
 Accepted: 01-10-2022 | Received in revised: 25-01-2023 | Published: 03-02-2023

66

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI
(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 7 No. 1 (2023) 66 - 71 ISSN Media Electronic: 2580-0760

IoT Microcontroller Application Prototype as Data Transceiver from

Network to USB Device

Rieke Adriati Wijayanti1, M. Syirajuddin S2, Abdul Rasyid3, Ahmad Wilda Y4
1,2,3,4 Electrical Engineering, Polytechnic State of Malang

1riekeaw@polinema.ac.id, 2syirajuddin@polinema.ac.id, 3abdul.rasyid@polinema.ac.id, 4ahmadwildan@polinema.ac.id

Abstract

Telecommunications technology in the early 2000s until now has experienced a rapid increase. Starting with complex devices
to microcomputer devices that are able to connect to the network. With the development of networking technology, it will leave
behind non-network-support devices that can still be used. The existence of previous research on "The interface between the
IoT microcontroller (ESP32) and the Max3421e USB Host" can be taken advantage of developing a device that can facilitate
a non-support-network device into a support-network electronic device. So that non-support-network electronic devices do not

become electronic waste and can also become a device that can be used in the present. In this study, a prototype of a data
receiver from WiFi was designed, then the data that has been received is reorganized into rows of data that are ready to be
sent to non-support-network electronic devices. This developed tool uses an ESP32 IoT microcontroller connected to the USB
Host max3421e which has been packaged in the form of a USB host shield module using SPI protocol communication. The
result obtained is that data from the network can be sent correctly to the USB Host max3421e via the ESP32 microcontroller.

Keywords: interface, microcontroller, USB Host, USB device, network

1. Introduction

Telecommunications technology in the early 2000s

until now has developed very quickly. Starting with

complex devices to microcomputer devices capable of

being connected to the network. This development is

supported by the development of silicon manufacturing

technology as the basic material for computer

components and technology in the internet world or

better known as the Internet of Things (IoT) [1], [2].

Currently IoT is widely applied to aspects of industry,

agriculture, animal husbandry, fisheries and many other

aspects. With the development of networking

technology, non-network-supported electronic devices

will be left behind even though these devices can still

be used [3], [4].

Departing from these problems, a solution emerged that

can overcome communication problems between non-

network-supported electronic equipment via Wifi. With

this communication, users who will access via a

computer or smartphone are not bothered by connecting

using a USB cable.

The existing solution begins with the creation of an IoT

microcontroller interface prototype (ESP32) with a

USB Host max3421e by utilizing the SPI protocol that

has been implemented. It was found that the IoT

microcontroller (ESP32) and USB Host max3421e can

communicate well and are able to recognize USB

devices completely as well as USB devices connected

to computers [5]. By utilizing the existing WiFi

facilities on the IoT microcontroller (ESP32) [6], it is

hoped that the prototype will not only be able to

recognize a connected USB device, but also function as

a data processor and sender from a computer or

smartphone.

The development carried out from research [5] is to

build an interface between the ESP32 microcontroller

and the OLED Display to display the status of the

equipment [7] and setting the ESP32 microcontroller

data reception as a Wifi Station [8]. The setting in

question is connecting to the network through the

existing Access Point (AP) so that the ESP32

microcontroller can receive data from the Wifi network.

This study utilizes a microcontroller unit that can

receive data from WiFi where the received data is
rearranged into a data line that is ready to be sent to non-

support-network electronic devices via a USB

connection.

mailto:1riekeaw@polinema.ac.id
mailto:2syirajuddin@polinema.ac.id
mailto:3abdul.rasyid@polinema.ac.id
mailto:4ahmadwildan@polinema.ac.id

 Rieke Adriati W., M. Syirajuddin S., Abdul Rasyid, Ahmad Wilda Y.

