
 Accepted: 27-08-2023 | Received in revised: 22-10-2023 | Published: 26-11-2023

1292

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 7 No. 1 (2023) 1292 - 1299 ISSN Media Electronic: 2580-0760

Digital Image Encryption Using Logistic Map

Muhammad Rizki1, Erik Iman Heri Ujianto2, Rianto3
1,2,3Magister Teknologi Informasi, Universitas Teknologi Yogyakarta, Yogyakarta, Indonesia

16220211002.rizki@student.uty.ac.id, 2erik.iman@uty.ac.id, 3rianto@staff.uty.ac.id

Abstract

This study focuses on the application of the Logistic Map algorithm in Python programming language for Digital Image

Encryption and Decryption, the differentiating aspect of the present research in contrast to prior studies lies in its elucidation

of the practical application of the Logistic Map within the Python programming language, as opposed to the antecedent

investigations which primarily confined their discourse to the realm of scientific and mathematical abstraction. Not only that,

but it also investigates the impact of image type, image size, and Logistic Map parameter values on computational speed,

memory usage, Encryption and Decryption results. Three image sizes (300px x 300px, 500px x 500px, and 1024px x 1024px)

in TIFF, JPG, and PNG formats are considered. The Digital Image Encryption and Decryption process utilizes the Logistic

Map algorithm implemented in Python. Various parameter values are tested for each image type and size to analyze the

Encryption and Decryption outcomes. This research has effectively implemented the logistic map algorithm, resulting in the

discovery of several significant findings. The findings indicate that image type does not affect memory usage, which remains

consistent regardless of image type. However, image type significantly influences Decryption results and computation time.

Notably, the TIFF image type exhibits the fastest computation time, with durations of 0.17188 seconds, 0.28125 seconds, and

1.10938 seconds for 300px x 300px, 500px x 500px, and 1024px x 1024px images, respectively. Additionally, the Decryption

results vary depending on the image type. The Logistic Map algorithm is unable to restore Encryption results accurately for

JPG images. Furthermore, this research highlights those higher values of x, Mu, and Chaos result in narrower histogram

values, resulting in better encryption results, as evidenced by experiments using x=0.102, Mu=3.9 and Chaos=6400. This study

contributes to the field by exploring the application of the Logistic Map algorithm in Python and analyzing the effects of image

type, image size, and Logistic Map parameter values on computation time, memory usage, and Digital Image Encryption and

Decryption results.

Keywords: logistic map; digital image encryption; python

1. Introduction

The development of technology forces many people to

produce more multimedia data such as images, videos,

audio, and so on. This development is also supported by

the rapid dissemination of data on the internet [1].

Therefore, with the rapid advancement of

communication technology, information exchange

through the Internet is everywhere and has become a

crucial part of many people's lives [2]. One type of data

that is widely spread on the internet is images. An image

contains a vast amount of information, not only in

written form but also in descriptive visual form, making

it essential to protect the privacy of the image owner.

Digital images or pictures, as a medium for storing

information, are different from text data. Images have

specific features such as size and values in each pixel

[3]. One type of image that needs protection is medical

images. According to research conducted by Kiran from

Visvesvaraya Technological University (VTU) in 2020,

numerous medical applications such as smart health, e-

health, telemedicine, and others still use open networks

to send and receive information related to medical

images from both the client and server sides. These

images contain highly sensitive information about

patients' secrets. Unfortunately, these applications do

not protect the images sent, mainly due to considering

the time and computational burden involved in the

process [4]. Not only in the medical field but also in

other domains such as intellectual property and law, a

higher level of security is necessary for image data [5].

There are many ways to protect data in the form of

images, and one of them is by applying the Logistic

Map theory. The Logistic Map is often used in various

problem-solving scenarios, such as approximating the

Specific Data Corona Virus [6], Enhance Chaos And

Complexity Of Discrete Systems [7], Applying

Dispersion Entropy To Status Characterization Of

Rotary Machines [8], and Inverse Pheromone Approach

 Muhammad Rizki, Erik Iman Heri Ujianto, Rianto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 6 (2023)

DOI: https://doi.org/10.29207/resti.v7i6.5389

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1293

in a Chaotic Mobile Robot’s Path Planning Based on a

Modified Logistic Map [9]. This is because the Logistic

Map is considered to have advantages in its simple

functional structure with good chaos and controllable

autocorrelation and cross-correlation properties [10].

