1007/s10207-020-00515-6.
[40] Z. Sun, K. D. Strang, and F. Pambel, “Privacy and security in

the big data paradigm,” J. Comput. Inf. Syst., vol. 60, pp. 1–10,

Feb. 2018, doi: 10.1080/08874417.2017.1418631.
[41] A. Khan, F. Khan, J. Khan, J. Khan, and Y. Lee, Identification

and Prioritization of Critical Cyber Security Challenges and

Mikael Octavinus Chan, Setiadi Yazid

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 1 (2024)

This is an open access article under the CC BY-4.0 license 99

Practices for Software Vendor Organizations in Software

Development: An AHP-Based Systematic Approach. 2022.

[42] A. Khan et al., “Analyzing and Evaluating Critical Challenges
and Practices for Software Vendor Organizations to Secure Big

Data on Cloud Computing: An AHP-Based Systematic

Approach,” IEEE Access, vol. PP, p. 1, Jul. 2021, doi:
10.1109/ACCESS.2021.3100287.

[43] T. Lopez, H. Sharp, A. Bandara, T. Tun, M. Levine, and B.

Nuseibeh, “Security Responses in Software Development,”
ACM Trans. Softw. Eng. Methodol., vol. 32, no. 3, Apr. 2023,

doi: 10.1145/3563211.

[44] K. Rindell, J. Ruohonen, and S. Hyrynsalmi, Surveying Secure
Software Development Practices in Finland. 2018.

[45] H. Nina, J. A. Pow-Sang, and M. Villavicencio, “Systematic

Mapping of the Literature on Secure Software Development,”
IEEE Access, vol. 9, pp. 36852–36867, 2021, doi:

10.1109/ACCESS.2021.3062388.

[46] W. Wang, F. Dumont, N. Niu, and G. Horton, “Detecting

Software Security Vulnerabilities Via Requirements

Dependency Analysis,” IEEE Trans. Softw. Eng., vol. 48, no.

5, pp. 1665–1675, 2022, doi: 10.1109/TSE.2020.3030745.
[47] M. Alenezi, A. Agrawal, R. Kumar, and R. A. Khan,

“Evaluating Performance of Web Application Security

Through a Fuzzy Based Hybrid Multi-Criteria Decision-
Making Approach: Design Tactics Perspective,” IEEE Access,

vol. 8, pp. 25543–25556, 2020, doi:

10.1109/ACCESS.2020.2970784.
[48] N. Alhirabi, O. Rana, and C. Perera, “Security and Privacy

Requirements for the Internet of Things: A Survey,” ACM

Trans. Internet Things, vol. 2, no. 1, Feb. 2021, doi:
10.1145/3437537.

[49] B. Tavares, M. Keil, C. Sanches, A. Diniz de Souza, and C.

Silva, “A Risk Management Tool for Agile Software
Development,” vol. 1, p. 1, Dec. 2020, doi:

10.1080/08874417.2020.1839813.

[50] M. T. Baldassarre, V. S. Barletta, D. Caivano, and M. Scalera,
“Integrating security and privacy in software development,”

Softw. Qual. J., vol. 28, no. 3, pp. 987–1018, Sep. 2020, doi:

10.1007/s11219-020-09501-6.
[51] W. Williams, Creating an Information Security Program from

Scratch, 1st ed. CRC Press, 2022.

[52] A. Ali, Y. Hafeez, S. Hussain, and S. Yang, “Role of
Requirement Prioritization Technique to Improve the Quality

of Highly-Configurable Systems,” IEEE Access, vol. 8, pp.

27549–27573, 2020, doi: 10.1109/ACCESS.2020.2971382.
[53] L. V Astakhova, “Transformation of Strategic Models for

Managing Human Risks of Information Security of an

Enterprise as an Imperative of the Digital Industry,” Sci. Tech.
Inf. Process., vol. 48, no. 2, pp. 71–77, Apr. 2021, doi:

10.3103/S0147688221020027.

[54] M. Alenezi and S. Almuairfi, “Security Risks in the Software
Development Lifecycle,” Int. J. Recent Technol. Eng., vol. 8,

pp. 7048–7055, Sep. 2019, doi: 10.35940/ijrte.C5374.098319.

[55] X. Chen and Y. Deng, “An Evidential Software Risk

Evaluation Model,” Mathematics, vol. 10, p. 2325, Jul. 2022,

doi: 10.3390/math10132325.
[56] A. Goutam and V. Tiwari, “Vulnerability Assessment and

Penetration Testing to Enhance the Security of Web

Application,” in 2019 4th International Conference on
Information Systems and Computer Networks (ISCON), 2019,

pp. 601–605, doi: 10.1109/ISCON47742.2019.9036175.

[57] L. Gonchar, “Implementation of Secure Software
Development Lifecycle in a Large Software Development

Organization BT - Proceedings of the 21st International

Workshop on Computer Science and Information
Technologies (CSIT 2019),” Dec. 2019, pp. 137–139, doi:

10.2991/csit-19.2019.23.

[58] R. J. Curts and D. E. Campbell, Building A Global Information
Assurance Program, 1st ed. New York: Auerbach

Publications, 2003.