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4555

Creative Commons Attribution 4.0 International License (CC BY 4.0)

67

The data receiver from WiFi uses an IoT ESP32

microcontroller which is connected to a USB Host

maxim integrated max3421e which has been packaged

in the form of a USB Host shield module using the SPI

protocol communication [9] [10]. With this USB Host

shield, the received SPI protocol data will be converted

into a USB protocol.

It is hoped that with this development, data

communication between non-network-supported USB

electronic devices and computers or smartphones can be

done via Wifi.

2. Research Methods

The research that will be carried out is included in the

type of science and technology development research,

namely creating prototypes of tools that can

communicate data between non-network-supported

electronic equipment and data sending equipment such

as computers or smartphones via WiFi.

2.1 System Block Diagram

The block diagram of the system carried out is shown

in Figure 1:

Figure 1. System Block Diagram

Figure 1 describes the block diagram of the system as a

whole including the research that has been done [5]

(blue box). This ongoing research is only limited to data

communication from a computer or smartphone to a

USB Host max3421e (green box). The system as a

whole consists of a USB Device, USB Host max3421e,

ESP32 Microcontroller, OLED Display and a computer

or smartphone.

A computer or smartphone in order to communicate

with non-network-supported electronic equipment must

be connected using a USB cable and like a printer, the

user also needs to perform the printer driver installation

process first. If there are many devices that you want to

use, there are also many drivers that need to be installed.

This device can minimize the installation process of

various kinds of drivers, namely by utilizing WiFi. The

device you want to use is connected to the interface

between the USB Host and the ESP32 microcontroller

[11] which is equipped with a WiFi module via SPI.

Then, ESP32 will display the status of the equipment in

the form of an IP Address obtained by the USB Device

to the OLED Display via the I2C protocol [12].

Then the PC or smartphone that wants to communicate

with the non-network-supported equipment can access

it via WiFi, so users are not limited to using a USB

cable.

2.2 System Configuration

Based on the block diagram of the system above, the

system that has been developed in this study is shown

in Figure 2:

Figure 2. System Configuration

There are 3 parts of software development, namely:

ESP32 microcontroller interface with USB Host

max3421e already done in previous research, ESP32

microcontroller interface with OLED Display, and

ESP32 microcontroller data reception settings as Wifi

station. The setup of connecting to the network through

an existing Access Point needs to be done so that the

ESP32 microcontroller can receive data from the Wifi

network.

2.3. Interface between microcontroller ESP32 with

OLED Display

The development of the interface between the ESP32

microcontroller and the OLED Display is carried out so

that the status of the equipment in the form of the IP

Address obtained by the USB Device can be displayed.

The ESP32 microcontroller sends a binary raster initial

display notification after the ESP32 microcontroller

boots up. The results obtained during this process are

shown in Figure 3.

The notification displayed indicates the process of

connecting the USB Device to the USB Host max3421e

and the display of the ESP32 microcontroller when it

has not obtained an IP address.

2.4 Microcontroller ESP32 as a Wifi Station Setting

The first time this system was run, the ESP32

microcontroller did not store the SSID and password

data from the access point, so the ESP32

microcontroller did not get an IP address. To obtain the

IP address of the access point, an ESP32

microcontroller setup is required to become an access

 Rieke Adriati W., M. Syirajuddin S., Abdul Rasyid, Ahmad Wilda Y.

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4555

Creative Commons Attribution 4.0 International License (CC BY 4.0)

68

point via a computer or smartphone [13][14]. The

settings made are: The computer or smartphone is

connected to an ESP32 access point named "USBWifi",

open the internet browser, and enter the address

//192.168.4.1, after that a display will appear as shown

in Figure 4, ffter the "Connect" button in F is active, the

ESP32 microcontroller will store the SSID and

password in the ESP internal flash-rom area, then the

ESP32 will restart, At the time of booting, the ESP32

microcontroller will use the SSID and password that
have been stored to get the connection from the existing

access point.

