
 Accepted: 23-08-2022 | Received in revised: 13-01-2023 | Published: 03-02-2023

153

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI
(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 7 No. 1 (2023) 153 - 160 ISSN Media Electronic: 2580-0760

Modification of SqueezeNet for Devices

with Limited Computational Resources

Rahmadya Trias Handayanto1, Herlawati2
1Computer Engineering, Faculty of Engineering, Universitas Islam 45 Bekasi

2Informatics, Faculty of Computer Science, Universitas Bhayangkara Jakarta Raya
1rahmadya.trias@gmail.com, 2mrs.herlawati@gmail.com

Abstract

In recent years, the computational approach has shifted from a statistical basis to deep neural network architectures which
process the input without explicit knowledge that underlies the model. Many models with high accuracy have been proposed
by training the datasets using high performance computing devices. However, only a few studies have examined its use on non-
high-performance computers. In fact, most users, who are mostly researchers in certain fields (medical, geography, economics,

etc.) sometimes need computers with limited computational resources to process datasets, from notebooks, personal computers,
to mobile processor-based devices. This study proposes a basic model with good accuracy and can run lightly on the average
computer so that it remains lightweight when used as a basis for advanced deep neural networks models, e.g., U-Net, SegNet,
PSPNet, DeepLab, etc. Using several well-known basic methods as a baseline (SqueezeNet, ShuffleNet, GoogleNet,
MobileNetV2, and ResNet), a model combining SqueezeNet with ResNet, termed Res-SqueezeNet, was formed. Testing results
show that the proposed method has accuracy and inference time of 84.59% and 8.46 second, respectively, which has an
accuracy of 2% higher than the SqueezeNet (82.53%) and is close to the accuracy of other baseline methods (from 84.93% to
0.88.01%) while still maintaining the inference speed (below nine second). In addition, residual part of the proposed method

can be used to avoid vanishing gradient, hence, it can be implemented to solve more advanced problems which need a lot of
layers, e.g., semantic segmentation, time-series prediction, etc.

Keywords: deep learning, squeezenet, resnet, imagenet, convolutional layer

1. Introduction

Deep learning has now been implemented in all fields

and various tools, from super computers, laptops to

embedded systems. The performance of a deep learning
method is no longer only in terms of accuracy, but also

computational speed and efficiency because it must be

applicable to devices with limited computational

resources.

Due to the open contest, many new methods with good

performance were proposed. For example, ImageNet

Large Scale Visual Recognition Challenge (ILSVRC),

has provided 1 million training data with 1000 classes,

termed ImageNet [1]. Therefore, researchers in the

world can easily propose the best methods using these

benchmark datasets.

Pretrained models are widely available with certain
programming language implementations, e.g., Python,

MATLAB, etc. Figure 1 shows a comparison of

pretrained models for various methods that are currently

used with respect to accuracy, size, and speed [2].

0 5 10 15 20 25 30 35 40

prediction Time using GPU

50

55

60

65

70

75

80

85

Compare Pretrained

Networks

VGG

16

Alexnet

VGG

19

Googlen

et

Resnet

18

Resnet50

Darknet

19
Mobilenet-

V2

Xception
InceptionResnetv2

Shufflen

et

Squeezenet

DenseNet-201

NASNet-Large

DarkNet-53

Fast Process

A
c
c
u

ra
c
y
 (

%
)

Figure1. Deep Learning Model Performance [2]

The development of these models shows an increase in

accuracy but requires large Graphic Processing Unit

(GPU) resources. Convolution-based methods, e.g.,
AlexNet [3] and Visual Geometry Group (VGG) [4],

require large resources, so they are not suitable for

devices with limited computational resources to process

large datasets. This study focuses on the left side of

Figure 1, namely AlexNet [3], GoogLeNet [5],

 Rahmadya Trias Handayanto, Herlawati

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4446

Creative Commons Attribution 4.0 International License (CC BY 4.0)

154

SqueezeNet [6], [7], ShuffleNet [8], ResNet [9], [10]

and MobileNet [11] because they are suitable for

devices with limited computational resources. There

have been many models for devices with limited

computational resources, e.g., MobileNetV2 and

modifications of ShuffleNet, namely ShuffleNetV2

[12] and ShuffleNasNet [8], [12] to overcome

MobileNetV2 which still requires large GPU resources.

