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Abstract  

In recent years, the computational approach has shifted from a statistical basis to deep neural network architectures which 
process the input without explicit knowledge that underlies the model. Many models with high accuracy have been proposed 
by training the datasets using high performance computing devices. However, only a few studies have examined its use on non-
high-performance computers. In fact, most users, who are mostly researchers in certain fields (medical, geography, economics, 

etc.) sometimes need computers with limited computational resources to process datasets, from notebooks, personal computers, 
to mobile processor-based devices. This study proposes a basic model with good accuracy and can run lightly on the average 
computer so that it remains lightweight when used as a basis for advanced deep neural networks models, e.g., U-Net, SegNet, 
PSPNet, DeepLab, etc. Using several well-known basic methods as a baseline (SqueezeNet, ShuffleNet, GoogleNet, 
MobileNetV2, and ResNet), a model combining SqueezeNet with ResNet, termed Res-SqueezeNet, was formed. Testing results 
show that the proposed method has accuracy and inference time of 84.59% and 8.46 second, respectively, which has an 
accuracy of 2% higher than the SqueezeNet (82.53%) and is close to the accuracy of other baseline methods (from 84.93% to 
0.88.01%) while still maintaining the inference speed (below nine second). In addition, residual part of the proposed method 

can be used to avoid vanishing gradient, hence, it can be implemented to solve more advanced problems which need a lot of 
layers, e.g., semantic segmentation, time-series prediction, etc. 

Keywords: deep learning, squeezenet, resnet, imagenet, convolutional layer

1. Introduction  

Deep learning has now been implemented in all fields 

and various tools, from super computers, laptops to 

embedded systems. The performance of a deep learning 
method is no longer only in terms of accuracy, but also 

computational speed and efficiency because it must be 

applicable to devices with limited computational 

resources. 

Due to the open contest, many new methods with good 

performance were proposed. For example, ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC), 

has provided 1 million training data with 1000 classes, 

termed ImageNet [1]. Therefore, researchers in the 

world can easily propose the best methods using these 

benchmark datasets.  

Pretrained models are widely available with certain 
programming language implementations, e.g., Python, 

MATLAB, etc. Figure 1 shows a comparison of 

pretrained models for various methods that are currently 

used with respect to accuracy, size, and speed [2]. 
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Figure1. Deep Learning Model Performance [2] 

The development of these models shows an increase in 

accuracy but requires large Graphic Processing Unit 

(GPU) resources. Convolution-based methods, e.g., 
AlexNet [3] and Visual Geometry Group (VGG) [4], 

require large resources, so they are not suitable for 

devices with limited computational resources to process 

large datasets. This study focuses on the left side of 

Figure 1, namely AlexNet [3], GoogLeNet [5], 
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SqueezeNet [6], [7], ShuffleNet [8], ResNet [9], [10] 

and MobileNet [11] because they are suitable for 

devices with limited computational resources. There 

have been many models for devices with limited 

computational resources, e.g., MobileNetV2 and 

modifications of ShuffleNet, namely ShuffleNetV2 

[12] and ShuffleNasNet [8], [12] to overcome 

MobileNetV2 which still requires large GPU resources.  

Many researchers have modified ShuffleNet to get a 

better performance model but still light and fast. 
Modifications to other methods, i.e., SqueezeNet, are 

still rarely studied. Therefore, this study tries to modify 

SqueezeNet to obtain an accuracy that is not much 

different from other baseline models. As shown in 

Figure 1, this method has the lowest accuracy rate, even 

though it does not require too many GPU resources. 

This research contributes to proposing a fast and 

accurate model from a simple basic model to be suitable 

for devices with limited computational resources, e.g., 

notebook, personal computer, etc. in a specific 

application from classification to object detection 
without the need of high-performance computing 

(supercomputers and computer clusters). There is a 

compromise between accuracy and speed. 

The paper is organized as follows. After discussing the 

basic methods that are most widely applied in the 

industry, i.e., transfer learning and data augmentation, 

the methods that become the baseline for this research 

are discussed, including the data that will be used for 

testing.  

The proposed model, Res-Squeeze Net, after being 

assembled, will be followed by a training process to 

produce a model that is ready to be tested. After the 
results and discussion section, the paper ends with a 

conclusion and future study.  

