
 Accepted: 10-10-2022 | Received in revised: 28-03-2023 | Published: 01-06-2023

430

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI
(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 7 No. 3 (2023) 430 - 436 ISSN Media Electronic: 2580-0760

Implementation of Self Driving Car System with HSV Filter Method

Based on Raspberry & Arduino Serial Communication

Kelvin Kristian Roestamadji1, Florentinus Budi Setiawan2, Leonardus Heru Pratomo3, Slamet Riyadi4
1,2,3,4Department of Electrical Engineering, Faculty of Engineering, Universitas Katolik Soegijapranata, Indonesia

1kristian.kelvin29@gmail.com, 2f.budi.s@unika.ac.id, 3leonardus@unika.ac.id, 4riyadi@unika.ac.id

Abstract

The development of technology in the transportation sector at this time is increasingly crucial. So the company innovates to
create a car that can run itself with a high level of security. In this study, we designed an autonomous drive system for a 1:10
scale RC car using the main components in the form of a Raspberry Pi 4 and a Raspberry Pi camera as image processing for
automatic control of an self driving car. Then the Arduino Nano, BTS7960, and Driver L298N components are used to regulate
the movement of the DC motor. In this article, the control strategy of this self-driving car will be shown which will be

implemented to detect lanes as a guide to walk autonomously. This study uses the HSV color filer method with morphology
techniques to detect the path to be passed. This study resulted in a path detection that was very accurate and operated in real-
time when compared to the CNN method using sampling paths to be passed that had previously been researched. After the path
is detected, the interconnection between the mini computer and the microcontroller will work to synchronize the path detection
and motor movement. In trials and hardware implementations carried out in the self-driving car laboratory with artificial
intelligence, it can work according to the algorithm created with a success rate of 90%.

Keywords: self driving car; HSV;rRaspberry; autonomous

1. Introduction

The self-driving car is one of the technologies that are

very promising to become a research prospect for

artificial intelligence or what we usually know as

artificial intelligence will become a technological

revolution that will shape self-driving cars[1],[2].

Several technologies have been implemented for the

development of this automatic moving car such as AGV

(Automated Guided Vehicle) or the self-driving car

itself, usually, the development of making this self-
driving car uses GPS technology, LiDAR, image

processing, computer vision, and many more[3]. Using

technology such as LIDAR, GPS, Pattern Guide, and

ultrasonic, has several advantages and has more

information when implemented, for example,

information on signs, obstacles, pedestrians, and others.

We compare it with the use of computer vision or image

processing which only uses input in the form of a

camera that can detect what is in front of it.[4]-[6]

In the development that has been made by the CNN

(Convolutional Neural Network) method, it has a road

sample training method to be able to pass a self-driving
car or it can be confirmed by this method that it will

require a lot of sample training depending on the path

to be traversed[7],[8] . This research designs a Self-

Driving Car that will run in real-time with a path

detection method using an HSV color filter with

morphology and Gaussian blur techniques to perfect the

detection of the path that the self-driving car will

pass[9]-[13]. With the use of this method, we can freely

operate this self-driving car without having to train the

sample first.

This research uses a raspberry pi 4b mini-computer

which will be operated to process image data or we can
call it image processing. Then for the movement of the

self-driving car, it uses a DC motor as a steering and

driver. Raspberry will be connected serially with

Arduino for image processing and drive

interconnection[14],[15]. In this study, we developed a

self-driving car in real time [16] library [14],[15]. It will

be combined according to the purpose of making this

AGV which makes it easier to detect the location of the

AGV [16].

2. Research Methods

The flow of research conducted by the author is shown

in Figure 1. Based on Figure 1, this research method
includes a literature study where the theories used will

 Kelvin Kristian Roestamadji, Florentinus Budi Setiawan, Leonardus Heru Pratomo, Slamet Riyadi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4579

Creative Commons Attribution 4.0 International License (CC BY 4.0)

431

be implemented, Design and Manufacture of

Prototypes, Results, and Discussion, as well as

conclusions based on the results of tests that have been

carried out Literature studies are conducted to identify

the problem and find various solutions to solve the

problem. After knowing the problem, the self-driving

car that has been designed and implemented follows the

solution to the problems found. the advantages of

applying the HSV method to detect paths with the

addition of pre-processing which will then be
interconnected serially with the Arduino nano as a

steering control on this self-driving car robot.