Therefore, the Logistic Map may be also used in the

process of protecting images.

Previous research has utilized the Logistic Map as an

algorithm for encrypting images, as seen in a study

conducted in 2019. In this research, a new approach to

image encryption was proposed, based on a dual chaotic

system using the two-dimensional Baker Chaotic Map

to control the parameters and state variables of the

Logistic Map. The goal was to extend the range and

reduce the vulnerability level compared to the one-

dimensional Logistic Map algorithm. The results of this

research showed that the two-dimensional Baker

Chaotic Map successfully increased the level of chaos

to a point where it became unpredictable by complex

analysis [11]. In the same year, another similar study

discussed enhancing the chaotic behaviour of the

Logistic Map. The research revealed that within the

Logistic Map algorithm, a logistic sequence produces

multiple random sequences that can be useful for

controlling the random sequences of other logistic

transformations. The study also analyzed key space, key

sensitivity, correlation, information entropy, resistance

to differential attacks, resilience analysis, and

complexity analysis of the encrypted images. The

results showed that the proposed algorithm could

compete with other chaotic-based image encryption

algorithms in terms of security and complexity [12].

Both studies demonstrate the potential of using the

Logistic Map and its variations to create secure and

chaotic image encryption algorithms, which are crucial

in safeguarding sensitive image data from unauthorized

access.

In the following year, there was research discussing the

use of watermarks on images based on interconnected

Logistic Maps and variants of optimization generated

by Particle Swarm Optimization (PSO). The approach

taken in this study involved decomposing the image

using discrete wavelet transformation and Discrete

Cosine Transform (DCT) techniques. Both

transformations were applied to pixels with frequency

levels that are insensitive to human perception, namely

Low-High (LH) and High-Low (HL) pixels. The goal

was to embed the watermark into the image in a way

that the watermarked image still appeared like a regular

image. The process of embedding the watermark into

the image in this study involved applying the Logistic

Map theory to chaotically destroy the watermark,

making it difficult to read or recognize. The results of

this research showed that the PSO algorithm used for

multi-dimensional optimization of selecting DCT

values efficiently found the optimal values for the

strength of watermark embedding and DCT values [13].

Furthermore, there are several similar studies such as

"An Efficient Image Encryption Scheme Based on S-

Boxes and Fractional-Order Differential Logistic Map"

[14], "An Image Encryption Scheme Based on Public

Key Cryptosystem and Quantum Logistic Map" [15],

"An Improved Digital Logistic Map and Its Application

in Image Encryption" [16], and many other researches

that utilize the Logistic Map as an algorithm for digital

image encryption. All these studies demonstrate that the

Logistic Map has proven to be an effective and reliable

tool in protecting digital images, contributing to the

development of security techniques in processing and

exchanging images online.

However, most of these studies only discuss from a

scientific perspective and the mathematical calculations

alone. There has been no research that discusses in

detail the technical implementation of the Logistic Map

in a specific programming language, particularly in the

Python programming language. This research aims to

explain in detail the implementation of the Logistic

Map as a digital image encryption algorithm using the

Python programming language. Not only that, but this

research also analyzes the influence of each parameter

change possessed by the Logistic Map on encryption

results, execution time, and memory usage during the

computation process.

2. Research Methods

This research followed the steps shown in Figure 1 as a

method for conducting experiments and analysis.

Figure 1. Flow of Research Methods

2.1 Data Collection

The data collection process involves several stages,

including a literature review phase aimed at gathering

various references. The literature review is also useful

for collecting scientific evidence related to the

differences between previous research and this study.

The data collection phase also includes gathering

various types of images such as JPG, PNG, and TIFF.

Each image comes in three-pixel sizes: 300px x 300px,

500px x 500px, and 1024px x 1024px.

2.2 Image Encryption

The Encryption and analysis process includes the

following steps:

 Muhammad Rizki, Erik Iman Heri Ujianto, Rianto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 6 (2023)

DOI: https://doi.org/10.29207/resti.v7i6.5389

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1294

This research utilizes the Logistic Map algorithm for

encrypting digital images in the form of pictures. The

Logistic Map is an algorithm used to introduce chaos or

randomness, as described by Formula 1 [17].