(a)

(b)

Figure 3. (a) Binary raster initial display notification after ESP32

microcontroller boots; (b) OLED Display display when ESP32

microcontroller boots

If the IP address have been obtained from the access

point, the ESP32 microcontroller will send the IP

address on the OLED Display. In this case, when the IP

address has been obtained, it means that the USB

Device has been installed on the system as shown in

Figure 5.

This is evidenced by the display on the serial monitor

of the computer connected to the system, displaying the

same IP address as obtained, namely 192.168.1.100 as

shown in Figure 6.

Figure 4. Initial view for connecting to the network

Figure 5. OLED Display display when you have obtained an IP

address and the USB Device is connected

Figure 6. Serial display of the monitor from ESP32 to check the

obtained IP address

3. Results and Discussions

From the configuration of the system that has been built

on and the software development that has been carried

out, it is found that between a computer or a smartphone

can send data through the Wifi network. To find out the

success of the data sent, it is necessary to test the

 Rieke Adriati W., M. Syirajuddin S., Abdul Rasyid, Ahmad Wilda Y.

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4555

Creative Commons Attribution 4.0 International License (CC BY 4.0)

69

system. The testing carried out on this system consists

of three processes, namely:

3.1 Authentication Data Reception from Wifi Network

to ESP32 Microcontroller

The process carried out in this testing stage is to send

data from Wifi to the ESP32 Microcontroller as shown

in Figure 7.

Figure 7. Data transmission from Wifi to ESP32 Microcontroller

In the picture above, there is computer A that has been

equipped with PuTTY software (terminal emulator) and

is connected to the access point wirelessly. In Figure 8,

the following is shown the display of computer A that

sends data, namely "halloo!" with the number of

characters sent is seven characters, then translated into

ASCII code to "68 61 6c 6c 6f 6f 21".

Figure 8. View from computer A (data sender)

On the other hand, there is a computer B connected to

the ESP32 serial monitor receiving the same result

which is "68 61 6C 6C 6F 6F 21" with a character length

of 9 characters. There is an addition of two characters

from the initial data because there is an addition of the

character "0D 0A" [15] as shown in Figure 9.

Figure 9. Serial display of the monitor from ESP32 on computer B

(data receiver)

The two additional characters "0D 0A" are ASCII codes

from cr (carriage return) and lf (line feed) in order. Cr

and lf data are generated from PuTTY software when

pressing the "enter" button on the computer keyboard

which marks the data command being sent. In actually,

for example data printing, there is no character "0D 0A"

as the command sends the data. But the data receiver

(printer) has its own standards in processing data. By

ignoring the 0D and 0A characters, it can be concluded

that the transmission of data from computer A to the

ESP32 Microcontroller was successfully carried out.

3.2 Authentication of Data Reception from ESP32

Microcontroller to Max3421e Host USB

The different between the first authentication is the

usage of USB Host max3421e that have been connected

to microcontroller ESP32 using the SPI protocol. The

process carried out in this testing stage is to send data

from Wifi to the USB Host max3421e through the

ESP32 Microcontroller. Here in Figure 10, there is

computer A that has been equipped with PuTTY

software (terminal emulator) and is connected to the

access point wirelessly.

Figure 10. Sending data from Wifi to USB Host max3421e via

ESP32 Microcontroller

In Figure 11, the following is shown the display of

computer A that sends data, namely "hello world!!!!!"

with the number of characters sent is 16 characters, then

translated into ASCII code to "68 65 6C 6C 6F 20 77

6F 72 6C 64 21 21 21 21 21".

Figure 11. View from computer A (data sender)

On the other hand, there is a computer B connected to
the ESP32 serial monitor receiving the same result

which is "68 65 6C 6C 6F 20 77 6F 72 6C 64 21 21 21

21" with a character length of 18 characters. There is an

addition of two characters from the initial data due to

 Rieke Adriati W., M. Syirajuddin S., Abdul Rasyid, Ahmad Wilda Y.

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4555

Creative Commons Attribution 4.0 International License (CC BY 4.0)

70

the addition of the character "0D 0A" as shown in

Figure 12.

