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Abstract  

Speech, a mode of communication between humans and machines, has various applications, including biometric systems for 

identifying people have access to secure systems. Feature extraction is an important factor in speech recognition with high 

accuracy. Therefore, we implemented a spectrogram, which is a pictorial representation of speech in terms of raw features, to 

identify speakers. These features were inputted into a convolutional neural network (CNN), and a CNN-visual geometry group 

(CNN-VGG) architecture was used to recognize the speakers. We used 780 primary data from 78 speakers, and each speaker 

uttered a number in Bahasa Indonesia. The proposed architecture, CNN-VGG-f, has a learning rate of 0.001, batch size of 

256, and epoch of 100. The results indicate that this architecture can generate a suitable model for speaker identification. A 

spectrogram was used to determine the best features for identifying the speakers. The proposed method exhibited an accuracy 

of 98.78%, which is significantly higher than the accuracies of the method involving Mel-frequency cepstral coefficients 

(MFCCs; 34.62%) and the combination of MFCCs and deltas (26.92%). Overall, CNN-VGG-f with the spectrogram can 

identify 77 speakers from the samples, validating the usefulness of the combination of spectrograms and CNN in speech 

recognition applications. 
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1. Introduction  

Speech is being increasingly used in human–machine 

interactions for various applications, such as biometric 

security systems. Since unsecured systems are prone to 

risks, such as robbery, demolition, and misuse, security 

plays a major role in the lives of people. Typically, 

security systems implement methods that employ 

pattern, pin, or password locks. However, they exhibit 

certain flaws as they can be easily hacked. Therefore, 

security systems based on the identification of human 

physiological characteristics, namely biometrics, are 

preferred over the aforementioned methods. Biometric 

systems use pattern recognition to determine and verify 

the identification of a person. 

Speech is a common biometric used to identify a person. 

In comparison with other biometrics, speech-based 

biometrics are more cost-effective as they do not require 

specific hardware; moreover, the file size requirement 

is comparatively small [1]. Several studies have 

implemented feature extraction methods to obtain 

accurate speech recognition results. Warohma et al. 

identified Indonesian dialects using Mel-frequency 

cepstral coefficients (MFCCs) and neural networks. 

However, their results indicated that the MFCC features 

may reduce certain important information in speech 

owing to dimension reduction [2]. MFCCs were also 

used for gender detection and speaker identification [3]. 

Another study utilized multiple kernel weighted Mel 

frequency cepstral coefficient (MKMFCCc) for feature 

extraction and support vector machine as classifier to 

perform automatic speaker identification [4]. MFCCs 

and the Gaussian mixture model (GMM) were used for 

access control [5], and timbrel features and KNN 

distance measure were used later [6] for speaker 

identification. In a recent study, MFCCs and GMM 

were combined with a deep neural network (DNN) to 

identify the speaker in an emotional talking 

environment. Another study utilized hidden Markov 

models (HMMs) and the hill climbing gradient; 

however, only a local optimal model was achieved [7]. 

Furthermore, an HMM requires a first-order Markov 

model, which warrants the use of “delta” and “delta-

delta” coefficients to add time information in several 

frames. Therefore, this method may prove to be 

computationally expensive.  

To address the aforementioned drawbacks, we 

implemented a simple feature, namely a spectrogram, 

which is an image that represents speech and is obtained 



 Suci Dwijayanti, Alvio Yunita Putri, Bhakti Yudho Suprapto 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 1 (2022)  

DOI: https://doi.org/10.29207/resti.v6i1.3795 

Creative Commons Attribution 4.0 International License (CC BY 4.0) 

141 

 

 

from the short-time Fourier transform (STFT). STFT 

provides more information in terms of both frequency 

and time, particularly from speech input. Raw features 

can be obtained directly from speech signals. In this 

study, we used a convolutional neural network (CNN) 

rather than an HMM to identify the speaker from the 

input spectrogram. Although CNNs are more 

commonly used as classifiers for image recognition, a 

few studies have utilized CNNs for speech recognition. 

Sun et al. [8] combined deep and shallow features for 

speech emotion recognition using a deep convolutional 

neural network. Fan et al. [9] proposed the use of filter 

banks as the input of a CNN as they considered a 

spectrum and sparse in lower and higher frequencies, 

respectively, which is suitable for the non-linear 

perception of the human ear. Kawamura et al. used a 

DNN and a CNN to identify songs and estimate the 

fundamental frequency. They validated that the raw 

waveform and filter learning combination can yield 

adequately accurate results [10]. Nevertheless, this 

feature requires complex computations. Therefore, in 

this study, we implemented a spectrogram, which is a 

less complex computation feature. As a spectrogram 

comprises low-level speech features and represents the 

image of a speech signal, the combination of CNN and 

spectrogram can improve the speech recognition 

performance.  