𝑋𝑖  + 1  =  𝜇𝑋𝑖(1 − 𝑋𝑖 ) (1)

The behaviour of the Logistic Map can be highly

complex and exhibit various patterns depending on the

value of µ (Mu) that is specified. For example, if the

value of µ lies between 0 and 1, the population will

decrease over time and eventually reach 0. However, if

the value of µ lies between 1 and 3, the population will

oscillate between two values, and if µ lies between 3

and 3.57, the population will oscillate between four

values. When the value of µ is between 3.57 and

3.57⋅(3.57-3), the function will exhibit period-doubling

bifurcation, meaning each population will be isolated

between 2𝑖 values as the value of 𝑖 increases. This

behaviour will continue until the value of µ reaches

4.6692, at which point the population will exhibit chaos.

Here is the example of chaos generated by the Logistic

Map with an initial value of X(0) = 0.5 and μ = 3.8 for

a total of 12 iterations:

𝑥(0) = 0.95

𝑥(1) = μ ∗ 0.5 ∗ (1 − 0.5 = 0.95 

𝑥(2) = μ ∗ 0.95 ∗ (1 − 0.95) = 0.1805

𝑥(3) = μ ∗ 0.1805 ∗ (1 − 0.1805) = 0.59732

𝑥(4) = μ ∗ 0.59732 ∗ (1 − 0.59732) = 1.13707

𝑥(5) = μ ∗ 1.13707 ∗ (1 − 1.13707) = −1.99852

𝑥(6) = 3.8 ∗ (−1.99852) ∗ (1 − (−1.99852))
= −14.4873

𝑥(7) =  3.8 ∗ (−14.4873) ∗ (1 − (−14.4873))
= −268.486

𝑥(8) = 3.8 ∗ (−268.486) ∗ (1 − (−268.486))
= −183412.9

𝑥(9) = 3.8 ∗ (−183412.9) ∗ (1 − (−183412.9))
= −124023264

𝑥(10) = 3.8 ∗ (−124023264) ∗ (1 − (−124023264))
= −99329897485.2

𝑥(11) = 3.8 ∗ (−99329897485.2) ∗ (1
− (−99329897485.2))
= −9.93297E + 19

𝑥(12) = 3.8 ∗ (−9.93297E + 19) ∗ (1 − (−9.93297E
+ 19)) = −Infinity

This stage aims to analyze the influence of parameter

changes in the Logistic Map on the encrypted image

results. Subsequently, the encryption results for each

type of image will be compared based on the execution

time for encryption and decryption, as well as the

memory usage during each process.

3. Results and Discussions

After conducting a literature review and data collection,

the next step is to implement the Logistic Map using the

Python programming language. This stage utilizes the

Pillow library (pillow.readthedocs.io) as a module for

image processing and Numpy (numpy.org) as a module

for mathematical function engineering, which will be

used to compute Formula 1.

3.1 Application of Digital Image Encryption

The stages of image encryption using Logistic Map in

the Python programming language can be displayed in

Figure 2.

Figure 2. Encryption Flow

Install Library is the first stage to perform image

encryption in this research is to load the Pillow and

Numpy libraries, as shown in Figure 3.

Figure 3. Install Library

Input Path Image is the stage where you need to select

the image that will be encrypted using the code

indicated in Figure 4.

Figure 4. Path Image

 Muhammad Rizki, Erik Iman Heri Ujianto, Rianto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 6 (2023)

DOI: https://doi.org/10.29207/resti.v7i6.5389

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1295

The code shown in Figure 4 aims to fetch the file

"image.png" and initialize the path of the folder where

the encrypted and decrypted results will be stored. The

folder path used in this research is shown in Figure 5.

Figure 5. Structure folder

The image selected as the test image at this stage is an

image with a size of 300px x 300px as shown in Figure

6.

Figure 6. Trial image size

Loading and saving an image to memory stage is before

the image can be processed, the image must first be

saved into memory, the following Python code to save

the image to memory is shown in Figure 7.

Figure 7. Save image to memory (variable) img_real

The line of code shown in Figure 7 also aims to display

the original image before the encryption process is run.

The stage of converting images from RGB (Red, Green,

Blue) format to Grayscale format aims to reduce the

amount of memory and the size of the image, thus, the

calculation process will be faster. Python can change

the image format from RGB to Grayscale in several

ways, one of which is by utilizing the Pillow library as

shown in Figure 8.

Figure 8. Converting RGB Format to Grayscale

The code displayed in Figure 8 above produces new

data, where the previous data has a 3-dimensional form

with a size of 300 x 300 x 4 into 2-dimensional data

with a size of 300 x 300 as displayed in Figure 9.