Figure 12. Serial display of monitors from ESP32 and USB Host

max3421e on computer B (data receiver)

In Figure 12, there are 2 rows of data barrage displayed.

The first row of data (boxed orange) shows the data

received in the ESP32 microcontroller and the second

row (boxed in green) shows the data received in the

USB Host max3421e. It can be seen on computer B that

the rows of data received by the two components are the

same, both in terms of the number of characters and the

order of the characters have corresponded to the data

sent from computer A.

3.3 Data Buffer Testing on the ESP32 Microcontroller

The data buffer for this study has been set to 256, which

means that in 1 data transmission it is limited to 256 bits

(starting from index 0 to index 255), according to the

program code as follows:

static void do_retransmit(const int

sock)

{

 uint8_t len;

 uint8_t rx_buffer[256];

 ESP_LOGI(TAG, "start fork data");

 …

}

Testing this buffer is carried out to see whether the data

sent from the computer is correctly sized according to

the buffer that has set the value. The process carried out

is the delivery of the character 'a' in the amount of 992

characters, the same as the process of testing the second

point, as shown in Figure 13.

On the other hand in Figure 14, there is computer B

connected to the ESP32 serial monitor receiving data as

much as 4 times with each delivery limited according to

the number of buffers that have been set before, which

is 256 characters. So that for data delivery of 992
characters, first data delivery of 256 characters, second

data delivery of 256 characters, third data delivery of

256 characters and last data delivery of 224 characters

plus "0D 0A" characters at the end of the data.

Figure 13. Display from computer A (data sender) with 992

characters

In Figure 14 there are 2 rows of data barrage displayed.

The first row of data shows the data received in the

ESP32 microcontroller and the second row shows the

data received in the USB Host max3421e as shown

below:

Figure 14. Serial display of the monitor from esp32 and USB host

max3421e on computer B (data receiver) with the amount of data

sent 992 characters

4. Conclusion

This research is a development of previous research that

discussed the interface between the ESP32

microcontroller and the MAX3421e USB Host. The
development carried out is the interface of the ESP32

microcontroller with the OLED Display, the data

reception settings of the ESP32 microcontroller as a

Wifi station. From the results of this development, it

was found that sending data from a computer or

smartphone to a USB device can be done properly and

correctly in terms of the order of data and the amount of

data. In addition, the data and status of the device

connected to the ESP32 microcontroller can be

displayed properly through the OLED Display. For

further research, a data analysis process will be carried

out in the form of processing data from the delivery
results from the computer to the USB host max3421e

based on predetermined defined class codes.

Mikrokontroller ESP32

USB Host Max3421e

 Rieke Adriati W., M. Syirajuddin S., Abdul Rasyid, Ahmad Wilda Y.

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4555

Creative Commons Attribution 4.0 International License (CC BY 4.0)

71

Reference

[1] G. Hergika, Siswanto, and S. S, “Perancangan Internet Of

Things (IoT) Sebagai Kontrol Infrastuktur Dan Peralatan Toll

Pada Pt. Astra Infratoll Road,” PROSISKO J. Pengemb. Ris.

Dan Obs. Sist. Komput., vol. 8, no. 2, pp. 86–98, Sep. 2021,

doi: 10.30656/prosisko.v8i2.3862.

[2] M. Babiuch, P. Foltynek, and P. Smutny, “Using the ESP32

Microcontroller for Data Processing,” in 2019 20th

International Carpathian Control Conference (ICCC),

Krakow-Wieliczka, Poland, May 2019, pp. 1–6. doi:

10.1109/CarpathianCC.2019.8765944.

[3] T. Darmanto and H. Krisma, “Implementasi Teknologi IOT

Untuk Pengontrolan Peralatan Elektronik Rumah Tangga

Berbasis Android,” J. Tek. Inform. Unika St. Thomas, vol. 04,

pp. 1–12, Jul. 2019, doi: https://doi.org/10.17605/jti.v4i1.505.