The remainder of this paper is organized as follows. 

Section 2 presents the materials and methods used in the 

data collection for the proposed speaker identification 

process. The results of the experiments and the 

inferences drawn from them are summarized in Section 

3. Finally, Section 4 concludes the paper. 

2. Research Methods 

2.1 Data Collection 

Data used in this study were obtained from 78 speakers. 

Each speaker uttered the final three digits of their 

student identification (ID) number in the Indonesian 

language 10 times. Consequently, 780 speech data 

points were collected. The utterances were recorded in 

a closed room using a Rode VideoMicro microphone. 

The sampling frequency was 16 kHz, and each sample 

was recorded for 1–5 s. 

2.2 Proposed Speaker Identification Process 

Figure 1 presents a block diagram of the proposed 

process for speaker identification. 

The first step, namely preprocessing, includes reduction 

of the noise that occurred during recording. This 

process involved normalization and pre-emphasis, 

wherein normalization was used to obtain the uniform 

amplitude of the speech signal by dividing the i-th 

speech data by the maximum amplitude of the speech 

as follows. 

𝑆[𝑖] =
𝑠[𝑖]

max
1≤𝑖≤𝑁

|𝑠[𝑖]|
, 𝑖 = 1,2,3, … , 𝑁,                     (1) 

where 𝑠[𝑖] denotes the speech signal, and 𝑁 indicates 

the length of the speech signal. This was followed by 

pre-emphasis, wherein the noise in the speech data was 

reduced by retaining only the high-frequency signals 

from the speech signal. The pre-emphasis can be 

calculated using the following equation. 

𝑥[𝑖] = 𝑆[𝑖] − 𝛼𝑆[𝑖], 0.9 ≤ 𝛼 ≤ 1,             (2) 

where 𝑥[𝑖] denotes the i-th data of the pre-emphasized 

speech signal, 𝑆[𝑖] indicates the speech signal, and 𝛼 

represents the pre-emphasis factor.  

Spectrogram
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Figure 1. Block Diagram of Speaker Identification Using a 
Convolutional Neural Network (CNN)  

 

After preprocessing, the speech signal was extracted 

into a spectrogram using the STFT algorithm. Herein, 

the speech signals were initially blocked into frames of 

20 ms with an overlap of 10 ms. As frame blocking can 

result in discontinuous signals, we used a Hamming 

window to prevent this discontinuity. Subsequently, the 

product of the framed signal and Hamming window was 

used as the input to the Fourier transform process. This 

STFT was used to convert the speech signal from the 

time domain to a frequency domain. The process of 

STFT is indicated in (3). 
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𝑋(𝑘) = ∑ 𝑥(𝑖)𝑤(𝑖 − 𝑘)𝑒−
𝑗2𝜋𝑛

𝐾𝑁
𝑖=1 .                   (3) 

Since the output of this process is a complex number, 

the spectrum of the signal can be calculated as follows: 

𝑋(𝑘) = log|𝑋(𝑘)|2.                           (4) 

The output of the spectrum is a spectrogram, which is 

a2D image representation of the speech signal, as 

depicted in Figure 2. This image was inputted to the 

CNN in the JPEG format for the training process. The 

model obtained in the training stage was used to identify 

the speaker of the tested data. The training and 

validation data were in the ratio 80:20. 

  
Figure 2. Spectrogram of The Speech Signal of Speaker 001 

2.3. CNN 

CNN is a type of artificial neural network that is 

typically used to identify objects [11]. It comprises 

several layers, including a convolution layer, rectified 

linear unit layer (ReLU), and pooling layer, which are 

used for feature learning. Furthermore, the 

classification is performed in the subsequent layer after 

flattening the input to the fully connected layer and the 

softmax layer. Figure 3 illustrates the architecture of 

CNN used for speech processing in this study.  