2. Research Methods 

Quantitative research is used in this study with several 

matrices to measure the performance of the proposed 

model. To see the performance, five baseline models 

were analyzed before creating a proposed model, 

including SqueezeNet, ShuffleNet, GoogLeNet, 

ResNet, and MobileNet. Each model has its strengths 

and weaknesses. These models are models developed 

by the researchers after the success of the early Deep 

Learning model, AlexNet. 

After the analysis stage, the process of making a 

proposed model is carried out by taking the advantages 

of one model and anticipating its weaknesses with 

methods from other models so that a better model is 

obtained. 

These baseline models have been trained using 

ImageNet datasets. Training results are available in 

many languages e.g., Python, MATLAB, etc.  

2.1 Transfer Learning  

ImageNet is a benchmark dataset consisting of one 

million images with 1000 labels/classes. The five 

baseline models have been trained using ImageNet on 

high performance computers (NVIDIA® Tesla® P100 

and a mini-batch size of 128), so users around the world 

can take advantage of the pretrained models. 

To maintain the previous training using ImageNet, 

when implemented in a new domain with different 

classes, the training results with ImageNet datasets can 
be preserved through a transfer learning mechanism 

[13]–[19]. We only trained with new datasets.  

Figure 2 shows the transfer learning framework. First, 

certain models, such as GoogLeNet, are trained with 

one million images that have 1000 classes. After the 

training process the model is known as the pretrained 

model. In practice, not all classes are needed to solve 

certain problems. Transfer learning works by replacing 

the final layer, usually the fully connected layer, with a 

new layer according to the number of new data classes, 

for this research there are nine classes. To avoid the 
training results with the previous data (ImageNet 

datasets) still being stored, it is necessary to freeze the 

initial layer of the model. The training then runs using 

new data with a new number of classes. This method 

can be done for other Deep Learning models. 
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Figure 2. Transfer Learning 

2.2 Data Augmentation 

Some datasets, e.g., medical data, have a limited 

amount of data. Unfortunately, deep learning requires 

large training data to produce good performance. 

Therefore, it is necessary to add training data by making 

slight changes, e.g., rotation, translation, brightness 

enhancement, and many more, to increase the amount 

of training data properly. 

For example, data with one rotation and translation for 

every image will doble the size of the training data. 

More additional modification i.e., brightness 

enhancement, flipping, and other methods also give 
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more size of the training data which is very suitable to 

be applied to data that is difficult to obtain, such as x-

rays, microscopic data, and others. However, for data 

that is easily obtained, it is better to use it directly 

because the results are certainly much better because 

too much augmentation invites over fitting [10]. 

Even though Deep Learning has a layer that have a 

function as filter, it's better to still pre-process the data. 

Of course, if the data being trained has very different 

characteristics from ImageNet, training from the 
beginning needs to be done, for example satellite 

images, photos of bacteria, cancer, and other medical 

data. 

2.3 Learning 

After replacing the fully connected layer with a layer 

that matches the training data as well as freezing the 

initial layers of the model, the training process is carried 

out. The hyper-parameters, i.e., training method, mini-

batch size, maximum epoch, and initial learning rate are 

stochastic gradient descent with momentum (sgdm), 10, 

6, and 0.0003, respectively. These parameters are set to 

all method for performance comparison. 

The training process sets w to produce the smallest 

possible error with a loss function, can be seen in 

equation 1. 

𝐸 =  ∑ 𝜔(𝑥)𝑙𝑜𝑔𝑝𝑙(𝑥)𝑥
𝑋∈Ω

                                              (1) 

Where 𝑝𝑙(𝑥) is the loss function of SoftMax, 𝑙: Ω ⟶
{1, … , 𝑘} label value for each image. The SoftMax S is 

calculated by the equation 2. 

𝑆𝑗 =  
exp (𝑦𝑗)

∑ exp (𝑦𝑗)𝑁
𝑗=1

                                                       (2) 

Where the final output of convolution Y = 
(y1,y2,…,Yn)T, and output SoftMax layer S = 

(s1,s2,…,sN)T. 

All models will be trained using the same ordinary 

device, i.e., intel i5 CPU and GeForce MX130 GPU 

using MATLAB language. The accuracy metrics are 

overall accuracy and mean intersection over union 

(mIoU) calculated from confusion matrix using 

equation 3. 