Many researchers have modified ShuffleNet to get a

better performance model but still light and fast.
Modifications to other methods, i.e., SqueezeNet, are

still rarely studied. Therefore, this study tries to modify

SqueezeNet to obtain an accuracy that is not much

different from other baseline models. As shown in

Figure 1, this method has the lowest accuracy rate, even

though it does not require too many GPU resources.

This research contributes to proposing a fast and

accurate model from a simple basic model to be suitable

for devices with limited computational resources, e.g.,

notebook, personal computer, etc. in a specific

application from classification to object detection
without the need of high-performance computing

(supercomputers and computer clusters). There is a

compromise between accuracy and speed.

The paper is organized as follows. After discussing the

basic methods that are most widely applied in the

industry, i.e., transfer learning and data augmentation,

the methods that become the baseline for this research

are discussed, including the data that will be used for

testing.

The proposed model, Res-Squeeze Net, after being

assembled, will be followed by a training process to

produce a model that is ready to be tested. After the
results and discussion section, the paper ends with a

conclusion and future study.

2. Research Methods

Quantitative research is used in this study with several

matrices to measure the performance of the proposed

model. To see the performance, five baseline models

were analyzed before creating a proposed model,

including SqueezeNet, ShuffleNet, GoogLeNet,

ResNet, and MobileNet. Each model has its strengths

and weaknesses. These models are models developed

by the researchers after the success of the early Deep

Learning model, AlexNet.

After the analysis stage, the process of making a

proposed model is carried out by taking the advantages

of one model and anticipating its weaknesses with

methods from other models so that a better model is

obtained.

These baseline models have been trained using

ImageNet datasets. Training results are available in

many languages e.g., Python, MATLAB, etc.

2.1 Transfer Learning

ImageNet is a benchmark dataset consisting of one

million images with 1000 labels/classes. The five

baseline models have been trained using ImageNet on

high performance computers (NVIDIA® Tesla® P100

and a mini-batch size of 128), so users around the world

can take advantage of the pretrained models.

To maintain the previous training using ImageNet,

when implemented in a new domain with different

classes, the training results with ImageNet datasets can
be preserved through a transfer learning mechanism

[13]–[19]. We only trained with new datasets.

Figure 2 shows the transfer learning framework. First,

certain models, such as GoogLeNet, are trained with

one million images that have 1000 classes. After the

training process the model is known as the pretrained

model. In practice, not all classes are needed to solve

certain problems. Transfer learning works by replacing

the final layer, usually the fully connected layer, with a

new layer according to the number of new data classes,

for this research there are nine classes. To avoid the
training results with the previous data (ImageNet

datasets) still being stored, it is necessary to freeze the

initial layer of the model. The training then runs using

new data with a new number of classes. This method

can be done for other Deep Learning models.

Input
1 M

images

Input
Layer

Main
Layers

Fully Connected
Layer

(1x1x1000)

Output
1000

Classes

Training with ImageNet Dataset

Input
978

images

Input
Layer

Main
Layers

New Fully
Connected Layer

(1x1x9)

Output
9 Classes

Freeze

Replace

Training with Food Image Dataset

Figure 2. Transfer Learning

2.2 Data Augmentation

Some datasets, e.g., medical data, have a limited

amount of data. Unfortunately, deep learning requires

large training data to produce good performance.

Therefore, it is necessary to add training data by making

slight changes, e.g., rotation, translation, brightness

enhancement, and many more, to increase the amount

of training data properly.