Researchers make self-driving this way for

transportation needs as the distribution of goods in the

industry. This study also simulates a self-driving car for

testing if errors are found.

DESIGN

ROBOTIC

STUDY

LITERATURE

RESULT AND

DISCUSSION
CONCLUSION

Figure 1. Research Flowchart

2.1 Planning Robot Self-Driving

The components for implementing a self-driving car

include controllers and microcontrollers that are used,

namely Raspberry Pi 4 mini computers, Arduino Nano,

BTS7960, L298N drivers, potentiometers, and other

supporting components. The L298N driver is used to

control the DC motor at the front as steering on a self-

driving car. The BTS7960 driver is used to control a

DC motor as a forward or backward drive on a self-
driving car. Raspberry Pi 4 functions to run the main

program whose job is to turn on the camera, process

images captured by the camera, apply the HSV

indicator, control the L298N driver, and finally translate

the potentiometer connected to the steering into digital

data which is then sent serially to the Arduino nano. The

Arduino Nano functions to translate digital data

received from the Raspberry Pi 4 and align the program

to operate the BTS7960 driver so that the self-driving

car can move forward following the track.

80 cm

30 cm

65 cm

51°

Figure 2. Self-Driving Car Camera Placement

In designing a self-driving car prototype using a power

supply in the form of a 12V battery with a capacity of

12AH as a Raspberry Pi voltage source. The Raspberry

Pi camera v2 is mounted on the front of the car using a

handmade acrylic base. The Raspberry Pi camera

holder is placed 510 to the floor with a height of 65 cm

above the floor. This installation is intended so that the

Raspberry Pi camera can capture the track pattern lines

in 1 frame. Pictures of camera placement can be seen in

Figure 2.

2.2 Path Detection Algorithm With HSV Method

In this study, the HSV filter was used to detect

differences in the color of the lane markings and the

color of the oad. This HSV is an indicator to determine
the color of the outline of the track used. In this

research, the level of accuracy and ability to recognize

lanes using the HSV color filter mechanism is very

suitable when implemented in this self-driving car. The

composition of HSV includes Hue, Saturation, and

Value. Where Hue is a collection of primary colors such

as red, yellow, green, and others. As for saturation, it is

purity or it can be called the strength of the color.

Whereas this value is the brightness level with a value

of 0% - 100% if the value is getting smaller then the

color will look darker and vice versa. HSV values can
also be obtained from the conversion of RGB values. A

clear picture of HSV can be seen in Figure 3.

Figure 3. HSV Composition

RGB to HSV conversion can be obtained using

equations (1), (2), and (3).

ℎ = 𝑡𝑎𝑛 [
3(𝑔 − 𝑏)

(𝑟 − 𝑔)+(𝑟 −𝑏)
] (1)

𝑠 = 1 − [
𝑚𝑖𝑛(𝑟,𝑔,𝑏)

𝑣
] (2)

𝑣 =
𝑟+𝑔+𝑏

3
 (3)

With this normalized value, the equation for converting
the value from RGB to HSV value is equation (4), (5),

and (6).

𝑣 = 𝑚𝑎𝑥 (𝑅, 𝐺, 𝐵) (4)

𝑆 = {
0
𝑣

 −
 min(𝑅,𝐺,𝐵)

𝑣

𝑗𝑖𝑘𝑎 𝑣 > 0
𝑗𝑖𝑘𝑎 𝑣 = 0

 (5)

𝐻 =

{

 0

𝑗𝑖𝑘𝑎 𝑠 = 0

60 x (g −b)

𝑆 x V
 𝑗𝑖𝑘𝑎 𝑣 = 𝑅

60 x [2 +
(b −r)

𝑆 x V
]
𝑗𝑖𝑘𝑎 𝑣 = 𝐺

60 x [4 +
(r −g)

𝑆 x V
]
𝑗𝑖𝑘𝑎 𝑣 = 𝐵

 (6)

To use the HSV filter, we have to calibrate each road

 Kelvin Kristian Roestamadji, Florentinus Budi Setiawan, Leonardus Heru Pratomo, Slamet Riyadi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4579

Creative Commons Attribution 4.0 International License (CC BY 4.0)

432

condition and different lighting conditions, so we use

the threshold function to set the HSV value which will

be implemented in self-driving cars.