 

Next, the convolution operation is performed in the 

convolution layer to filter the features in the images 

(spectrogram). An n × n matrix, referred to as the 

feature detector, was filtered from the input 

spectrogram to obtain the feature map; the collection of 

feature maps forms the convolution layer. The output of 

this process was rectified using a ReLU layer to 

improve the nonlinearity. Subsequently, its dimension 

was reduced in the pooling layer. In this study, we 

selected the maximum values of the feature map by 

using maximum pooling. As the results of the feature 

maps were in the matrix form, they were converted to 

the vector column in the flattening process. The output 

of this process served as the input to the fully connected 

layer. Finally, a softmax layer was used to classify the 

input. This layer calculated the probability of the target 

class (speaker) to identify the speaker. The calculation 

was performed as follows: 

𝜎(𝑧)𝑗 =
𝑒𝑧𝑘

∑ 𝑒𝑧𝑘𝐾
𝑘=1

.                               (5) 

In this study, two CNN architectures were used: (1) a 

simple architecture, and (2) a VGG-f architecture, as 

presented in Tables 1 and 2, respectively. Although the 

VGG-f architecture is typically used in image 

processing, we verified that this type of architecture can 

effectively identify speakers using the information 

obtained from the extracted features. 

Table 1. Simple CNN Architecture 

Layer Kernel 

Size 

Stride Padding Bias 

Convolutional_1 5 × 5 1 0 1, 5 

Max Pooling 2 × 2 2 0 - 

Convolutional_2 5 × 5 1 0 5, 70 

Max Pooling 2 × 2 2 0 - 
Convolutional_3 5 × 5 1 0 70, 78 

Max Pooling 2 × 2 2 0 - 

Softmaxloss - - - - 

 

Figure 3. Architecture of the Convolutional Neural Network (CNN) 

Figure 4. Samples Obtained from Spectrograms with a Size of 875 × 655 pixels for Training 
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Table 2. Architecture of CNN-VGG-f. 

Layer Kernel Size 

Convolutional_1 + ReLU 11 × 11 

Max Pooling 3 × 3 
Convolutional_2 + ReLU 5 × 5 

Max Pooling 3 × 3 

Convolutional_3 + ReLU 3 × 3 
Convolutional_4 + ReLU 3 × 3 

Convolutional_5 + ReLU 3 × 3 

MaxPooling 3 × 3 
Fully Connected_1 + Dropout 4096 

Fully Connected_2 + Dropout 4096 

Softmaxloss 78 

3.  Result and Discussion 

The speech signals extracted from the spectrogram were 

saved in the image format with a size of 875 × 656 

pixels as the input of the CNN. Figure 4 depicts the 

spectrogram sample used for the training process. 

The training data spectrogram images were 

preprocessed by resizing the images to 224 × 224 

pixels. The input for the CNN consisted of images of 

size 𝑚 × 𝑚 × 𝑟, where m denotes the length and width 

of the image, and r indicates the channel of the image in 

terms of RGB. 

As mentioned in Section 2.3, we used two architectures 

in this study. In the case of the simple architecture 

(Table 1), the image was resized to 32 × 32 pixels. The 

learning rate and batch size were 0.001 and 200, 

respectively.  

Figure 5 illustrates a graph of the objective function 

obtained using this architecture, wherein the number of 

epochs is 100. The blue and red lines represent the 

training and validation, respectively. At the 30th epoch, 

because the validation loss did not reach zero, we added 

a dropout. However, the results indicated that 

overfitting occurred in the network despite the addition 

of the dropout. This can be attributed to the architecture 

being highly shallow for generalizing the data.  

Therefore, we used the VGG-f architecture. Although 

this architecture is generally used for facial recognition, 

we found that it has the capability to aid in identifying  

the speaker of the speech signal since it has more layers 

and is deeper than the simple architecture of CNN. In 

the training process, the convolution layers of size 3 × 

3 were stacked on top of each other, and each layer was 

connected with 4096 nodes followed by a classifier 

softmax layer with a kernel size of 78, which represents 

the speaker class (Table 2). The parameters used for 

training the VGG-f architecture are listed in Table 3. 

These parameters constitute 780 training data, and the 

class or label represents the number of classes of 78 

speakers. The image size of the spectrogram after 

preprocessing was 224 × 224 pixels. In this architecture, 

the learning rate was set to 0.001 because an extremely 

large learning rate may cause the model to converge to 

a suboptimal solution and an extremely small rate may 

stagnate the process, which would extend the time 

required for computation. The batch size was set to 256 

to ensure a fast-training process, and the epoch was set 

to 100 because the objective function could achieve the 

optimal loss function within 100 epochs. 