Figure 9. RGB to Grayscale format result

The stages of parameter initialization for the Logistic

Map can be seen in Figure 10.

Figure 10. Parameter Initialization

The purpose of initializing parameters in the Logistic

Map is to determine the level of chaos generated to be

applied to each pixel that will be encrypted.

Encrypting the values in each pixel stage is a crucial

step, where the encryption process involves the

utilization of two functions. The first function is used to

define the Logistic Map, as illustrated in Figure 11.

Figure 11.Implementation of the Logistic Map

The second function serves as the engine for encrypting

each pixel, as demonstrated in Figure 12.

 Muhammad Rizki, Erik Iman Heri Ujianto, Rianto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 6 (2023)

DOI: https://doi.org/10.29207/resti.v7i6.5389

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1296

Figure 12.Encryption Engine

The functions shown in Figures 11 and 12 are

interconnected, as the function depicted in Figure 11 is

the implementation of the Logistic Map in the Python

programming language. This function is responsible for

introducing chaos to each pixel value provided by the

function depicted in Figure 12. Here is a simulation of

the encryption calculation performed by these two

functions.

𝑥1 = 4 ∗ 0.002 ∗ (1 − 0.002) = 0.007984

𝑥2 = 4 ∗ 0.007984 ∗ (1 − 0.007984)
= 0.031681022976

𝑥3 = ∗ 0.031681022976 ∗ (1 − 0.031681022976)
= 0.12270934303677665

… … . ..

𝑥90000 = 4 ∗ 0.917356585505951 ∗ (1
− 0.917356585505951)
= 0.3032539221392552

Due to the image dimensions being processed being 300

x 300, the calculations will continue until the last pixel,

which is the 90,000th pixel. Not only that, but the

encryption engine shown in above Figure 12 also

handles the calculations and rounding of the

multiplication results between the Logistic Map values

and chaos values. Here is a simulation of the

calculations :

𝑥1 = 0.007984 ∗ 3064 = 24.462975999999998 = 24

𝑥2 = 0.031681022976 ∗ 3064 = 97.070654398464
= 97

𝑥3 = 0.12270934303677665 ∗ 3064
= 375.98142706468366 = 375

… … . ..

𝑥90000 = 0.3032539221392552 ∗ 3064
= 929.170017434678 = 929

The multiplication result of the Logistic Map with the

chaos value above is the final value of this stage.

Save the encryption values to memory as shown in

Figure 12 is not limited to just the function for

encrypting each pixel value contained within the test

image. The function depicted in Figure 12 is also used

to store the encrypted data results. This function is

executed by adding each encrypted value to a variable

initialized with the name 'keystream'. The encrypted

results stored in this variable can be seen in Figure 13.

Figure 13.Value of the 'keystream' Variable

The Bitwise XOR operation is used to scramble the

previously encrypted values, and the result of this

operation can be seen in Figure 14.

Figure 14. Value of the 'keystream' Variable

Converting an Array to an Image is done after the

Bitwise XOR process is completed. The result of the

digital image encryption process can be observed in

Figure 15.

Figure 15. Encryption Result

After the encryption is successfully performed, the next

step is to save the image into the previously prepared

folder, as indicated in Figure 5.

3.1 Analysis of Parameter Changes in Encryption

Results, Memory Usage, and Computational Speed

After implementing the Logistic Map using the Python

programming language, the next step is to analyze the

parameter changes in encryption results, memory

usage, and computational speed for each type and size

of the image. The test results can be seen in Table 1.

 Muhammad Rizki, Erik Iman Heri Ujianto, Rianto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 6 (2023)

DOI: https://doi.org/10.29207/resti.v7i6.5389

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1297

Table 1. Experiment Results

No Type Pixel x Mu Chaos Encryption

Size (Kb)

Encryption

Speed (s)

Decryption

Size (Kb)

Decryption

Speed (s)

1 JPG 300x300 0.002 3 200 351.67188 0.21875 351.68750 0.03125
2 JPG 500 x 500 0.002 3 200 976.67188 0.50000 976.68750 0.06250

3 JPG 1024x1024 0.002 3 200 4096.10938 1.54688 4096.12500 0.07813

4 PNG 300x300 0.002 3 200 351.67188 0.28125 351.68750 0.03125
5 PNG 500x500 0.002 3 200 976.67188 0.43750 976.68750 0.12500