2.3. Pre-Processing HSV color filters

The use of pre-processing on the HSV color filter serves

to perfect the marking lines that are read by this pre-

processing using morphology. This morphology is an

image or image processing technique using the basic

principles of mathematical morphology and three basic

operations, namely AND, OR, and NOT. The benefit of
using the morphology process is to remove noise in the

detected image. The following is an example of binary

logic operations in the morphology process in Figure 4.

Not

A Not(A)

AND

B (A)AND(B)A

OR

B (A)OR(B)A

Figure 4. Morphological Logic

Then we use the Dilation process in the morphology

technique which functions to add a pixel in the scope of

the image that is read by the image, by placing one by

one the center of the arrangement of elements for each

background pixel. Dilation notation can be written in

the equation (7).

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ⊕ 𝑆𝐸 (7)

For the original pixel that has the same value as the

element arrangement, the neighborhood pixel value will

change to the element arrangement or can be said to

increase the pixel size so that the image being read

becomes thick and can repair broken images when read,

especially at the edges of objects. An example can be

seen in Figure 5.

+ =

Figure 5. Dilation Process

Then the closing process in the morphology technique

is to carry out erosion and dilation operations using the

arrangement of elements in equation (8)

𝑓(𝑥, 𝑦) ∘ 𝑆𝐸 = (𝑓(𝑥, 𝑦) ⊕ 𝑆𝐸) ⊝ 𝑆𝐸 (8)

This Closing method is used to repair pixels that retain

their original shape by closing the perforated pixel

holes. An example can be seen in Figure 6.

Figure 6. Closing Process

2.4. Gaussian Blur

The Gaussian filter function is to remove noise when

detecting track pattern lines by changing the image to

appear black pixels according to the amount of noise

present. The blurred image obtained by convoluting the

Gaussian kernel is shown in equation (9) and (10).

𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) ∗ 𝐻(𝑥, 𝑦) (9)

(𝑥, 𝑦) =
1

2𝜋𝜎²
𝑒
𝑋2+𝑌²

2𝛿² (10)

In equations (9) and (10), G(x,y) represents the

smoothed image, F(x,y) represents the input image, and

H(x,y) represents the selected Gaussian filter.

2.5. Raspberry Pi & Arduino Nano Serial

Communication

Serial communication is a method used to transfer data

via a data cable or pin that connects two different or the

same devices. In this study, Serial Communication was

used between the Arduino microcontroller and the

Raspberry Pi mini computer. Microcontroller is a

device that is used to control several instruments at

once, such as sensors, motors, servos, and so on.

Meanwhile, a microcomputer is a device that works in
the same way as a normal computer, except that it is

smaller in size. This serial communication cannot be

separated from the use of TX and RX pins. TX stands

for Transmitter (sender), while RX stands for Receiver

(receiver). In this self-driving car, the division of tasks

in serial communication used raspberry pi as the sender

and Arduino as a receiver. The Raspberry Pi's task as a

sender is to send data obtained from the potentiometer

attached to the steering which has been translated into

digital data which is then sent to Arduino so that

Arduino will process the digital data to drive the
bts7960 driver which will move in harmony with the

steering mounted on the connected device. different.

Sending from Raspberry Pi to Arduino uses serial

communication. So what you have to do is connect the

TX pin on the raspberry pi to the RX pin on the

Arduino, because the raspberry pi is the data sender and

the Arduino is the receiver. Serial communication is

very good to use because there is no delay in sending or

receiving data. After all, it is directly connected serially

and operates in real-time. Illustrate the serial connection

between Raspberry and Arduino, it can be seen in

Figure 7.

 Kelvin Kristian Roestamadji, Florentinus Budi Setiawan, Leonardus Heru Pratomo, Slamet Riyadi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4579

Creative Commons Attribution 4.0 International License (CC BY 4.0)

433

Raspberry

TX

RX

GND

Arduino

TX

RX

GND

Figure 7. Serial Communication

2.6. Ackermann Model Self-Driving Car

The Ackermann system model on self-driving cars is

designed so that no slip occurs between the ground and

the wheels. Using the Ackermann method is very

suitable to be implemented in this self-driving car

because this car uses a movement system like

conventional cars in general. The Ackermann model can

be seen in Figure 8.