For example, data with one rotation and translation for

every image will doble the size of the training data.

More additional modification i.e., brightness

enhancement, flipping, and other methods also give

 Rahmadya Trias Handayanto, Herlawati

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4446

Creative Commons Attribution 4.0 International License (CC BY 4.0)

155

more size of the training data which is very suitable to

be applied to data that is difficult to obtain, such as x-

rays, microscopic data, and others. However, for data

that is easily obtained, it is better to use it directly

because the results are certainly much better because

too much augmentation invites over fitting [10].

Even though Deep Learning has a layer that have a

function as filter, it's better to still pre-process the data.

Of course, if the data being trained has very different

characteristics from ImageNet, training from the
beginning needs to be done, for example satellite

images, photos of bacteria, cancer, and other medical

data.

2.3 Learning

After replacing the fully connected layer with a layer

that matches the training data as well as freezing the

initial layers of the model, the training process is carried

out. The hyper-parameters, i.e., training method, mini-

batch size, maximum epoch, and initial learning rate are

stochastic gradient descent with momentum (sgdm), 10,

6, and 0.0003, respectively. These parameters are set to

all method for performance comparison.

The training process sets w to produce the smallest

possible error with a loss function, can be seen in

equation 1.

𝐸 = ∑ 𝜔(𝑥)𝑙𝑜𝑔𝑝𝑙(𝑥)𝑥
𝑋∈Ω

 (1)

Where 𝑝𝑙(𝑥) is the loss function of SoftMax, 𝑙: Ω ⟶
{1, … , 𝑘} label value for each image. The SoftMax S is

calculated by the equation 2.

𝑆𝑗 =
exp (𝑦𝑗)

∑ exp (𝑦𝑗)𝑁
𝑗=1

 (2)

Where the final output of convolution Y =
(y1,y2,…,Yn)T, and output SoftMax layer S =

(s1,s2,…,sN)T.

All models will be trained using the same ordinary

device, i.e., intel i5 CPU and GeForce MX130 GPU

using MATLAB language. The accuracy metrics are

overall accuracy and mean intersection over union

(mIoU) calculated from confusion matrix using

equation 3.

𝑚𝐼𝑜𝑈 =
1

𝑁𝑐𝑙𝑎𝑠𝑠

∑
𝑇𝑃(𝑖)

𝑇𝑃(𝑖) + 𝐹𝑃(𝑖) + 𝐹𝑁(𝑖)
 (3)

𝑁𝑐𝑙𝑎𝑠𝑠

𝑖=1

Where TP, FP, FN, and N represent true positive, false
positive, false negative, and number of classes,

respectively. The overall accuracy is calculated by the

equation 4.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4)

The mIoU metric is more strict than overall accuracy

since this metric takes out true negative.

The calculation of accuracy is done after the confusion

matrix is created as a result of model validation. This

matrix contains the number of true positives, true

negatives, false positives, and false negatives.

Another important concept that underlies the

emergence of Deep Learning is the ReLu function

which is a linear function which is defined as equation

5 [20]:

𝑅𝑒𝐿𝑈 = {
𝑥
0

𝑥 ≥ 0
𝑥 < 0

 (5)

With the ReLu function, a Neural Network can have

many layers, which was previously difficult for a

sigmoid function or tangent sigmoid. So, Neural

Networks can be run with a greater number of layers

and give rise to the term Deep Learning or Deep Neural

Networks.

Hardware developments have also triggered the rapid

development of Deep Learning, namely the Central

Processing Unit (CPU), Graphics Processing Unit
(GPU), and memory. Google also introduced a new

processing technique known as the Tensor Processing

Unit (TPU) and is available in the Integrated

Development Environment Google Collaboratory

(https://colab.research.google.com/).