6 PNG 1024x1024 0.002 3 200 4096.10938 2.00000 4096.12500 0.51563

7 TIFF 300x300 0.002 3 200 351.67188 0.17188 351.68750 0.01563
8 TIFF 500x500 0.002 3 200 976.67188 0.29688 976.68750 0.04688

9 TIFF 1024x1024 0.002 3 200 4096.10938 1.26563 4096.12500 0.04688

10 JPG 300x300 0.032 3.5 1200 351.67188 0.20313 351.68750 0.01563
11 JPG 500x500 0.032 3.5 1200 976.67188 0.32813 976.68750 0.03125

12 JPG 1024x1024 0.032 3.5 1200 4096.10938 1.25000 4096.12500 0.03125

13 PNG 300x300 0.032 3.5 1200 351.67188 0.23438 351.68750 0.03125
14 PNG 500x500 0.032 3.5 1200 976.67188 0.40625 976.68750 0.04688

15 PNG 1024x1024 0.032 3.5 1200 4096.10938 1.70313 4096.12500 0.42188

16 TIFF 300x300 0.032 3.5 1200 351.67188 0.18750 351.68750 0.01563

17 TIFF 500x500 0.032 3.5 1200 976.67188 0.39063 976.68750 0.03125

18 TIFF 1024x1024 0.032 3.5 1200 4096.10938 1.23438 4096.12500 0.04688

19 JPG 300x300 0.102 3.9 6400 351.67188 0.20313 351.68750 0.01563
20 JPG 500x500 0.102 3.9 6400 976.67188 0.34375 976.68750 0.03125

21 JPG 1024x1024 0.102 3.9 6400 4096.10938 1.28125 4096.12500 0.04688

22 PNG 300x300 0.102 3.9 6400 351.67188 0.20313 351.68750 0.03125
23 PNG 500x500 0.102 3.9 6400 976.67188 0.34375 976.68750 0.04688

24 PNG 1024x1024 0.102 3.9 6400 4096.10938 1.73438 4096.12500 0.50000

25 TIFF 300x300 0.102 3.9 6400 351.67188 0.17188 351.68750 0.01563
26 TIFF 500x500 0.102 3.9 6400 976.67188 0.28125 976.68750 0.03125

27 TIFF 1024x1024 0.102 3.9 6400 4096.10938 1.10938 4096.12500 0.03125

The testing was conducted using the parameters x =

0.002, Mu = 3, and Chaos = 200 for the first test, x =

0.032, Mu = 3.5, and Chaos = 1200 for the second test,

and x = 0.102, Mu = 3.9, and Chaos = 6400 for the

subsequent test.

Memory Usage Analysis: based on the conducted test

results, it was found that the image type and Logistic

Map parameter values have no significant impact and

remain consistent on the memory usage during the

computation process. The memory usage for images of

size 1024px x 1024px is 4096.12500kb, while for size

500px x 500px it is 976.68750kb, and for size 300px x

300px, it is 351.68750kb. The memory usage difference

during decryption for each size is 0.00038146% for

1024px x 1024px size, 0.001599821% for 500px x

500px size, and 0.004443062% for 300px x 300px size.

Computational Speed Analysis: the conducted

experiments have demonstrated that the TIFF image

format proves to be the fastest in terms of computational

performance compared to JPG and PNG. While JPG

and PNG formats take 0.20313 seconds for a 300px x

300px image, for images of sizes 500px x 500px and

1024px x 1024px, the JPG format can outperform the

PNG format, although it still lags the computational

speed achieved by the TIFF format.

The Logistic Map algorithm can perform encryption on

TIFF images in 0.17188 seconds for a 300px x 300px

image, 0.28125 seconds for a 500px x 500px image, and

1.10938 seconds for a 1024px x 1024px image.

Moreover, the test results indicate that the primary

factors affecting encryption speed are the image type

and size, while the Logistic Map parameter values have

a relatively minor influence on encryption speed.

Encryption Result Analysis: the conducted tests for

each image size and type demonstrate that the image

type and size do not influence the encryption results.

The primary factor affecting encryption results is the

parameter values of the Logistic Map, as illustrated in

Figure 16.