Pusat belok

R

Figure 8. Ackermann Model

The model allows specifying the radius of rotation (R)

From the steering angle (ᵟ) and rotation the angular

velocity value must be adopted by each traction wheel

(𝜔𝑟_𝑅 , 𝜔𝑟_𝐿). The linear speed of each driving wheel is

expressed as the function of vehicle speed and radius of

the curve in equations (10) and (11).

𝑉𝐿 = 𝜔𝑉 (𝑅 +
𝑑𝑤

2
) (10)

𝑉𝑅 = 𝜔𝑣 (𝑅 −
𝑑𝑤

2
) (11)

The radius of the curve depends on the wheelbase and

rudder angle in equation (12).

(𝑹 −
𝑳𝒘

𝒕𝒂𝒏𝜹
) (12)

In equation (12) is the substitution of equations (10) and

(11) we get the angular velocity at each driving wheel

in equations (13) and (14).

𝜔𝑟_𝐿 =
𝐿𝑤+𝑑𝑤/2.𝑡𝑎𝑛𝛿

𝐿𝑤
𝜔𝑣 (13)

𝜔𝑟_𝑅 =
𝐿𝑤− 𝑑𝑤/2.𝑡𝑎𝑛𝛿

𝐿𝑤
𝜔𝑣 (14)

2.7. Self-Driving Car Work Process

The initial step in the active camera flowchart is in the

form of a video that records in real-time. Then the

camera detects the track pattern. If the pattern is not

detected, the program will not run and will return to the

initial process. If a pattern is detected, then the process

of applying the HSV indicator works by processing or

filtering the required color then a Gaussian filter to

smooth or remove noise in the path edge detection

process so that the results are better. Then the next

process when it has been successfully filtered is adding

a supporting program that functions to keep the car's

position in the middle of the track. The results of the
filtering and supporting programs will be connected

directly to the driving motor which will move according

to the path that has been processed by the camera. To

see the flowchart of the self-driving car work process

can be seen in Figure 9.

Start

Camera Active

Track Pattern
Detection

HSV Filtering
Algorithm

Gaussian Filter

Data
Processing

and
Stabilizer
Support

Programs

Gaussian Filter

Finish
A

A

No

Yes

Figure 9. Self-Driving Cars Work Flowchart

3. Results and Discussions

The test results of this tool were carried out in a closed

room using a Raspberry Pi 4B mini computer with a

Raspberry v2 camera sensor as input that functions to

read the path and for steering using a DC motor and this

self-driving car moves with the rear wheels. The results

of the self-driving car prototype can be seen in Figure

10.

Figure 10. Self-Driving Car Prototype

 Kelvin Kristian Roestamadji, Florentinus Budi Setiawan, Leonardus Heru Pratomo, Slamet Riyadi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4579

Creative Commons Attribution 4.0 International License (CC BY 4.0)

434

This self-driving car was tested on straight roads and

turning roads as shown in the Figure 11.

Figure 11. Self-Driving Car Trial Track

3.1. HSV Filter Trial Results

Testing this filter must first calibrate min to max and

max to min. In this experiment, the min-to-max
calibration is given a value of 0, and the max-to-min

calibration test is given a max value of 179 for H, 255

for S, and V. By shifting the max or min values until a

change occurs in the pattern object. Table 1 shows the

H (hue) threshold test. Table 2 shows the S (saturation)

threshold test. Table 3 shows the V (value) threshold

test. The discussion is a basic explanation, of the

relationships and generalizations shown by the results.

The description answers the research question. If there

are doubtful results then present them objectively.

Table 1. Threshold Hue Test

Calibration H

min

Hue

max

White

Color

Black

Color

Min to

Max

0 135 Detected Not

Detected

Max to

Min

137 179 Not

Detected

Detected

Table 2. Threshold Saturation Test

Calibration S

min

S

max

White

Color

Black

Color

Min to

Max

0 70 Detected Not

Detected

Max to

Min

72 255 Not

Detected

Detected

Table 3. Threshold Value Test

Calibration V

min

V

max

White

Color

Black

Color

Min to

Max

0 53 Detected Not

Detected

Max to

Min

60 255 Not

Detected

Detected

Tables 1 through 3 use the thresholding method where

this process requires setting the appropriate value so

that an accurate value is found. Then a trial is carried

out by changing the value of min to max and max to

min. The method is required to determine the black or

white color of the path.