𝑚𝐼𝑜𝑈 =  
1

𝑁𝑐𝑙𝑎𝑠𝑠

∑
𝑇𝑃(𝑖)

𝑇𝑃(𝑖) + 𝐹𝑃(𝑖) + 𝐹𝑁(𝑖)
       (3)

𝑁𝑐𝑙𝑎𝑠𝑠

𝑖=1

 

Where TP, FP, FN, and N represent true positive, false 
positive, false negative, and number of classes, 

respectively. The overall accuracy is calculated by the 

equation 4. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
        (4) 

The mIoU metric is more strict than overall accuracy 

since this metric takes out true negative.  

The calculation of accuracy is done after the confusion 

matrix is created as a result of model validation. This 

matrix contains the number of true positives, true 

negatives, false positives, and false negatives.  

Another important concept that underlies the 

emergence of Deep Learning is the ReLu function 

which is a linear function which is defined as equation 

5 [20]: 

𝑅𝑒𝐿𝑈 =  {
𝑥
0

 
𝑥 ≥ 0
𝑥 < 0

                                                       (5) 

With the ReLu function, a Neural Network can have 

many layers, which was previously difficult for a 

sigmoid function or tangent sigmoid. So, Neural 

Networks can be run with a greater number of layers 

and give rise to the term Deep Learning or Deep Neural 

Networks. 

Hardware developments have also triggered the rapid 

development of Deep Learning, namely the Central 

Processing Unit (CPU), Graphics Processing Unit 
(GPU), and memory. Google also introduced a new 

processing technique known as the Tensor Processing 

Unit (TPU) and is available in the Integrated 

Development Environment Google Collaboratory 

(https://colab.research.google.com/).  

2.4 GoogLeNet 

The model known as Inception version 1 is the winner 

of the 2014 ILSVRC contest. Convolution 1x1 is placed 

in the middle with the inception module. At the end, 

global average pooling is installed, instead of fully 

connected layer. Figure 3 shows the inception module 
of GoogLeNet. This model has 22 layers, more than its 

predecessors, CNN and VGG, which have 16 and 18 

layers, but not as long as ResNet. An important aspect 

of GoogLeNet is inception which can be applied to 

other models such as DeepLab for semantic 

segmentation on the encoder section. GoogLeNet's 

competitors include AlexNet, ZFNet, SPPNet, and 

VGGNet. 
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Figure 3. Inception Module 

https://colab.research.google.com/
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2.5 Residual Network (ResNet) 

ResNet uses a modified block from the convolution 

block of CNN or VGG. Residual blocks are formed to 

overcome the vanishing gradient problem in 

convolution-based models. Figure 4 shows one residual 

block on ResNet. 

Weight layer consists of convolution process, including 

batch normalization and ReLu activation. A skip 

connection/shortcut maintains the gradient can be 

calculated in backpropagation which is difficult to do 
with pure convolution on CNN or VGG. As a result, 

ResNet can run well on models with many layers, even 

now ResNet101 with 101 layers shows a good accuracy 

without the problem of vanishing gradients (see Figure 

1). 

Weight layer

Weight layer

X

XF(x)

F(x) + X

 

Figure 4. Residual Block Architecture 

Vanishing gradient limits the number of convolution 

layers. With residual network blocks, ResNet can have 
many layers, for example 50 and 150 in ResNet 50 and 

ResNet101, respectively. In this study as a comparison 

is ResNet18 which is the shortest version of ResNet. 

Although it has many layers, ResNet is very fast 

because it only performs the convolution process on the 

residual side, while on CNN and VGG convolution is 

carried out on the main line (Figure 4). 

2.6 MobileNet 

This model was originally used to detect objects. 

Google researchers were trying to replace the heavy 

CNN with a new model that could run on phones, 
namely MobileNet. This research uses MobileNet 

version 2 where pointwise and depth-wise convolution 

in version 1 is still used and added two new layers, 

namely liner bottleneck and shortcut connections. 

Figure 5 shows depth wise convolution which is keep 

the channels and point-wise convolution that merge the 

channels.  

 

Figure 5. Depth-Wise Convolution (left arrow) and Point-Wise 

Convolution (right arrow) 

Previous research shows MobileNetV2 improves 5% 

accuracy over the previous version. The liner bottleneck 

and shortcut connection work together to avoid the 

nonlinearity that breaks feature maps [21]. 

