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Abstract  

Identifying emotion out of text has become a research interest in natural language processing and other related fields, 

especially with the advancement of deep learning methods for text classification. Despite some effort to identify emotion on 

Indonesian tweets, its performance evaluation results have not achieved acceptable numbers. To solve this problem, this paper 

implements a classification model using a convolutional neural network (CNN), which has demonstrated expected performance 

in text classification. To easily compare with the previous research, this classification is performed on the same dataset, which 

consists of 4,403 tweets in Indonesian that were labeled using five different emotion classes: anger, fear, joy, love, and sadness. 

The performance evaluation results achieve the precision, recall, and F1-score at respectively 90.1%, 90.3%, and 90.2%, while 

the highest accuracy achieves 89.8%. These results outperform previous research that classifies the same classification on the 

same dataset. 

Keywords: emotion, text classification, twitter, CNN. 

1. Introduction 

The rise of social media allows humans to express their 

emotions by sharing their moments with their fellows. 

Twitter is a social media with the highest user growth 

each year. In Indonesia, Twitter has ranked fourth by the 

most popular social media with at least seven million 

active users by the end of March 2021 [1]. It provides 

texts as their main feature to communicate, which are 

called tweets. As the media of expression, tweets can 

have various information, including human emotion. 

Users often post tweets whenever they have something 

emotional inside them. Likewise, Indonesian social 

media users express themselves through Twitter [2]. 

After all, when compared to other social media that are 

more concerned with visual images, on Twitter they can 

be more expressive because they only focus on text or 

tweets. Also, they mentioned that Twitter users tend to 

be more open-minded. With these advantages, they will 

never feel that when they wanted to reveal themselves, 

other users would respond carelessly or harshly to their 

remarks. The form of self-expression they do is what 

they feel at the time, such as anxiety and deep thoughts. 

Apart from that, at the same time, the emotions felt by 

the users were also expressed via tweets. These issues 

led researchers to find ways of gaining knowledge 

through user tweets. The information gained is about 

analyzing their sentiments, including their emotions.  

Analyzing emotions is part of a psychology field, 

although, in natural language processing (NLP), emotion 

analysis or emotion mining has gone through years of 

research. Analyzing emotions can be done by learning 

the humans’ nonverbal communication, such as facial 

expressions, body gestures, eye contact, touch, space, 

and voice [3]. Therefore, professional human resources 

in the field of psychology are needed to avoid 

misinterpretation. Due to the demanding cost of hiring 

psychologists, researchers are keen to find alternative 

ways. Machine learning is one of the most promising 

approaches for identifying emotion through text 

classification. It learns from the data (supervised) and 

predicts the corresponding classes of the text provided in 

the data. In addition, the ability of a machine or computer 

to understand emotions is critical to the success of 

several other applications. For instance, in the domain of 

customer service, Twitter gains prominence where 

customers are expected to have quick responses. Text 

emotion classification can be applied to monitor the 

cyberbullying, depression, and desperation in social 

media and prevent them from hurting themselves. It also 

helps companies to create an automated system of 



Naufal Hilmiaji, Kemas M Lhaksmana, Mahendra D Purbolaksono 

RESTI Journal (System Engineering and Information Technology) Vol.  5 No. 3 (2021) 584 – 593   

 

DOI: https://doi.org/10.29207/resti.v5i3.3137 

Creative Commons Attribution 4.0 International License (CC BY 4.0) 

585 

 

 

classifying applicants’ personalities through texts to 

seek talents who fit with their corporate culture in the 

talent recruitment process [4]. 

According to the past study of tweets emotion analysis, 

using Multinomial Naïve Bayes (MNB) with Laplace 

Smoothing has obtained good performance results. It 

combines MNB Classifier with multiple feature 

extraction methods, such as n-grams, POS Tag, and 

adjectives. Unigrams has the highest accuracy of 95% 

for the tweets and 67% for the SMS [5]. The same 

method was applied in another study of classifying 

sentiment based on movie review dataset by combining 

TF-IDF as the feature extraction method. It produced the 

best accuracy of 85.16%, meanwhile using SVM 

produced the best F1-Score of 84.9% [6, 7].  