2.4 GoogLeNet

The model known as Inception version 1 is the winner

of the 2014 ILSVRC contest. Convolution 1x1 is placed

in the middle with the inception module. At the end,

global average pooling is installed, instead of fully

connected layer. Figure 3 shows the inception module
of GoogLeNet. This model has 22 layers, more than its

predecessors, CNN and VGG, which have 16 and 18

layers, but not as long as ResNet. An important aspect

of GoogLeNet is inception which can be applied to

other models such as DeepLab for semantic

segmentation on the encoder section. GoogLeNet's

competitors include AlexNet, ZFNet, SPPNet, and

VGGNet.

Previous Layer

1x1
Convolutions

3x3
Convolutions

5x5
Convolutions

3x3 Max
Pooling

1x1
Convolutions

1x1
Convolutions

1x1
Convolutions

Concatenation

Figure 3. Inception Module

https://colab.research.google.com/

 Rahmadya Trias Handayanto, Herlawati

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4446

Creative Commons Attribution 4.0 International License (CC BY 4.0)

156

2.5 Residual Network (ResNet)

ResNet uses a modified block from the convolution

block of CNN or VGG. Residual blocks are formed to

overcome the vanishing gradient problem in

convolution-based models. Figure 4 shows one residual

block on ResNet.

Weight layer consists of convolution process, including

batch normalization and ReLu activation. A skip

connection/shortcut maintains the gradient can be

calculated in backpropagation which is difficult to do
with pure convolution on CNN or VGG. As a result,

ResNet can run well on models with many layers, even

now ResNet101 with 101 layers shows a good accuracy

without the problem of vanishing gradients (see Figure

1).

Weight layer

Weight layer

X

XF(x)

F(x) + X

Figure 4. Residual Block Architecture

Vanishing gradient limits the number of convolution

layers. With residual network blocks, ResNet can have
many layers, for example 50 and 150 in ResNet 50 and

ResNet101, respectively. In this study as a comparison

is ResNet18 which is the shortest version of ResNet.

Although it has many layers, ResNet is very fast

because it only performs the convolution process on the

residual side, while on CNN and VGG convolution is

carried out on the main line (Figure 4).

2.6 MobileNet

This model was originally used to detect objects.

Google researchers were trying to replace the heavy

CNN with a new model that could run on phones,
namely MobileNet. This research uses MobileNet

version 2 where pointwise and depth-wise convolution

in version 1 is still used and added two new layers,

namely liner bottleneck and shortcut connections.

Figure 5 shows depth wise convolution which is keep

the channels and point-wise convolution that merge the

channels.

Figure 5. Depth-Wise Convolution (left arrow) and Point-Wise

Convolution (right arrow)

Previous research shows MobileNetV2 improves 5%

accuracy over the previous version. The liner bottleneck

and shortcut connection work together to avoid the

nonlinearity that breaks feature maps [21].

2.7 ShuffleNet

ShuffleNet is a method to reduce the computational

complexity of a system. As the name implies, this

method applies shuffle and point-wise group

convolution. This method is 13 times faster than the

original Deep Learning model, namely AlexNet [8],
[12], [22]. Figure 6 shows the main block of ShuffleNet.

Shuffle performs switching from one channel to another

in the channel shuffle.

Channels

Input

Output

GConv1

GConv2

Feature

Channel
Shuffle

Figure 6. Channel Shuffle Structure in ShuffleNet

Previous study showed that channel shuffle had a lower

error than no-channel shuffle [8]. This model is fast and

light that it can compete with MobileNetV2. Much
effort has been made to improve the accuracy of

ShuffleNet, hence, this method also appropriate not

only on mobile devices implementation [12], [22].

2.8 SqueezeNet

SqueezeNet as the name implies intends to squeeze the

model to produce a compact model so that it can be

implemented on embedded devices. SqueezedNet's

parameter count is 50x smaller than AlexNet [6], [23],

[24]. Figure 7 shows the Squeeze Structure in

SqueezeNet.