3.2. Self-Driving Car Functionality Testing

Functional testing is carried out to determine the effect

of different light intensities. In this test, two conditions

were tried, namely indoors and outdoors. The indoor

test used TL lamp lighting while the outdoor test

directly used lighting from the sunlight without any

obstacles.

Table 4. Functionality Testing

Threshold

Saturation

Threshold

Value

Indoor

Condition

Outdoor

Condition

0-20 200-255 Undetected

Path

Undetected

Path

10-50 130-255 Detected

Path

Noise

Detected

70-255 53-106 Detected

Path

Detected Path

Table 4 shows that setting a threshold value under

different location conditions can affect the perception

of the color filter process being performed. But if the

threshold saturation value is 70-255 and the threshold

value is 53-106 then the system can adapt to indoor and

outdoor lighting conditions.

In this study, the Hue value was Hmin = 135 and Hmax
= 179, the saturation value was Smin = 70 and Smax =

255, and the Value value was Vmin = 53 and Vmax =

106 so that the tool can detect the specified path. In this

trial process using the thresholding method to

distinguish between black and white. The determination

of the HSV value can be seen in Figure 12.

 (a) (b) (c)

Figure 12. Self-Driving Car Trial Path

The output is the final result window which has gone

through a thresholding process and a gaussian filter

with a closing technique that produces good color

filtering without noise. After going through the process

of determining the HSV value, the final result will be

seen in Figure 13.

Figure 13. Closing Process Result

 Kelvin Kristian Roestamadji, Florentinus Budi Setiawan, Leonardus Heru Pratomo, Slamet Riyadi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4579

Creative Commons Attribution 4.0 International License (CC BY 4.0)

435

At this stage, a self-driving car trial was carried out

using the HSV algorithm on the trajectory. In this

process, the car can run automatically following the

track in real time. The movement of the car is

determined from the tracking process using the (x, y)

axis which utilizes the blue center point to set the

conditions for the car's movement. If the angle of the

red line is greater to the right then the car will turn right.

If the angle of the red line is greater to the left then the

car will turn left. If the angles are the same, the car will
go straight. The tracking results and experiments can be

seen in Figure 14 and Figure 15.

Figure 14. Self-Driving Car Moving Test

Figure 15. Overall Test

The test results above can run according to the

algorithm whether operated in an open or closed room.

The algorithm that has been made in this test is that this

self-driving car can detect the path correctly and for the

motion mechanism to be properly connected between

the microcontroller and the Raspberry Pi 4 mini-

computer.

4. Conclusion

The path detection algorithm with the HSV color filter

method can work well when detecting a path when a

self-driving car moves along a straight path or a turning

lane. To test the road movement of the self driving car,

it is carried out in a closed room with sufficient lighting.

The results of reading the path and movement of the self

driving car will be immediately displayed on the

monitor screen of this mini computer. This algorithm

has been developed and researched and has a reading

and movement accuracy rate of 90% when compared to

an automated guided vehicle that uses an infrared

sensor. The self driving car is more reliable because the

self driving car is not disturbed by light. And when

compared to the CNN method, the method used by

researchers is more effective and runs immediately in

real time and no path samples are required for its

operation. In the future, this research will be used for

industrial needs or automotive needs which will then be

applied in Indonesia

Acknowledgment

Thank you to the Soegijapranata Catholic University for

providing a place to conduct this research.

References

[1] M. Daily, H. R. L. Laboratories, and S. Medasani, “Self-

Driving Cars.”

[2] T. A. S. Nielsen and S. Haustein, “On sceptics and enthusiasts:

What are the expectations towards self-driving cars?,” Transp.

Policy, vol. 66, no. April 2017, pp. 49–55, 2018, doi:

10.1016/j.tranpol.2018.03.004.

[3] S. Royo and M. Ballesta-Garcia, “An overview of lidar

imaging systems for autonomous vehicles,” Appl. Sci., vol. 9,

no. 19, 2019, doi: 10.3390/app9194093.

[4] Y. Zein, M. Darwiche, and O. Mokhiamar, “GPS tracking

system for autonomous vehicles,” Alexandria Eng. J., vol. 57,

no. 4, pp. 3127–3137, 2018, doi: 10.1016/j.aej.2017.12.002.

[5] F. B. Setiawan, O. J. Aldo Wijaya, L. H. Pratomo, and S.