Figure 16. Encryption Results

The experiment shown in Figure 16 indicates that

higher values of x, Mu, and Chaos lead to more

randomized encryption of pixel values. Moreover, the

values of x, Mu, and Chaos significantly influence the

 Muhammad Rizki, Erik Iman Heri Ujianto, Rianto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 6 (2023)

DOI: https://doi.org/10.29207/resti.v7i6.5389

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1298

encryption patterns generated by the Logistic Map, as

illustrated in Figure 17.

Figure 17. The Influence of Logistic Map Parameter Values on Encryption Patterns

Based on Figure 17, when the values are x = 0.002, Mu

= 3, and Chaos = 200, the histogram values generated

by the encrypted image closely resemble the histogram

values of the original image. This results in the

encrypted image still being recognizable. Moving

forward, when the Logistic Map parameters are set to x

= 0.032, Mu = 3.5, and Chaos = 1200, the histogram

range of the encrypted image becomes narrower than

before. This prompts the Logistic Map to produce more

randomized encryption, yet the encryption quality is

still insufficient as the encrypted result remains

somewhat discernible, as shown in Figure 16.

Furthermore, when the parameters are x = 0.102, Mu =

3.9, and Chaos = 6400, the pixel range on the histogram

graph drops below 500 pixels for each image type

tested. This chaotic behaviour affects every pixel,

rendering the encrypted image almost unrecognizable.

Encryption Result Analysis: this research has found that

one of the factors influencing the decryption results

performed by the Logistic Map is the image type, as

illustrated in Figure 18.

Figure 18. The Influence of Image Type on Decryption Results

Figure 18 illustrates that TIFF and PNG image types

can restore the encryption values to their original state,

enabling the decryption results to match the histogram

values of the original image. On the other hand, the

decryption results produced by the JPG image type still

do not fully restore the original values, resulting in some

noise or artefacts in the decrypted image, as shown in

Figure 19.

 Muhammad Rizki, Erik Iman Heri Ujianto, Rianto

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 6 (2023)

DOI: https://doi.org/10.29207/resti.v7i6.5389

Creative Commons Attribution 4.0 International License (CC BY 4.0)

1299

Figure 19. Comparison between the Original Image and the

Decrypted Image in JPG Image Type

Although the decryption results still exhibit some noise

or artefacts in the JPG image type, the objects in the

decrypted image are still recognizable. The decryption

result shown in Figure 19 is obtained from the

encrypted image generated by the Logistic Map with

parameter values x = 0.102, Mu = 3.9, and Chaos =

6400. This value is also applicable to the histogram

graph shown in Figure 18. Based on the previous test

results, this parameter combination is chosen as it

produces the best encryption result.

4. Conclusion

This research utilized the Python programming

language to perform image encryption using the

Logistic Map algorithm. The Python programming

language incorporates libraries such as Numpy and

Pillow to facilitate image computation and complex

mathematical operations. The results of the conducted

study demonstrate that the Logistic Map can execute

encryption and decryption rapidly, yielding excellent

outcomes for TIFF image types. Moreover, the JPG

image type also exhibits computational speeds

surpassing those of PNG image types. However, the

JPG image type still introduces noise in the decryption

results produced by the Logistic Map. The amount of

memory used during the computational process remains

consistent for each image type, with image size being

one of the factors influencing memory usage. On the

other hand, parameters such as x, Mu, and Chaos only

affect the outcomes and encryption patterns generated

by the Logistic Map algorithm. This research converts

RGB images to grayscale, aiming to streamline the

calculations performed by the Logistic Map, thus

optimizing memory usage and computational

efficiency. However, this conversion results in the

decrypted images remaining in grayscale format.

Therefore, future studies are encouraged to explore

similar research that generates decrypted images in

RGB format.

References

[1] V. Kumar and A. Girdhar, “A 2D logistic map and Lorenz-

Rossler chaotic system based RGB image encryption

approach,” Multimed. Tools Appl., vol. 80, no. 3, pp. 3749–

3773, Jan. 2021, doi: 10.1007/s11042-020-09854-x.
[2] X. Liu, D. Xiao, and C. Liu, “Three-level quantum image

encryption based on Arnold transform and logistic map,”

Quantum Inf. Process., vol. 20, no. 1, Jan. 2021, doi:
10.1007/s11128-020-02952-7.

[3] M. Muñoz-Guillermo, “Image encryption using a q-deformed

logistic map,” Inf. Sci. (Ny)., vol. 552, pp. 352–364, Apr. 2021,
doi: 10.1016/j.ins.2020.11.045.