Basically, the 'fire' part of SqueezeNet is convolution
with the difference in filter size between the left and

right sides, namely 1x1 and 3x3. This section re-

expands the feature to be repeatedly squeezed back on

the next layer eight times.

There are three strategies to design the SqueezeNet

architecture, including: i) replace 3x3 filter with 1x1

filter, ii) decreasing the number of input channels to 3x3

filter, and iii) down sampling late in order to generate

large activation maps in the convolution section.

However, currently strategies (i) and (ii) have been

 Rahmadya Trias Handayanto, Herlawati

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4446

Creative Commons Attribution 4.0 International License (CC BY 4.0)

157

shown to reduce convolution parameters while

maintaining accuracy.

After the dropout process, the convolution is carried out

again before entering SoftMax to carry out the

classification process. This model is still rarely

developed further, so it is necessary to find a way to

increase the accuracy to be on par with other models

without sacrificing speed and other aspects that are

suitable for devices with limited resources, such as size

and number of parameters. Only some modification in
bypassing each block that was proposed by previous

researchers, termed Vanilla SqueezeNet [7]. This model

has successfully been implemented in a vehicle.

The more parameters, the more computations required.

However, with the development of parallel processors,

metrics in the form of floating operations (FLOPs) are

no longer relevant, what is needed is the inference speed

of the designed model. Sometimes even though the

number of parameters is large because they are run in

parallel, the results are faster than those with few

parameters but serially.

For embedded devices, this method is the main choice

where wiring requires computational efficiency. All we

have to do is create the right training data to produce an

accurate SqueezeNet model. Several terms need to be

understood in formulating a SqueezeNet model. As

shown in Figure 7, the parameters that need to be

considered are filter size, number of filters, stride,

dilation factor, padding, padding value, weight learn

factor, weightL2factor, bias learn rate factor and bias

L2 factor. Each layer in Figure 7 should be defined its

parameter in a simple form.

Figure 7. Squeeze Block Structure

SqueezeNet has the fire block consisting of one 'fire'

which is squeezed into 1x1 feeding into an expand layer

consisting of mixing of 1x1 and 3x3 convolution filters.

The basic principle is that SqueezeNet maintains the

number of channels in the model to keep the parameter

as small as possible that important for devices with

limited computational resources implementation. This

model will be used in the proposed model as the main

network basis. The weakness of this model i.e., low

accuracy, will be compensated by other method,

discussed in the following section.

2.4 Proposed Model

Figure 8 shows the proposed model. The rationale of the
proposed model is based on the fast of SqueezeNet and

the accuracy of ResNet18.

The proposed model uses eight fire blocks to squeeze

the blocks that maintains the channels not exceeding

128. Two residual blocks are attached to the end of the

fire block. The two residual blocks are inspired by

ResNet18. Such block performs the filtering process

with convolution but in the remaining part (see Figure

4 about the ResNet block).

Convolution

Fire Block-1

Fire Block-8

Residual-1

Residual-2

PIZZA

Convolution

INPUT

OUTPUT

Sq
u

ee
ze

N
et

R
es

N
et

Figure 8. Res-SqueezeNet

Skip connection on the ResNet18 speeds up the

computing process while avoiding the vanishing
gradient problem that often occurs in convolution-based

 Rahmadya Trias Handayanto, Herlawati

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4446

Creative Commons Attribution 4.0 International License (CC BY 4.0)

158

models i.e., CNN [10], [12], [24]–[26] and VGG [6],

[14], [27] and limits the number of layers.

Since the proposed model does the prediction, the result

is the class of the predicted image, for example in the

example above is the pizza class. For other problems

such as object detection and semantic segmentation,

modifications are needed. For example, for semantic

segmentation, it is necessary to have a module to break

the image into small parts and then classify the small

parts based on certain pixel classes. Meanwhile, for
object detection, it uses a box that shows the class of an

object. This paper only focuses on object classification.