A study proposed the combination of two machine 

learning methods CNN and SVM to construct a text 

sentiment analysis model by using a Word2Vec as the 

feature extraction. This study used the data from 

NLPCC2014, an emotional analysis evaluation task data 

set based on the deep learning method. It consisted of 

10000 rows of training data, with 50% labeled as 

positive and 50% labeled as negative. The testing data 

consisted of 2500 rows, with 50% labeled as positive and 

50% labeled as negative. The result shows positive 

classes have an 89% F1-score, while negative classes 

have 88.6% [8]. 

In 2019, a study proposed a CNN model architecture for 

text sentiment classification using the English Movie 

Review dataset. The model consisted of two consecutive 

convolution layers. The first layer stores the local 

information to the second layer, while the second layer 

extracts features from the contextual information. They 

have produced relatively high-performance results on a 

relatively long text. The accuracy of binary and ternary 

classification respectively 81% and 68% [9]. 

Research on emotion classification on Indonesian 

Twitter data compared multiple machine learning 

methods, such as Logistic Regression, SVM, and 

Random Forest then combined them with multiple 

feature extraction methods, such as Bag-of-Words 

(BOW), Word2Vec (WV), and FastText (FT). The result 

is acceptable, getting an F1-score of 68.39%. Finally, 

they considered adding three more methods, Emotion 

Lexicons, Orthographic, and POS Tag. The result is 

slightly higher than the previous one, getting an F1-score 

of 69.73%. They also provided a dataset called 

“Indonesian Twitter Emotion Dataset” as the result of 

this study [10]. 

A later study reproposed the method used in the [10] by 

using Deep Learning LSTM-GloVe. Tweets are 

tokenized once it enters the input layer into a sequence 

of integers. The padding of zeros is added to match the 

length of each tweet. The system will then build an 

embeddings index to retrieve the index from the GloVe 

dictionary. The parameters used for experiments are: (1) 

Learning rate: 0.005 and 0.001, (2) Dropout: 0.25 and 

0.5, (3) Optimizer: SGD and Adam’s. With the use of 50 

epochs and 100 batch size, precision, recall, and F1-

score were obtained respectively at 33%, 38%, and 35%. 

The accuracy of the model is 46% [11]. 

Based on the research by [10, 11], with the same dataset, 

the Logistic Regression method leads the F1-score result 

at 69.73%, significantly higher than the LSTM-GloVe 

method. This may happen since deep learning methods 

are created to model the distribution that underlies the 

training data. All cases and possibilities are needed in the 

training process to achieve state-of-the-art accuracy. 

Therefore, deep learning methods often require a large 

number of data, much more than conventional ones. 

Meanwhile, both studies only used 4.403 rows of data. 

In addition, the architecture of the model can also affect 

the training performance. 

Considering this research is using the deep learning 

CNN method, our main reference is from [11]. However, 

their results are still far below the average. The authors 

stated that it is caused by underfitting. Although, it is 

unclear the reason they allowed the model to underfit 

when the learning process is being done. Therefore, the 

purpose of this research is to optimize the deep learning 

CNN method by implementing some experiments on 

model architecture (e.g., hyperparameter tuning) to get 

the highest possible performance results and to avoid 

overfits and underfits. The results will then be compared 

to [11] as the baseline of our model prediction. 

2. Research Method 

  

Figure 1. System Flowchart 
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In this research, the method used is Deep Learning 

Convolutional Neural Network (CNN). Figure 1 shows 

the flow of the system used in this research represented 

in a flowchart. The system received input data in CSV 

format and will first undergo preprocessing. Afterward, 

the data will be split into 70% training data and 30% 

testing data. The percentages of the data splitting are 

determined through experiments, and these values are 

considered to be the best for this research. However, 

having an excessive amount of training data will overfit 

the model performance. Meanwhile, the smaller the 

training data will be insufficient for the model to learn 

through processes and will cause underfitting. 

After the data split, the system will continue to build the 

CNN model architecture and do the training process. 