[4] Kiran, B. D. Parameshachari, H. T. Panduranga, and S. L. Ullo,

“Analysis and Computation of Encryption Technique to
Enhance Security of Medical Images,” in IOP Conference

Series: Materials Science and Engineering, Oct. 2020, vol.

925, no. 1. doi: 10.1088/1757-899X/925/1/012028.
[5] M. Sharma, “Image encryption based on a new 2D logistic

adjusted logistic map,” Multimed. Tools Appl., vol. 79, no. 1–

2, pp. 355–374, Jan. 2020, doi: 10.1007/s11042-019-08079-x.
[6] N. Kyurkchiev, A. Iliev, and A. Rahnev, “ON THE HALF–

LOGISTIC MODEL WITH ”POLYNOMIALVARIABLE

TRANSFER”. APPLICATION TO APPROXIMATETHE
SPECIFIC ”DATA CORONA VIRUS”,” Int. J. Differ.

Equations Appl., vol. 19, no. 1, pp. 45–6103, 2020, doi:

10.12732/ijdea.v19i1.4.
[7] H. Natiq, S. Banerjee, and M. R. M. Said, “Cosine

quantification technique to enhance chaos and complexity of

discrete systems,” Eur. Phys. J. Spec. Top., vol. 228, no. 1, pp.
185–194, May 2019, doi: 10.1140/epjst/e2019-800206-9.

[8] M. Rostaghi, M. R. Ashory, and H. Azami, “Application of

dispersion entropy to the status characterization of rotary
machines,” J. Sound Vib., vol. 438, pp. 291–308, Jan. 2019, doi

10.1016/j.jsv.2018.08.025.

[9] E. K. Petavratzis et al., “An Inverse Pheromone Approach in a
Chaotic Mobile Robot’s Path Planning Based on a Modified

Logistic Map,” Technologies, vol. 7, no. 4, p. 84, Dec. 2019,

doi: 10.3390/technologies7040084.
[10] G. Ye and X. Huang, “An efficient symmetric image

encryption algorithm based on an intertwining logistic map,”

Neurocomputing, vol. 251, pp. 45–53, Aug. 2017, doi:
10.1016/j.neucom.2017.04.016.

[11] Y. Luo, J. Yu, W. Lai, and L. Liu, “A novel chaotic image

encryption algorithm based on improved baker map and
logistic map,” Multimed. Tools Appl., vol. 78, no. 15, pp.

22023–22043, Aug. 2019, doi: 10.1007/s11042-019-7453-3.

[12] R. Li, Q. Liu, and L. Liu, “Novel image encryption algorithm
based on improved logistic map,” IET Image Process., vol. 13,

no. 1, pp. 125–134, 2019, doi: 10.1049/iet-ipr.2018.5900.

[13] X. Kang, Y. Chen, F. Zhao, and G. Lin, “Multi-dimensional
particle swarm optimization for robust blind image

watermarking using intertwining logistic map and hybrid

domain,” Soft Comput., vol. 24, no. 14, pp. 10561–10584, Jul.
2020, doi: 10.1007/s00500-019-04563-6.

[14] Y. Q. Zhang, J. L. Hao, and X. Y. Wang, “An Efficient Image
Encryption Scheme Based on S-Boxes and Fractional-Order

Differential Logistic Map,” IEEE Access, vol. 8, pp. 54175–

54188, 2020, doi: 10.1109/ACCESS.2020.2979827.
[15] G. Ye, K. Jiao, X. Huang, B. M. Goi, and W. S. Yap, “An

image encryption scheme based on public key cryptosystem

and quantum logistic map,” Sci. Rep., vol. 10, no. 1, Dec. 2020,

doi: 10.1038/s41598-020-78127-2.

[16] H. Xiang and L. Liu, “An improved digital logistic map and its

application in image encryption,” Multimed. Tools Appl., vol.
79, no. 41–42, pp. 30329–30355, Nov. 2020, doi:

10.1007/s11042-020-09595-x.

[17] Iqbal, Kusrini, and A. Nasiri, “KOMPARASI HASIL
ENKRIPSI ARNOLD CAT MAP DAN LOGISTIC

MAPPADA CITRA DIGITAL,” J. Ilm. Inf. Technol.

d’Computare , vol. 10, pp. 10–16, Jun. 2020.