The input layer has a function to make the input size

equal to the model size, which is 227x227 with Red,

Green, and Blue (RGB) channels.

To produce better accuracy, several the residual block

can be added, but of course it will have a big size (file

size and number of parameters). Here we use only two

different residual blocks including a branch with two

residual blocks and a branch with a faster skip

connection.

2.5 Datasets

This study used food image datasets from Mathworks

[28]. This dataset consists of 978 photographs of food

in nine classes (caesar_salad, caprese_salad,

french_fries, greek_salad, hamburger, hot_dog, pizza,

sashimi, and sushi).

To ensure the proposed model can be run well, the

network analyzer tools was used (Figure 9). A dot in

network analyzer represents the layer and the arrows

show the connection. If there is an error, e.g., missing

layer size and other parameter values, the model cannot

be trained. Network analyzer also shows the parameters
e.g., number of layers, activation, learnable layer,

warnings, errors, etc. After there is no warning and

error, the training process can be done using a proper

data training.

The code used in this paper was based on:

https://www.mathworks.com/help/deeplearning/gs/get-

started-with-transfer-learning.html. There are some

important modifications in the code for the proposed

model (Res-SqueezeNet). The data should be prepared

appropriately.

Some baseline methods have different input size
standards. Therefore, in the input layer, it is necessary

to process the image input has the same size with the

input layer of the model. The size of input model has

been set following the pretrained model (227-by-227,

224-by-224, 299-by-299, 256-by-256, and 331-by-

331).

Figure 9. Network Analysis Result of Proposed Model

3. Results and Discussions

After processing the datasets with data training and

validation, the training process has done for all models.

Figure 10 shows the training process of the proposed

models. After 6 epochs with 108 iterations, the accuracy

calculation showed 84.59% accuracy and mIoU value

of 0.6312.

For implementation, users are advised to add epochs
and iterations considering that the image under the

gradient still shows an improvement. However, six

epochs is good enough to compare the six models in this

paper.

Figure 10. Training Result of Proposed Model

Table 1 shows the performance of the six models. The

proposed model (Res-SqueezeNet) showed better

accuracy than the SqueezeNet (increase 2%) and keep

the inference time in 8 second which is better than

ResNet18. The attachment of Residual block in the end

of Res-SqueezeNet layer improved the accuracy. The
training process is fast, less than five minutes with an i5

https://www.mathworks.com/help/deeplearning/gs/get-started-with-transfer-learning.html
https://www.mathworks.com/help/deeplearning/gs/get-started-with-transfer-learning.html

 Rahmadya Trias Handayanto, Herlawati

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4446

Creative Commons Attribution 4.0 International License (CC BY 4.0)

159

processor and an Nvidia GeForce MX130 GPU that

runs on the Windows 11 operating system.

GoogLeNet in Table 1 shows best performance in

overall accuracy calculation, but the best mIoU goes to

MobileNetV2. As seen in equation 3, mIoU is more

accurate in measuring the accuracy performance of a

model and has become a standard metric for accuracy

calculations.

Table 1. Models Performance

No Model Accuracy/

mIoU**

Inference

(s)

Size

(Mb)

1. SqueezeNet 0.8253/0.5405 8.127 2.61

2. ShuffleNet 0.8493/0.6388 7.281 3.25

3. Google Net 0.8801/0.6735 8.603 21.3

4. ResNet18 0.8733/0.6463 11.581 39.77

5. MobileNetV2 0.8767/0.6884 13.692 25.2

6. Res-SqueezeNet* 0.8459/0.6312 8.460 44.28

Results in bold text represent the best value

* The proposed model

** Results in italic represent mIoU value

The problem of the proposed models is the size of

network (44.28 Mb), higher than ResNet and 20 times

higher than SqueezeNet; hence, this model does not

appropriate for embedded system, but can be run on

notebook/laptop, PC, tablet, etc. However, the
characteristics of residual network can maintain the

speed of inference process (8.460 second) as well as

keep the vanishing gradient problem of ordinary

convolution layer (the characteristic of ResNet). The

Residual block in the proposed model increase the size

of network. However, the residual network has

distinctive characteristics that are quite good in solving

semantic segmentation problems, for example DeepLab

which uses ResNet as its main component.