2.7 ShuffleNet 

ShuffleNet is a method to reduce the computational 

complexity of a system. As the name implies, this 

method applies shuffle and point-wise group 

convolution. This method is 13 times faster than the 

original Deep Learning model, namely AlexNet [8], 
[12], [22]. Figure 6 shows the main block of ShuffleNet. 

Shuffle performs switching from one channel to another 

in the channel shuffle. 
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GConv1

GConv2

Feature

Channel 
Shuffle

 

Figure 6. Channel Shuffle Structure in ShuffleNet 

Previous study showed that channel shuffle had a lower 

error than no-channel shuffle [8]. This model is fast and 

light that it can compete with MobileNetV2. Much 
effort has been made to improve the accuracy of 

ShuffleNet, hence, this method also appropriate not 

only on mobile devices implementation [12], [22]. 

2.8 SqueezeNet 

SqueezeNet as the name implies intends to squeeze the 

model to produce a compact model so that it can be 

implemented on embedded devices. SqueezedNet's 

parameter count is 50x smaller than AlexNet [6], [23], 

[24]. Figure 7 shows the Squeeze Structure in 

SqueezeNet. 

Basically, the 'fire' part of SqueezeNet is convolution 
with the difference in filter size between the left and 

right sides, namely 1x1 and 3x3. This section re-

expands the feature to be repeatedly squeezed back on 

the next layer eight times. 

There are three strategies to design the SqueezeNet 

architecture, including: i) replace 3x3 filter with 1x1 

filter, ii) decreasing the number of input channels to 3x3 

filter, and iii) down sampling late in order to generate 

large activation maps in the convolution section. 

However, currently strategies (i) and (ii) have been 
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shown to reduce convolution parameters while 

maintaining accuracy. 

After the dropout process, the convolution is carried out 

again before entering SoftMax to carry out the 

classification process. This model is still rarely 

developed further, so it is necessary to find a way to 

increase the accuracy to be on par with other models 

without sacrificing speed and other aspects that are 

suitable for devices with limited resources, such as size 

and number of parameters. Only some modification in 
bypassing each block that was proposed by previous 

researchers, termed Vanilla SqueezeNet [7]. This model 

has successfully been implemented in a vehicle.  

The more parameters, the more computations required. 

However, with the development of parallel processors, 

metrics in the form of floating operations (FLOPs) are 

no longer relevant, what is needed is the inference speed 

of the designed model. Sometimes even though the 

number of parameters is large because they are run in 

parallel, the results are faster than those with few 

parameters but serially. 

For embedded devices, this method is the main choice 

where wiring requires computational efficiency. All we 

have to do is create the right training data to produce an 

accurate SqueezeNet model. Several terms need to be 

understood in formulating a SqueezeNet model. As 

shown in Figure 7, the parameters that need to be 

considered are filter size, number of filters, stride, 

dilation factor, padding, padding value, weight learn 

factor, weightL2factor, bias learn rate factor and bias 

L2 factor. Each layer in Figure 7 should be defined its 

parameter in a simple form. 

 

Figure 7. Squeeze Block Structure 

SqueezeNet has the fire block consisting of one 'fire' 

which is squeezed into 1x1 feeding into an expand layer 

consisting of mixing of 1x1 and 3x3 convolution filters. 

The basic principle is that SqueezeNet maintains the 

number of channels in the model to keep the parameter 

as small as possible that important for devices with 

limited computational resources implementation. This 

model will be used in the proposed model as the main 

network basis. The weakness of this model i.e., low 

accuracy, will be compensated by other method, 

discussed in the following section. 

2.4 Proposed Model 

Figure 8 shows the proposed model. The rationale of the 
proposed model is based on the fast of SqueezeNet and 

the accuracy of ResNet18.  

The proposed model uses eight fire blocks to squeeze 

the blocks that maintains the channels not exceeding 

128. Two residual blocks are attached to the end of the 

fire block. The two residual blocks are inspired by 

ResNet18. Such block performs the filtering process 

with convolution but in the remaining part (see Figure 

4 about the ResNet block). 

Convolution

Fire Block-1

Fire Block-8

Residual-1

Residual-2

PIZZA

Convolution

INPUT

OUTPUT

Sq
u

ee
ze

N
et

R
es

N
et

 

Figure 8. Res-SqueezeNet  

Skip connection on the ResNet18 speeds up the 

computing process while avoiding the vanishing 
gradient problem that often occurs in convolution-based 
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models i.e., CNN [10], [12], [24]–[26] and VGG [6], 

[14], [27] and limits the number of layers. 