Lastly, the CNN model will then predict the classes of 

every tweet in the test data and evaluate its performance 

results. The evaluation methods used are accuracy, 

precision, recall, and F1-Score. The CNN model will be 

evaluated by comparing it to the baseline whether or not 

it has surpassed them. If it failed to outperform them, the 

model needs to be reconstructed by tuning the learning 

rate, the hyperparameters, or using grid search method 

to find the optimal layer configurations until it has 

successfully produced higher results than the baselines. 

2.1. Dataset 

 

Figure 2. Dataset Class Distribution 

The dataset used contains 4.403 rows of tweets that are 

labeled using five emotion classes, anger, fear, joy, love, 

and sadness provided by [10] in CSV format. 1 Each row 

consisted of a tweet and its respective emotion label 

separated by a comma (,). The first row is a header. For 

a tweet with a comma inside the text, there is a quote 

mark (" ") to avoid column separation. The tweets in this 

dataset have been pre-processed using the following 

criteria based on Table 1. Mentions have been replaced 

with “[USERNAME]”, URLs have been replaced with 

“[URL]”, and Numbers like phone number, invoice 

number, and a courier tracking number have been 

replaced with “[SENSITIVE-NO]”. However, these 

 
1 https://github.com/meisaputri21/Indonesian-Twitter-Emotion-Dataset 

unnecessary strings still need to remove completely from 

the data, because it can lower the performance produced 

by the CNN model due to the learning complexity. 

Table 1. Preprocessing Criteria 

Tweets Preprocessed 

“Baca buku ini diawal 

senyum, ditengah-tengah 

senyum miris, diakhir 

senyum pasrah. Nuhun bung 
@someone” 

“Baca buku ini diawal 

senyum, ditengah-tengah 

senyum miris, diakhir 

senyum pasrah. Nuhun 
bung [USERNAME]” 

“sebagai supporter speak 

bola gue ga suka barca, tapi 

sebagai pecinta sepakbola 

gue suka ini film, keren 
https://example-url.com/” 

“sebagai supporter speak 

bola gue ga suka barca, 

tapi sebagai pecinta 

sepakbola gue suka ini 
film, keren [URL]” 

“Malam saya mau tanya 

kenapa benefit saya 

dibatalkan, saya bukan 

dropshiper dan saya rasa 
tidak ada aturan yang saya 

langgar 1234xxx” 

“Malam saya mau tanya 

kenapa benefit saya 

dibatalkan, saya bukan 

dropshiper dan saya rasa 
tidak ada aturan yang 

saya langar [SENSITIVE-

NO]” 

2.2. Data Preprocessing 

 

Figure 3. Data Preprocessing 

To enhance the data quality, data must be preprocessed 

before getting into the training process. Data 

preprocessing in Machine Learning refers to the data 

mining technique of cleaning and organizing the raw 

data to make it suitable for building and training machine 

learning models. It is used to transform raw data into an 

understandable and readable format. Figure 3 shows the 

flowchart of the data preprocessing. The method used for 

word-stemming is from [12]. PySastrawi is a simple 

Python library to reduce inflected words in Indonesian 

to their base form. Table 2 shows how PySastrawi 

applied to Indonesian terms. 

Table 2. Indonesian Word Stemming 

Word Stemmed 

memainkan (playing) main (play) 

bercanda (joking) canda (joke) 

terkagum (amazed)  kagum (amaze) 

 

In this research, we use a powerful Python tool for 

developing and evaluating deep learning models called 

Keras. Keras is a consistent and simple deep learning 

API, running on top of TensorFlow – a flexible data 

open-source flow-based programming model – designed 

to minimize the number of user actions required for 
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common use cases, and it provides clear and actionable 

error messages [13, 14]. In the preprocessing part of the 

system, Tokenizer from Keras will be applied to get 

word indexes by tokenizing words inside text 

documents, also to transform each text into a sequence 

of integers. This sequence will be used for computation 

inside the neural network since they were not designed 

to understand the inputs that are in non-numeric format. 