For implementation, an Open Neural Network

Exchange (ONNX) module can be used to generate

code for other programming languages such as Python,

Caffe, and others.

4. Conclusion

Current research on Deep Learning is not just about

accuracy. Apart from the transparency of the Deep

Learning model, one aspect that needs to be considered

in Deep Learning research is the ease of

implementation, especially on devices with limited

computational resources. The use of residual block in

the end of SqueezeNet layer before SoftMax layer give

a higher accuracy result. Also, the characteristic of

ResNet keep the model running fast that suitable for
semantic segmentation, e.g., inside the DeepLab. The

accuracy of proposed model (Res-SqueezeNet) was 2%

higher than the SqueezeNet and faster than ResNet. The

Res-SqueezeNet was also almost as accurate as

ShuffleNet. In the future, the study will focus on

reducing the size of the proposed model and implement

the proposed method in semantic segmentation.

Acknowledgment

The authors thanks to Universitas Islam 45 Bekasi and

Universitas Bhayangkara Jakarta Raya for the support

of the research.

Reference

[1] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling

for convolutional neural networks,” 36th International

Conference on Machine Learning, ICML 2019, vol. 2019-June,

pp. 10691–10700, 2019.

[2] Mathworks, “Pretrained Deep Neural Networks,” 2022.

[Online]. Available:

https://www.mathworks.com/help/deeplearning/ug/pretrained

-convolutional-neural-networks.html. [Accessed: 21-Aug-

2022].

[3] M. Z. Alom et al., “The History Began from AlexNet: A

Comprehensive Survey on Deep Learning Approaches,” 2018.

[4] R. Zhang, G. Li, M. Li, and L. Wang, “Fusion of images and

point clouds for the semantic segmentation of large-scale 3D

scenes based on deep learning,” ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 143, no. April, pp.

85–96, 2018.

[5] E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional

Networks for Semantic Segmentation,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp.

640–651, 2017.

[6] A. A. Ardakani, A. R. Kanafi, U. R. Acharya, N. Khadem, and

A. Mohammadi, “Application of deep learning technique to

manage COVID-19 in routine clinical practice using CT

images: Results of 10 convolutional neural networks,”

Computers in Biology and Medicine, vol. 121, no. April, p.

103795, 2020.

[7] H. J. Lee, I. Ullah, W. Wan, Y. Gao, and Z. Fang, “Real-Time

vehicle make and model recognition with the residual

squeezenet architecture,” Sensors (Switzerland), vol. 19, no. 5,

2019.

[8] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An

Extremely Efficient Convolutional Neural Network for Mobile

Devices,” Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pp.

6848–6856, 2018.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition, vol. 2016-Decem, pp. 770–778, 2016.

[10] A. Victor Ikechukwu, S. Murali, R. Deepu, and R. C.

Shivamurthy, “ResNet-50 vs VGG-19 vs training from scratch:

A comparative analysis of the segmentation and classification

of Pneumonia from chest X-ray images,” Global Transitions

Proceedings, vol. 2, no. 2, pp. 375–381, 2021.

[11] A. G. Howard et al., “MobileNets: Efficient Convolutional

Neural Networks for Mobile Vision Applications,” Computer

Vision and Pattern Recognition, 2017.

[12] N. Ma, X. Zhang, H. T. Zheng, and J. Sun, “Shufflenet V2:

Practical guidelines for efficient cnn architecture design,”

Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 11218 LNCS, pp. 122–138, 2018.

[13] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa,

“A hybrid deep transfer learning model with machine learning

methods for face mask detection in the era of the COVID-19

pandemic,” Measurement: Journal of the International

Measurement Confederation, vol. 167, no. July 2020, p.