Since the proposed model does the prediction, the result 

is the class of the predicted image, for example in the 

example above is the pizza class. For other problems 

such as object detection and semantic segmentation, 

modifications are needed. For example, for semantic 

segmentation, it is necessary to have a module to break 

the image into small parts and then classify the small 

parts based on certain pixel classes. Meanwhile, for 
object detection, it uses a box that shows the class of an 

object. This paper only focuses on object classification. 

The input layer has a function to make the input size 

equal to the model size, which is 227x227 with Red, 

Green, and Blue (RGB) channels. 

To produce better accuracy, several the residual block 

can be added, but of course it will have a big size (file 

size and number of parameters). Here we use only two 

different residual blocks including a branch with two 

residual blocks and a branch with a faster skip 

connection. 

2.5 Datasets 

This study used food image datasets from Mathworks 

[28]. This dataset consists of 978 photographs of food 

in nine classes (caesar_salad, caprese_salad, 

french_fries, greek_salad, hamburger, hot_dog, pizza, 

sashimi, and sushi).  

To ensure the proposed model can be run well, the 

network analyzer tools was used (Figure 9). A dot in 

network analyzer represents the layer and the arrows 

show the connection. If there is an error, e.g., missing 

layer size and other parameter values, the model cannot 

be trained. Network analyzer also shows the parameters 
e.g., number of layers, activation, learnable layer, 

warnings, errors, etc. After there is no warning and 

error, the training process can be done using a proper 

data training.  

The code used in this paper was based on: 

https://www.mathworks.com/help/deeplearning/gs/get-

started-with-transfer-learning.html. There are some 

important modifications in the code for the proposed 

model (Res-SqueezeNet). The data should be prepared 

appropriately. 

Some baseline methods have different input size 
standards. Therefore, in the input layer, it is necessary 

to process the image input has the same size with the 

input layer of the model. The size of input model has 

been set following the pretrained model (227-by-227, 

224-by-224, 299-by-299, 256-by-256, and 331-by-

331). 

 

 

Figure 9. Network Analysis Result of Proposed Model  

3.  Results and Discussions 

After processing the datasets with data training and 

validation, the training process has done for all models. 

Figure 10 shows the training process of the proposed 

models. After 6 epochs with 108 iterations, the accuracy 

calculation showed 84.59% accuracy and mIoU value 

of 0.6312. 

For implementation, users are advised to add epochs 
and iterations considering that the image under the 

gradient still shows an improvement. However, six 

epochs is good enough to compare the six models in this 

paper. 

 
Figure 10. Training Result of Proposed Model 

Table 1 shows the performance of the six models.  The 

proposed model (Res-SqueezeNet) showed better 

accuracy than the SqueezeNet (increase 2%) and keep 

the inference time in 8 second which is better than 

ResNet18. The attachment of Residual block in the end 

of Res-SqueezeNet layer improved the accuracy. The 
training process is fast, less than five minutes with an i5 

https://www.mathworks.com/help/deeplearning/gs/get-started-with-transfer-learning.html
https://www.mathworks.com/help/deeplearning/gs/get-started-with-transfer-learning.html
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processor and an Nvidia GeForce MX130 GPU that 

runs on the Windows 11 operating system. 

GoogLeNet in Table 1 shows best performance in 

overall accuracy calculation, but the best mIoU goes to 

MobileNetV2. As seen in equation 3, mIoU is more 

accurate in measuring the accuracy performance of a 

model and has become a standard metric for accuracy 

calculations. 

Table  1. Models Performance 

No Model Accuracy/ 

mIoU** 

Inference 

(s) 

Size 

(Mb) 

1. SqueezeNet 0.8253/0.5405 8.127 2.61 

2. ShuffleNet 0.8493/0.6388 7.281 3.25 

3. Google Net 0.8801/0.6735 8.603 21.3 

4. ResNet18  0.8733/0.6463 11.581 39.77 

5. MobileNetV2 0.8767/0.6884 13.692 25.2 

6. Res-SqueezeNet*  0.8459/0.6312    8.460     44.28 

Results in bold text represent the best value 

* The proposed model 

** Results in italic represent mIoU value 
 

The problem of the proposed models is the size of 

network (44.28 Mb), higher than ResNet and 20 times 

higher than SqueezeNet; hence, this model does not 

appropriate for embedded system, but can be run on 

notebook/laptop, PC, tablet, etc. However, the 
characteristics of residual network can maintain the 

speed of inference process (8.460 second) as well as 

keep the vanishing gradient problem of ordinary 

convolution layer (the characteristic of ResNet). The 

Residual block in the proposed model increase the size 

of network. However, the residual network has 

distinctive characteristics that are quite good in solving 

semantic segmentation problems, for example DeepLab 

which uses ResNet as its main component.  