2.3. Convolutional Neural Network (CNN) 

This section provides the details of our model. CNN is a 

deep learning method that was initially used for 

analyzing and classifying digital images. Its purpose was 

to extract meaningful features of an image 

convolutionally by moving the kernel on the convolution 

layer through two-dimensional matrices [15]. Based on 

this concept, it can also be applied for text through one-

dimension matrices. Figure 4 shows an image 

representation of the proposed model architecture. It 

consisted of an input layer consists of sequences of 

integers, an embedding layer, a one-dimensional 

convolutional layer, a pooling layer, a fully connected 

layer, and an output layer consisted of five classes, 

anger, fear, joy, love, and sadness. To get better 

understandings of CNN, we will go through the 

definition and the usage of every component that 

constructs CNN models.  

2.3.1. Embedding Layer 

Keras offers an embedding layer that can be used for text 

data on neural networks and it requires the data to be 

integer encoded. The embedding layer works similarly 

as a simple matrix multiplication that transforms words 

into their corresponding word embeddings or turns 

indexes into dense vectors of fixed size. Word 

embedding can be regarded as textual features so that it 

can be counted as a preprocessing step in more advanced 

NLP tasks [16]. This layer can only be used as the first 

layer in a model. The input data will be padded for each 

sentence to create a fixed size of sequences. If the 

sentence is too long, it will be trimmed to the maximum 

length, and if it is too short, it will be padded by zeros to 

match m. The embedding layer will receive these 

sequences and create an embedding matrix within the 

size of m × n, where m is the output dimension. It 

consists of the correlation of each word index in every 

tweet to the whole document. The input dimension m 

should be equal to the number of unique vocabularies in 

the data and the output dimension m is the size of the 

vector space in which words will be embedded. It 

determines the size of the output vectors from this layer 

for each word. In our CNN model, the embedding layer 

will learn along with the model itself rather than using 

pre-trained word embedding models (e.g., Word2Vec). 

It is initialized with random weights and will learn an 

embedding for every word in the previously 

preprocessed data. An embedding layer learns then tries 

to find the optimal mapping of each of the unique words 

to a vector of real numbers.  

Table 3. Word Embedding 

Sentence Embedding 

“hope to see you soon” [1,2,3,4,5] 

“Nice meeting you” [6,7,4,0,0] #zeros for padding 

Table 3 shows how word indexes are assigned to each 

unique word by using a one-hot encoding method from 

Keras Tokenizer API. However, instead of using a large 

amount of one-hot encoded vectors, an embedding layer 

prefers to create an embedding matrix based on word 

indexes to keep the size of each vector much smaller as 

represented in Table 4. 

Table 4. Embedding Index 

Word Index Embedding 

0 [1.2, 3.1, 2.5] 

1 [0.1, 4.2, 1.5] 

2 [1.0, 3.1, 2.2] 

3 [0.3, 2.1, 2.0] 

4 [2.2, 1.4, 1.2] 

5 [0.7, 1.7, 0.5] 

6 [4.1, 2.0, 4.5] 

7 [3.1, 1.0, 4.0] 

Assuming we want to train a CNN model, and Table 4 is 

our training data, we should first specify our embedding 

layer. The number of unique vocabularies from the data 

is 8, so the input dimension m is 8, and 3 for the output 

dimension n. During the training process of the CNN, 

embedded vectors are getting updated and expecting that 

similar meaning words will have similar representations 

Figure 4. CNN Model Architecture 
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in a multi-dimensional space as shown in Table 4. Once 

the training has finished, the embedding layer will 

produce a matrix with the shape of (8, 3) as the output. 

2.3.2. Convolution Layer 

Convolution is a linear operation that performs the 

multiplication of inputs with a set of weights. Therefore, 

a convolution layer was designed to have the ability to 

apply such an operation to a sequence of input data and 

a filter or a kernel to produce a dot product. A dot 

product is the sum of a product of two sequences of 

numbers that correspond to each other and always 

resulting in a single value. As the layer convolves 

through the m × n matrix with an arbitrary stride, it will 

calculate the dot products of this matrix and filters (𝐹) 
to create a feature map f and pass it to the next layer. 

During the convolution process of calculating the dot 

products, the feature map will gain values from it as the 

process continues to the last filter. These values can vary 

because the convolution layer naturally generates filters 

as it trains the data, and they do not have fixed values.  