108288, 2021.

[14] A. A. Pravitasari et al., “UNet-VGG16 with transfer learning

for MRI-based brain tumor segmentation,” Telkomnika

(Telecommunication Computing Electronics and Control), vol.

18, no. 3, pp. 1310–1318, 2020.

[15] Z. Benbahria, M. F. Smiej, I. Sebari, and H. Hajji, “Land cover

 Rahmadya Trias Handayanto, Herlawati

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 1 (2023)

DOI: https://doi.org/10.29207/resti.v7i1.4446

Creative Commons Attribution 4.0 International License (CC BY 4.0)

160

intelligent mapping using transfer learning and semantic

segmentation,” 7th Mediterranean Congress of

Telecommunications 2019, CMT 2019, pp. 1–5, 2019.

[16] M. Imad, O. Doukhi, and D. J. Lee, “Transfer learning based

semantic segmentation for 3d object detection from point

cloud,” Sensors, vol. 21, no. 12, pp. 1–15, 2021.

[17] J. Yang, Y. Q. Zhao, and J. C. W. Chan, “Learning and

Transferring Deep Joint Spectral-Spatial Features for

Hyperspectral Classification,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 55, no. 8, pp. 4729–4742,

2017.

[18] I. Z. Matovinovic, S. Loncaric, J. Lo, M. Heisler, and M.

Sarunic, “Transfer learning with U-net type model for

automatic segmentation of three retinal layers in optical

coherence tomography images,” International Symposium on

Image and Signal Processing and Analysis, ISPA, vol. 2019-

Septe, pp. 49–53, 2019.

[19] M. Á. Molina, G. Asencio-Cortés, J. C. Riquelme, and F.

Martínez-Álvarez, “A Preliminary Study on Deep Transfer

Learning Applied to Image Classification for Small Datasets,”

Advances in Intelligent Systems and Computing, vol. 1268

AISC, pp. 741–750, 2021.

[20] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into

Deep Learning,” arXiv preprint arXiv:2106.11342, 2021.

[21] N. D. Trung, T. T. Ngoc, and H. X. Huynh, “Automated

Pneumonia Detection in X-Ray Images Via Depthwise

Separable Convolution Based Learning,” pp. 1–8, 2020.

[22] K. A. Laube and A. Zell, “ShuffleNASNets: Efficient CNN

models through modified Efficient Neural Architecture

Search,” Proceedings of the International Joint Conference on

Neural Networks, vol. 2019-July, 2019.

[23] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy

with 50x fewer parameters and <0.5MB model size,” pp. 1–13,

2016.

[24] J. Wang, P. Lv, H. Wang, and C. Shi, “SAR-U-Net: Squeeze-

and-excitation block and atrous spatial pyramid pooling based

residual U-Net for automatic liver segmentation in Computed

Tomography,” Computer Methods and Programs in

Biomedicine, vol. 208, pp. 1–25, 2021.

[25] P. K. Gadosey et al., “SD-UNET: Stripping down U-net for

segmentation of biomedical images on platforms with low

computational budgets,” Diagnostics, vol. 10, no. 2, 2020.

[26] I. L. Kharisma, R. T. Handayanto, and D. A. Dewi, “Face Mask

Detection In The Covid-19 Pandemic Era by Implementing

Convolutional Neural Network and Pre-Trained CNN

Models,” in 2021 IEEE 7th International Conference on

Computing, Engineering and Design (ICCED), 2021, pp. 1–6.

[27] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A

Deep Convolutional Encoder-Decoder Architecture for Image

Segmentation,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[28] Mathworks, “Data Sets for Deep Learning,” 2022. [Online].

Available:

https://www.mathworks.com/help/deeplearning/ug/data-sets-

for-deep-learning.html. [Accessed: 21-Aug-2022].