 

 

Figure 5. Training Graphs of the Objective Function for 100 Epochs 
Without Dropout (above) and With Dropout (below) 

Table 3. Parameter Training for Identifying Speakers Using CNN. 

Parameter Value 

Training data 780 
Class/label 78 

Image size 224 × 224 

Learning rate 0.001 

Batch size 256 
Epoch 100 

The training process was similar to that of ImageNet 

[12], and MatConvNet [13] was used to train this CNN 

for speaker identification. Figure 6 illustrates the 

objective of the network training, wherein we observed 

that CNN with a VGG-f architecture could achieve 

objectives within 100 epochs.  
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As indicated in the figure, the loss in 100 epochs was 

close to zero, and the training and validation graphs 

verified that the network was appropriately generalized 

without overfitting or underfitting. Therefore, we used 

this model to identify the speakers. 

To evaluate the spectrogram performance in terms of 

the input features of CNN, we evaluated the 

performance of MFCCs and the combination of MFCCs 

with their delta and delta-delta features, which have 

previously exhibited satisfactory results in speech 

recognition [14]. The obtained results were compared 

to verify the effectiveness of the proposed method. The 

testing involved data of 78 samples that were not 

included in the training process. Table 4 summarizes the 

results obtained for 10 samples of speakers.  

As indicated in the table, the spectrogram exhibits better 

accuracy in identifying speakers compared to those of 

MFCCs and MFCCs combined with their delta and 

delta-delta features. These results imply that the 

spectrogram is the most suitable feature to be used with 

CNN to identify the speaker. Moreover, the 

spectrogram comprises raw features that contain 

important information about the speech uttered by the 

speaker. Conversely, MFCCs may result in information 

loss owing to the dimension reduction caused by the 

computation process. Furthermore, the results verify 

that the combination of MFCC and its delta features was 

ineffective in improving the accuracy of identifying the 

speakers.  

 

Figure 6. Training Graph of the Objective Function for 100 Epochs 

 

 

Figure 7. Training Graph of The Objective Function for 100 Epochs 

 

Table 4. Results of Ten Samples of Speakers Obtained Using Different Feature Extraction Methods. 

No. 
Student 

ID 

 STFT MFCC MFCC with deltas 

Sample Identified 
Accuracy 

(%) 
Identified 

Accuracy 
(%) 

Identified Accuracy (%) 

1 001 Sample 1 True 88.380 False 32.393 False 25.448 

2 002 Sample 2 True 91.788 True 75.986 False 49.522 

3 003 Sample 3 True 98.188 True 94.358 True 68.784 
4 004 Sample 4 True 83.595 False 33.863 False 31.666 

5 005 Sample 5 True 92.781 False 46.553 False 24.279 

6 006 Sample 6 True 90.582 True 50.563 False 21.625 
7 007 Sample 7 True 83.536 False 26.278 False 38.136 

8 008 Sample 8 True 84.872 False 45.278 False 40.693 

9 009 Sample 9 True 72.881 False 30.324 True 51.835 
10 010 Sample 10 True 75.952 False 33.773 False 33.601 

The testing results from 78 speakers validated that the 

combination of spectrogram and CNN-VGG could 

identify 77 speakers or 98.78% of the speakers. 

Conversely, MFCC and MFCC with delta features 

could only identify 34.62% and 26.92%, respectively, 

of the speakers. Figure 7 compares the number of 

speakers identified using STFT (spectrogram), MFCC, 

and MFCC with deltas. The results of the study validate 

that the CNN can be applied suitably for both image 

recognition and speech recognition. Furthermore, the 

CNN-VGG architecture was found to be effective in 

identifying speakers.  

4.  Conclusion 

This study verified the application of CNN in speech 

recognition. Speech recognition has various 

applications, including human–machine interaction for 

biometrics. We determined that the VGG-f architecture 

with a learning rate of 0.001 and batch size of 256, 

which is deeper and has more layers than a simple CNN 

architecture, is suitable for speaker identification; 

therefore, it can effectively extract features from 

spectrograms. Furthermore, the experimental results 

validate that, compared to MFCC and MFCC with delta 

features, the spectrogram exhibits a high accuracy of 

98.78% in identifying the speakers. Thus, the 

spectrogram is more beneficial for speech recognition 
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using CNN as it comprises raw features and does not 

require complex computations. In the future, we intend 

to investigate the potential of using the spectrogram for 

dialect identification, which can be implemented in 

various applications of human–machine interactions. 
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