For implementation, an Open Neural Network 

Exchange (ONNX) module can be used to generate 

code for other programming languages such as Python, 

Caffe, and others.  

4.  Conclusion 

Current research on Deep Learning is not just about 

accuracy. Apart from the transparency of the Deep 

Learning model, one aspect that needs to be considered 

in Deep Learning research is the ease of 

implementation, especially on devices with limited 

computational resources. The use of residual block in 

the end of SqueezeNet layer before SoftMax layer give 

a higher accuracy result. Also, the characteristic of 

ResNet keep the model running fast that suitable for 
semantic segmentation, e.g., inside the DeepLab. The 

accuracy of proposed model (Res-SqueezeNet) was 2% 

higher than the SqueezeNet and faster than ResNet. The 

Res-SqueezeNet was also almost as accurate as 

ShuffleNet. In the future, the study will focus on 

reducing the size of the proposed model and implement 

the proposed method in semantic segmentation. 

Acknowledgment  

The authors thanks to Universitas Islam 45 Bekasi and 

Universitas Bhayangkara Jakarta Raya for the support 

of the research. 

Reference 
 

[1] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling 

for convolutional neural networks,” 36th International 

Conference on Machine Learning, ICML 2019, vol. 2019-June, 

pp. 10691–10700, 2019. 

[2] Mathworks, “Pretrained Deep Neural Networks,” 2022. 

[Online]. Available: 

https://www.mathworks.com/help/deeplearning/ug/pretrained

-convolutional-neural-networks.html. [Accessed: 21-Aug-

2022]. 

[3] M. Z. Alom et al., “The History Began from AlexNet: A 

Comprehensive Survey on Deep Learning Approaches,” 2018. 

[4] R. Zhang, G. Li, M. Li, and L. Wang, “Fusion of images and 

point clouds for the semantic segmentation of large-scale 3D 

scenes based on deep learning,” ISPRS Journal of 

Photogrammetry and Remote Sensing, vol. 143, no. April, pp. 

85–96, 2018. 

[5] E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional 

Networks for Semantic Segmentation,” IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 

640–651, 2017. 

[6] A. A. Ardakani, A. R. Kanafi, U. R. Acharya, N. Khadem, and 

A. Mohammadi, “Application of deep learning technique to 

manage COVID-19 in routine clinical practice using CT 

images: Results of 10 convolutional neural networks,” 

Computers in Biology and Medicine, vol. 121, no. April, p. 

103795, 2020. 

[7] H. J. Lee, I. Ullah, W. Wan, Y. Gao, and Z. Fang, “Real-Time 

vehicle make and model recognition with the residual 

squeezenet architecture,” Sensors (Switzerland), vol. 19, no. 5, 

2019. 

[8] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An 

Extremely Efficient Convolutional Neural Network for Mobile 

Devices,” Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, pp. 

6848–6856, 2018. 

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning 

for image recognition,” Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern 

Recognition, vol. 2016-Decem, pp. 770–778, 2016. 

[10] A. Victor Ikechukwu, S. Murali, R. Deepu, and R. C. 

Shivamurthy, “ResNet-50 vs VGG-19 vs training from scratch: 

A comparative analysis of the segmentation and classification 

of Pneumonia from chest X-ray images,” Global Transitions 

Proceedings, vol. 2, no. 2, pp. 375–381, 2021. 

[11] A. G. Howard et al., “MobileNets: Efficient Convolutional 

Neural Networks for Mobile Vision Applications,” Computer 

Vision and Pattern Recognition, 2017. 

[12] N. Ma, X. Zhang, H. T. Zheng, and J. Sun, “Shufflenet V2: 

Practical guidelines for efficient cnn architecture design,” 

Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), vol. 11218 LNCS, pp. 122–138, 2018. 