Riyadi, “Sistem Navigasi Automated Guided Vehicle Berbasis

Computer Vision dan Implementasi pada Raspberry Pi,” J.

Rekayasa Elektr., vol. 17, no. 1, pp. 7–14, 2021, doi:

10.17529/jre.v17i1.18087.

[6] Florentinus Budi Setiawan, F. A. Kurnianingsih, Slamet

Riyadi, and Leonardus Heru Pratomo, “Pattern Recognition

untuk Deteksi Posisi pada AGV Berbasis Raspberry Pi,” J.

Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 1, pp. 49–56,

2021, doi: 10.22146/jnteti.v10i1.738.

[7] J. Naranjo-Torres, M. Mora, R. Hernández-García, R. J.

Barrientos, C. Fredes, and A. Valenzuela, “A review of

convolutional neural network applied to fruit image

processing,” Appl. Sci., vol. 10, no. 10, 2020, doi:

10.3390/app10103443.

[8] S. O. Ali Chishti, S. Riaz, M. Bilal Zaib, and M. Nauman,

“Self-Driving Cars Using CNN and Q-Learning,” Proc. 21st

Int. Multi Top. Conf. INMIC 2018, 2018, doi:

10.1109/INMIC.2018.8595684.

[9] T. D. Do, M. T. Duong, Q. V. Dang, and M. H. Le, “Real-Time

Self-Driving Car Navigation Using Deep Neural Network,”

Proc. 2018 4th Int. Conf. Green Technol. Sustain. Dev. GTSD

2018, pp. 7–12, 2018, doi: 10.1109/GTSD.2018.8595590.

[10] C. Goyal, P. Lokeshwara Reddy, and P. Amalyal,

“WITHDRAWN: Design & implementation of real time

autonomous car by using image processing & IoT,” Mater.

Today Proc., no. xxxx, 2020, doi:

10.1016/j.matpr.2020.08.060.

[11] B. C. Z. Blaga, M. A. Deac, R. W. Y. Al-Doori, M. Negru, and

R. Danescu, “Miniature autonomous vehicle development on

raspberry Pi,” Proc. - 2018 IEEE 14th Int. Conf. Intell.

Comput. Commun. Process. ICCP 2018, pp. 229–236, 2018,

doi: 10.1109/ICCP.2018.8516589.

[12] P. Zhang, T. Zhuo, W. Huang, K. Chen, and M. Kankanhalli,

“Online object tracking based on CNN with spatial-temporal

saliency guided sampling,” Neurocomputing, vol. 257, no.

2017, pp. 115–127, 2017, doi: 10.1016/j.neucom.2016.10.073.

[13] A. Merino, L. Puigví, L. Boldú, S. Alférez, and J. Rodellar,

“Optimizing morphology through blood cell image analysis,”

Int. J. Lab. Hematol., vol. 40, no. March, pp. 54–61, 2018, doi:

 Kelvin Kristian Roestamadji, Florentinus Budi Setiawan, Leonardus Heru Pratomo, Slamet Riyadi

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 3 (2023)

DOI: https://doi.org/10.29207/resti.v7i3.4579

Creative Commons Attribution 4.0 International License (CC BY 4.0)

436

10.1111/ijlh.12832.

[14] J. R. Cortes Leon, R. F. Martínez-Gonzalez, A. M. Medina, and

L. A. Peralta-Pelaez, “Raspberry PI and Arduino UNO

Working Together as a Basic Meteorological Station,” Int. J.

Comput. Sci. Inf. Technol., vol. 9, no. 5, pp. 97–104, 2017, doi:

10.5121/ijcsit.2017.9508.

[15] A. Aqthobilrobbany, A. N. Handayani, D. Lestari, Muladi, R.

A. Asmara, and O. Fukuda, “HSV Based Robot Boat

Navigation System,” CENIM 2020 - Proceeding Int. Conf.

Comput. Eng. Network, Intell. Multimed. 2020, pp. 269–273,

2020, doi: 10.1109/CENIM51130.2020.9297915.

[16] Z. Sun, “Vision Based Lane Detection for Self-Driving Car,”

Proc. 2020 IEEE Int. Conf. Adv. Electr. Eng. Comput. Appl.

AEECA 2020, pp. 635–638, 2020, doi:

10.1109/AEECA49918.2020.9213624.