2.3.3. Pooling Layer 

A pooling layer is a layer that reduces input spatially by 

using downsampling operations. The commonly used 

method of a pooling layer is max pooling. This method 

will take the maximum value for each patch of a feature 

map resulted from the convolution layer. The result of 

using a pooling layer is a summarized version of the 

feature map. In Keras, there is another type of pooling 

that is sometimes used called global pooling. In this 

research, the pooling method used is global max pooling. 

Instead of downsampling patches from the feature map, 

a global pooling layer downsamples the entire feature 

map to a single value. This would be the same as setting 

the pooling size to the size of the input feature map. 

2.3.5. Fully Connected Layer 

A fully connected layer is simply feed-forward neural 

networks which is an artificial neural network 

connection where the connection between nodes does 

not form a cycle [17]. The input to the fully connected 

layer is the output from the pooling layer, which has 

been flattened. After passing through the fully connected 

layers, the final layer will then get probabilities of the 

input being in an appropriate class. 

2.3.6. Dropout 

Small datasets have higher chances of causing overfits 

when using CNN models. This issue may also affect the 

lower performance of the model when the training 

process has done. An approach is needed to reduce the 

overfitting of every network and to average the 

predictions of the model. A dropout comes to regularize 

a fixed-size model by averaging predictions of the 

hyperparameters used in a certain layer by weighting 

each setting of its posterior probability given the training 

data [18].  

Dropout can be applied with most layers in a neural 

network, whether it is a hidden or visible layer. During 

the training process, some layers are dropped 

temporarily across the connections. Dropout can noise 

the training process by forcing layers to drop their nodes. 

The dropout values are between 0 and 1. Assuming it is 

specified to 0.5, it will force layers to drop 50% of their 

nodes to reduce overfitting.  

2.3.7. Regularization 

Regularization is a technique of modifying the model 

such that the model generalizes better. This will penalize 

the weight matrices of the nodes in the network. L1 and 

L2 are the most common types of regularization. It 

updates the general cost function by adding another term 

known as the regularization term. As a result, the weight 

matrix value decreases because it assumes that an 

artificial neural network with a smaller weight matrix 

produces a simpler model. Hence, it will also reduce 

overfitting to a great extent. In this research, the 

regularizer used is the L2 type of regularization for the 

experiment. L2 norm is represented by the term below 

[15]: 

Ω(𝑊) = 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 
𝜆

2
 ×  ∑||𝑊||

2
 (1) 

Where the loss function used here is categorical cross-

entropy, considering the model has five output classes, 

and the regularization parameter ( 𝜆 ) used is the 

hyperparameter whose values are optimized for better 

results and usually in logarithmic scale (10𝑛, 𝑛 < 1). 

L2 regularization is also known as weight decay as it 

forces the weights (𝑊) to decay towards zero, but not 

exactly zero. Intuitively, the smaller weight reduces the 

impact of hidden neurons. In this case, the hidden neuron 

becomes negligible and the overall complexity of the 

neural network is reduced. Less complex models usually 

avoid modeling noise in the data, and therefore, there is 

no overfitting. 

2.3.8. Learning Rates 

Learning rate is a hyperparameter that controls how 

much the model should update the weights for every 

epoch and often has a value in the range between 0.0 and 

1.0. The learning rate may be the most important 

hyperparameter when configuring neural networks [19]. 

It is required to analyze the appropriate value of learning 

rates for better performance. The lower value of the 

learning rate resulting the training process being longer 

and have more epochs, while the higher value will faster 

the learning process. The model will adapt more quickly 

to the problem to get less training time. If the learning 

rate is set too low, training will progress very slowly 

because the model will make very few updates on the 
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weight on your network. However, a learning rate that is 

too high causes the model to obtain the solutions too 

quickly, so that it may skip the important features meant 

to be acquired. 

2.3.9. Adam Optimizer 

Adam Optimizer is an adaptive stochastic learning rate 

optimization algorithm designed for deep neural 

networks by computing individual learning rates for 

different parameters. It combined the Adaptive Gradient 

Algorithm and Root Mean Square Propagation. Both 

methods are using the same concept of stochastic 

optimization. Stochastic optimization is the process of 

optimizing an objective function in the presence of 

randomness. Adam optimizer handles the sparse 

gradients on noisy datasets efficiently by using a smaller 

amount of memory and it can be an advantage for this 

research, considering we use a small amount of data but 

with a more complex CNN model. 