[13] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, 

“A hybrid deep transfer learning model with machine learning 

methods for face mask detection in the era of the COVID-19 

pandemic,” Measurement: Journal of the International 

Measurement Confederation, vol. 167, no. July 2020, p. 

108288, 2021. 

[14] A. A. Pravitasari et al., “UNet-VGG16 with transfer learning 

for MRI-based brain tumor segmentation,” Telkomnika 

(Telecommunication Computing Electronics and Control), vol. 

18, no. 3, pp. 1310–1318, 2020. 

[15] Z. Benbahria, M. F. Smiej, I. Sebari, and H. Hajji, “Land cover 



 Rahmadya Trias Handayanto, Herlawati 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)  

DOI: https://doi.org/10.29207/resti.v7i1.4446 

Creative Commons Attribution 4.0 International License (CC BY 4.0) 

160 

 

 

intelligent mapping using transfer learning and semantic 

segmentation,” 7th Mediterranean Congress of 

Telecommunications 2019, CMT 2019, pp. 1–5, 2019. 

[16] M. Imad, O. Doukhi, and D. J. Lee, “Transfer learning based 

semantic segmentation for 3d object detection from point 

cloud,” Sensors, vol. 21, no. 12, pp. 1–15, 2021. 

[17] J. Yang, Y. Q. Zhao, and J. C. W. Chan, “Learning and 

Transferring Deep Joint Spectral-Spatial Features for 

Hyperspectral Classification,” IEEE Transactions on 

Geoscience and Remote Sensing, vol. 55, no. 8, pp. 4729–4742, 

2017. 

[18] I. Z. Matovinovic, S. Loncaric, J. Lo, M. Heisler, and M. 

Sarunic, “Transfer learning with U-net type model for 

automatic segmentation of three retinal layers in optical 

coherence tomography images,” International Symposium on 

Image and Signal Processing and Analysis, ISPA, vol. 2019-

Septe, pp. 49–53, 2019. 

[19] M. Á. Molina, G. Asencio-Cortés, J. C. Riquelme, and F. 

Martínez-Álvarez, “A Preliminary Study on Deep Transfer 

Learning Applied to Image Classification for Small Datasets,” 

Advances in Intelligent Systems and Computing, vol. 1268 

AISC, pp. 741–750, 2021. 

[20] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into 

Deep Learning,” arXiv preprint arXiv:2106.11342, 2021. 

[21] N. D. Trung, T. T. Ngoc, and H. X. Huynh, “Automated 

Pneumonia Detection in X-Ray Images Via Depthwise 

Separable Convolution Based Learning,” pp. 1–8, 2020. 

[22] K. A. Laube and A. Zell, “ShuffleNASNets: Efficient CNN 

models through modified Efficient Neural Architecture 

Search,” Proceedings of the International Joint Conference on 

Neural Networks, vol. 2019-July, 2019. 

[23] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. 

Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy 

with 50x fewer parameters and <0.5MB model size,” pp. 1–13, 

2016. 

[24] J. Wang, P. Lv, H. Wang, and C. Shi, “SAR-U-Net: Squeeze-

and-excitation block and atrous spatial pyramid pooling based 

residual U-Net for automatic liver segmentation in Computed 

Tomography,” Computer Methods and Programs in 

Biomedicine, vol. 208, pp. 1–25, 2021. 

[25] P. K. Gadosey et al., “SD-UNET: Stripping down U-net for 

segmentation of biomedical images on platforms with low 

computational budgets,” Diagnostics, vol. 10, no. 2, 2020. 

[26] I. L. Kharisma, R. T. Handayanto, and D. A. Dewi, “Face Mask 

Detection In The Covid-19 Pandemic Era by Implementing 

Convolutional Neural Network and Pre-Trained CNN 

Models,” in 2021 IEEE 7th International Conference on 

Computing, Engineering and Design (ICCED), 2021, pp. 1–6. 

[27] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A 

Deep Convolutional Encoder-Decoder Architecture for Image 

Segmentation,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017. 

[28] Mathworks, “Data Sets for Deep Learning,” 2022. [Online]. 

Available: 

https://www.mathworks.com/help/deeplearning/ug/data-sets-

for-deep-learning.html. [Accessed: 21-Aug-2022].

 

 
 

 