[59] H. O. Nwaete, “Secure Software Development: Industrial
Practice - A Review,” i-Manager’s J. Softw. Eng. Nagercoil,

vol. 16, no. 3, pp. 60–71, 2022, doi: 10.26634/jse.16.3.18674.

[60] E. Venson, X. Guo, Z. Yan, and B. Boehm, “Costing Secure
Software Development: A Systematic Mapping Study,” 2019,

doi: 10.1145/3339252.3339263.

[61] A. A. Alghamdi and M. Niazi, “Challenges of Secure Software

Deployment: An Empirical Study,” in Proceedings of the 26th

International Conference on Evaluation and Assessment in
Software Engineering, 2022, pp. 440–445, doi:

10.1145/3530019.3531337.

[62] K. Rindell, S. Hyrynsalmi, and V. Leppänen, “Aligning
security objectives with agile software development,” 2018,

doi: 10.1145/3234152.3234187.

[63] A. Petrikoglou and T. Kaskalis, Full Stack Web Development
Teaching: Current Status and a New Proposal. 2019.

[64] D.-R. Khan, S. U. Khan, M. Ilyas, and H. Khan, “Systematic

Mapping Study on Security Approaches in Secure Software
Engineering,” IEEE Access, vol. 9, pp. 19139–19159, Jan.

2021, doi: 10.1109/ACCESS.2021.3052311.

[65] Z. Stefanovska, K. Jakimoski, and W. Stefanovski,
“Optimization of Secure Coding Practices in SDLC as Part of

Cybersecurity Framework,” J. Comput. Sci. Res., vol. 4, Apr.

2022, doi: 10.30564/jcsr.v4i2.4048.

[66] Z. Shen and S. Chen, “A Survey of Automatic Software

Vulnerability Detection, Program Repair, and Defect

Prediction Techniques,” Secur. Commun. Networks, vol. 2020,
p. 8858010, 2020, doi: 10.1155/2020/8858010.

[67] P. Mukherjee and C. Mazumdar, “‘Security Concern’ as a

Metric for Enterprise Business Processes,” IEEE Syst. J., vol.
13, no. 4, pp. 4015–4026, 2019, doi:

10.1109/JSYST.2019.2918116.

[68] F. H. Semantha, S. Azam, B. Shanmugam, K. C. Yeo, and A.
R. Beeravolu, “A Conceptual Framework to Ensure Privacy in

Patient Record Management System,” IEEE Access, vol. 9, pp.

165667–165689, 2021, doi: 10.1109/ACCESS.2021.3134873.
[69] A. Pereira-Vale, G. Márquez, H. Astudillo, and E. B.

Fernandez, “Security Mechanisms Used in Microservices-

Based Systems: A Systematic Mapping,” in 2019 XLV Latin
American Computing Conference (CLEI), 2019, pp. 1–10, doi:

10.1109/CLEI47609.2019.235060.

[70] “ICST 2020 TOC,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification

(ICST), 2020, pp. i–vii, doi: 10.1109/ICST46399.2020.00004.

[71] M. Howard and S. Lipner, The Security Development Lifecycle,
vol. 34. 2006.

[72] T. Lorünser, H. Pöhls, L. Becker, and T. Laenger, CryptSDLC:

Embedding Cryptographic Engineering into Secure Software
Development Lifecycle. 2018.

[73] R. Brasoveanu, Y. Karabulut, and I. Pashchenko, “Security

Maturity Self-Assessment Framework for Software
Development Lifecycle,” 2022, doi:

10.1145/3538969.3543806.

[74] N. Onumah, S. Attwood, and R. Kharel, “Towards Secure
Application Development: A Cyber Security Centred Holistic

Approach,” in 2020 12th International Symposium on

Communication Systems, Networks and Digital Signal
Processing (CSNDSP), 2020, pp. 1–6, doi:

10.1109/CSNDSP49049.2020.9249631.

[75] M. Alawneh and I. M. Abbadi, “Integrating Trusted

Computing Mechanisms with Trust Models to Achieve Zero

Trust Principles,” in 2022 9th International Conference on
Internet of Things: Systems, Management and Security

(IOTSMS), 2022, pp. 1–6, doi:

10.1109/IOTSMS58070.2022.10062269.
[76] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, “Systematic

Literature Review on Security Risks and its Practices in Secure

Software Development,” IEEE Access, vol. 10, pp. 5456–5481,
2022, doi: 10.1109/ACCESS.2022.3140181.

[77] M. M. Jakeri and M. F. Hassan, “A Review of Factors

Influencing the Implementation of Secure Framework for in-
House Web Application Development in Malaysian Public

Sector,” 2018 IEEE Conf. Appl. Inf. Netw. Secur., pp. 99–104,

2018, [Online]. Available:
https://api.semanticscholar.org/CorpusID:59600770.

[78] T. Hanauer, W. Hommel, S. Metzger, and D. Pöhn, “A Process

Framework for StakStakeholder-Specificualization of Security
Metrics,” 2018, doi: 10.1145/3230833.3232855.

[79] W. Williams, “Chapter Integrating Security into Software

Development,” in Creating an Information Security Program
from Scratch, Ist., CRC Press, 2021, p. 222.