2.4. Model Testing 

Ensuring the model has good performance is needed to 

get a better understanding of the problems. Therefore, it 

needs to be tested by doing predictions. The previously 

trained model will predict the labels from the test data. 

In this research, the methods used to evaluate the 

predictions are accuracy, precision, recall, and F-

Measure. These methods are measured based on a 

confusion matrix represented in Table 5. 

Table 5. Confusion Matrix 

 
Actual 

Class (+) 

Actual 

Class (-) 

Predicted 

Class (+) 
TP FP 

Predicted 

Class (-) 
FN TN 

Accuracy is a method that is often used in research 

related to binary classification and/or multiclass 

classification [20]. Accuracy is the number of correctly 

predicted data points out of all the data points. It can be 

calculated by dividing the number of correct predictions 

by the number of total predictions as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2) 

On the formula above, TP is represented as True 

Positives, where the model correctly predicts the 

positive classes. TN means True Negatives, which means 

the model has correctly predicted negative classes. 

Meanwhile, FP and FN stand for False Positives and 

False Negatives. These denote that the model has 

incorrectly predicted both positive and negative classes. 

Precision is used to measure the positive class predicted 

upon the probability it is correct. When the model 

predicts positive, precision will calculate how often it 

predicted positive class correctly. Recall is the 

probability of positive labels labeled as positive. These 

methods can be calculated by using the following 

formulas: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4) 

The last evaluation method is F-Measure. F-Measure 

provides a single score that balances both the concerns 

of precision and recall in one number. It is the ratio of 

the number of positive classes that are predicted to be 

correct with the number of all samples that should be 

predicted as positive. This method is commonly used for 

evaluating many kinds of machine learning models. The 

F-Measure can be calculated by using the following 

formula. 

𝐹 =
2𝑃𝑅

𝑃 + 𝑅
 (5) 

From the formula above, the F-Measure was produced 

by having a trade-off between Precision and Recall. If 

the model is optimized to increase one and disfavor the 

other, the harmonic mean quickly decreases. However, 

when both precision and recall are equal or have slightly 

different values, the F-Measure will surely have a great 

result. With high precision but low recall, models are 

extremely accurate, but it misses a significant number of 

instances that are difficult to classify. This may not be 

very useful for the evaluation process.  

3.  Result and Discussion 

3.1. Training Process 

Based on Figure 4, the input layer receives a sequence of 

integers from the previously preprocessed data. The data 

consists of 14,648 unique vocabularies and a maximum 

of 83 words for a whole text document. The embedding 

layer takes every unique vocabulary as the input 

dimension, 128 output dimensions, and 83 maximum 

input lengths. Since the embedding layer is the first layer 

of the model, it needs to have more data from the input 

layer for the embedding matrix in terms of better 

learning processes. As a result, the model will have more 

time to learn, but the performance results will be 

significantly higher. Therefore, the more input 

dimension to have, the higher the performance of the 

CNN model. 

Output from the embedding layer goes to the 

convolution layer. The convolution layer consists of 128 

filters as well as 5 kernel sizes. These numbers were 

determined by tuning them repeatedly over time and 

have produced the best performance results. The 

activation function used here is Rectified Linear Unit 

(ReLU) that will produce the output directly if it is 

positive, otherwise, it produces zeros. The usage of 
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ReLU helps to prevent the exponential growth in the 

computation requirements to the CNN operations. As the 

CNN scales in size, the computational cost of adding 

extra ReLUs increases linearly. 

The output of the convolution layer will then undergo 

pooling. The commonly used pooling method is max 

pooling. In this CNN model, the global max-pooling 

layer downsamples the input representation by taking the 

global maximum value over the time dimension. Before 

getting into the fully connected layer, the dropout is 

added to the network. In this layer, the data will then be 

randomly dropped out 50% of the neurons during the 

training process to reduce overfitting and improve 

generalization errors. 

The fully connected layer predicts whether the input data 

belongs to the appropriate class of the five emotion 

classes and it used the Softmax activation function. In 

the training process, the CNN model will go through 

epochs and set 0.0003 for the learning rate of Adam 

Optimizer. The loss function used is categorical cross-

entropy, considering our model classifies five emotion 

classes. As the model fit, the early stopping with the 

patience value of 2 will monitor the validation losses. 