[4] A. Wagyana, “Prototipe Modul Praktik untuk Pengembangan

Aplikasi Internet of Things (IoT),” Setrum Sist. Kendali-

Tenaga-Elektron.-Telekomun.-Komput., vol. 8, no. 2, p. 238,

Dec. 2019, doi: 10.36055/setrum.v8i2.6561.

[5] Rieke Adriati Wijayanti, Ahmad Wilda Yulianto, Dianthy

Marya, Muhammad Syirajuddin S., and Nurul Hidayati,

“Antarmuka Mikrokontroller IoT (ESP32) Dengan USB Host

max3421e,” J. Appl. Smart Electr. Netw. Syst., vol. 1, no. 02,

pp. 70–75, Dec. 2020, doi: 10.52158/jasens.v1i02.141.

[6] Politeknik Negeri Bali et al., “Perbandingan Kinerja Arduino

Uno dan ESP32 Terhadap Pengukuran Arus dan Tegangan,” J.

Otomasi Kontrol Dan Instrumentasi, vol. 13, no. 1, pp. 35–47,

2021, doi: 10.5614/joki.2021.13.1.4.

[7] A. Y. Putra, H. Srihendayana, and N. Tjahjamooniarsih,

“Monitoring Kamera Pengintai Jarah Jauh Terintegrasi dengan

Google Drive Berbasis Raspberry Pi via Internet,” J. Tek.

Elektro Univ. Tanjungpura, vol. 2, no. 1.

[8] P. A. Nugroho, “Kontrol Lampu Gedung Melalui WIFI

ESP8266 Dengan Web Server Lokal,” JEIS J. Elektro Dan

Inform. Swadharma, vol. 1, no. 2, pp. 1–11, 2021.

[9] C. Wootton, “Serial Peripheral Interface (SPI),” in Samsung

ARTIK Reference, Berkeley, CA: Apress, 2016, pp. 335–349.

doi: 10.1007/978-1-4842-2322-2_21.

[10] M. Iqbal, T. W. Widodo, and B. A. A. Sumbodo, “Sistem

Pengendali Pengambilan Gambar Pada Kamera DSLR Melalui

Protokol PTP,” IJEIS, vol. 6, no. 2, pp. 117–128, 2016.

[11] N. V. A. Royani, M. J. Afroni, and B. D. Sulo, “E-Inventory

pada Laboratorium Teknik Elektro di Universitas Islam

Malang Menggunakan Barcode Scanner,” Inform. Electr.

Electron. Eng. Infotron, vol. 1, no. 2, p. 71, Jan. 2022, doi:

10.33474/infotron.v1i2.14787.

[12] A. Jazmi, S. R. Akbar, and E. R. Widasari, “Implementasi

Multi – Channel Pada Wireless Sensor Network,” J. Pengemb.

Teknol. Inf. Dan Ilmu Komput. Vol 2 No 4 2018, 2017,

[Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-

ptiik/article/view/1243

[13] P. Macheso, S. Chisale, C. Daka, N. Dzupire, J. Mlatho, and D.

Mukanyirigira, “Design of Standalone Asynchronous ESP32

Web-Server for Temperature and Humidity Monitoring,” in

2021 7th International Conference on Advanced Computing

and Communication Systems (ICACCS), Coimbatore, India,

Mar. 2021, pp. 635–638. doi:

10.1109/ICACCS51430.2021.9441845.

[14] A. Kurniawan, Internet of Things Projects with ESP32: Build

exciting and powerful IoT projects using the all-new Espressif

ESP32. Packt Publishing Ltd, 2019.

[15] F. A. Sitorus, N. B. Nugroho, and U. F. S. S. Pane,

“Implementasi Algoritma Advanced Encryption Standard

(AES) 128 Bit Untuk Keamanan Data Transaksi Penjualan

Pada PT. MITSUBISHI ELECTRIC INDONESIA,” J. Cyber

Tech, vol. 4, no. 5, 2022.