Whenever the validation loss keeps improving, it will 

gain more epochs. Otherwise, it will stop the training 

right away.  

3.2. Text Emotion Classification 

 

Figure 5. Multiclass Confusion Matrix 

The predictions are done by classifying tweets into five 

classes. The confusion matrix in Figure 5 shows the 

correctly predicted tweets among their classes. 22.8% of 

the tweets are correctly classified as anger, 20.5% as 

happy, 19.5% as sadness, 13.5% as love, and 13.3% as 

fear. The remaining 10.4% of tweets are misclassified. 

Table 6 shows the evaluation results of each predicted 

class. These results are base on the confusion matrix in 

Figure 5. The evaluation methods used are accuracy, 

precision, recall, and F1-score. In Table 6, the highest 

precision score is love class, by 93.6%. Meanwhile, the 

fear class has the highest score of recall by 95.3%.  The 

sadness class has the lowest results of all. It indicates the 

system had more difficulties in classifying tweets to this 

class. It may be caused of the trends of tweets labeled as 

sadness are too complicated for the model to learn. 

Nevertheless, the results are not significant in terms of 

score interval compared to the other classes, so the 

model would still get high overall performance results. 

Table 6. Classification Report 

classes precision recall f1-score 

anger 0.913 0.895 0.904 

happy 0.890 0.895 0.893 

sadness 0.863 0.862 0.893 

love 0.936 0.910 0.923 

fear 0.903 0.953 0.927 

micro-avg  0.898 0.898 0.898 

macro-avg 0.901 0.903 0.902 
 

Table 7. Comparison of Previous Studies 

classes precision recall f1-score 

Logistic 

Regression [10] 
0.720 0.682 0.697 

LSTM-GloVe [11] 0.330 0.380 0.350 

Our CNN Model 0.901 0.903 0.902 

According to the definitions, precision calculates the 

number of positive predictions made correctly, and 

recall measures the number of correct positive 

predictions made from all potential positive predictions 

that could be made. The results show that the CNN 

model is more likely tends to identify a tweet as love of 

all tweets that have love class. Meanwhile, recall tells us 

that the model has the highest probability to correctly 

predict a tweet as fear over the other classes upon all 

tweets that had classified. These cases occur because of 

the dependency on keywords inside a tweet that help the 

CNN model to predict tweets to their appropriate classes. 

The ambiguity of keywords may affect the model to 

predict because the occurrences of them are rarely to be 

found in the whole document. People are often using 

autocorrection features on their devices before posting 

their tweets. The clearer a tweet is in terms of contexts, 

the easier the model recognizes it. However, assuming 

that the tweet consisted of unknown abbreviations or 

words, they may also affect the calculation. If they exist, 

then the model will try to learn from the other correlated 

and the adjacent words to calculate the probability 

instead of focusing on them. Table 8 shows how the 

representation of the keywords of a tweet affecting the 

predictions. 

Based on Table 8, we may see that the first tweet has two 

keywords, which are aman (safe) and nyaman (cozy). 

Meanwhile, the second tweet has longer words to 

describe what emotion would fit the tweet. The term 

“safe” and “cozy” are straightforward indicating love by 

their means. 
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Table 8. Keywords Representation 

Tweets Keywords Class 

"Setiap kesempatan yg 

pernah hadir tuk dapat 

membuatmu selalu merasa 

aman dan nyaman, kini 
jadi suatu kehormatan yg 

pernah didapat." 

Translated: 

“Every opportunity that 

has ever been present to 

always feel safe and 
comfortable, has now 

become an honor that has 

been obtained before.” 

aman (safe), 

nyaman 

(cozy) 

love 

“Pulang udah H-4 lebaran 

dilema sekali. Seperti tidak 

bisa melakukan apa2 di 

rumah sebelum lebaran. 

Buka puasa bareng cuman 
3 hari sama keluarga 

begitu juga sahur” 

Translated: 

“Going home on D-4 of 

Eid is such a dilemma. It is 

like I cannot do anything at 

home before D-day. To 
break my fast with family 

within only 3 days as well 

as having a pre-dawn 

meal” 

tidak bisa 

melakukan 

apa2 di 

rumah 
(cannot do 

anything at 

home) 

sadness 

Hence, the precision score of love class is higher than 

other classes. Meanwhile, on the second tweet, there are 

no individual keywords that can be observed. Preferably, 

the model uses word phrases to recognize the 

appropriate class. Referring to these cases, we as human 

beings can be easily predicting both tweets to their 

classes. However, the system would need to learn from 

the trends of the whole document before predicting. The 

same technique may also apply to fear class 

Figure 6 shows how the confusion matrix from Figure 5 

is pooled by splitting it into the matrix of each class. The 

micro-average method can be calculated by using the 

summed version of the multiclass confusion matrix in 

Figure 5, called pooled confusion matrix (Figure 6) [22]. 

Meanwhile, the macro-average method is calculated by 

averaging precision, recall, and F1-score on every class. 

The micro-averaged precision, recall, and F1-score were 

obtained by the same value of 89.8%. Meanwhile, the 

macro-averaged precision, recall, and F1-score were 

obtained respectively 90.1%, 90.3%, and 90.2%. Since 

the pooled confusion matrix has been created, the 

accuracy can be calculated by using the formula (2), 

resulting in 89.8% accuracy. 

In this research, the CNN model will learn the trends 

through the embedding layer. Since tweets are 

transformed into a sequence of integers, each vocabulary 

in every tweet will be paired based on their adjacent and 

correlated word indexes and calculate the probability of 

the occurrences of the whole document. It produces the 

embedding matrix, which will then be used for the model 

to classify tweets based on their language structure in 

Indonesian. 

3.3. Discussion 

A study by [10] using Logistic Regression tends to be 

more suitable for classifying a small amount of data. 

Some experiments on feature extractions were applied to 

the model. However, their results from the proposed 

classifier model are not quite enough to fully meet the 

research standard. In the other study by [11], they had 

obtained very low-performance results by using the 

LSTM-GloVe method. They have also attempted 

experiments by applying multiple hyperparameter 

combinations, including lowering the learning rates, 

adding dropouts, and changing the optimizers, but still 

Figure 6. Pooled Confusion Matrix 
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could not optimize the LSTM model performance 

results. It may occur because of the incompleteness of 

data preprocessing on the raw data since it only 

undergoes preprocessing inside the layers in the LSTM 

model that causes the lack of data quality. For instance, 

they had missed word-stemming, which is a necessary 

part of data preprocessing. It converts every term into its 

base form. In this research, word-stemming played an 

immense role in the data preprocessing process that 

helps the model to more easily recognize each term in 

base form. 

Based on the analysis, both researches had experienced 

difficulties in optimizing their models. In the first 

research, the Logistic Regression method worked more 

effectively than the succeeding. However, despite 

having done some experiments on the model, the results 

are still low. This issue may indicate that the base model 

classifier is the key to getting high-performance results. 

In the research by [11], the LSTM method encountered 

very low performance. Since LSTMs are deep learning-

based models, the quantity of the data matters. The more 

data used, the better the performance. Although, the data 

used only consisted of 4.403 rows of data which is 

insufficient for deep learning models to learn. In another 

way, the model complexity can improve the learning 

process despite having various amounts of data. For 

instance, adding more nodes to the layers will help the 

model extracting more information from the data. This 

information is used as blueprints when the model starts 

to predict. 

This research compares the methods used in the previous 

studies to our CNN method using the same dataset 

provided by [10], as represented in Table 7. Due to the 

limitations of the data used, it is necessary to add more 

nodes within layers to gather more information from the 

data through the networks. However, our CNN model 

implements different feature extraction methods. The 

methods used are within the CNN layers, e.g., word 

embeddings in the embedding layer. The embedding 

layer forms the data into the embedding matrix used for 

the model to digest its contexts. In the training process, 

the embedding matrix is used for calculating the 

adjacency and the correlation of each term in every tweet 

within a whole document. Once the training is done, the 

model predicts the data and evaluates the results. The 

model produced great final results and showed 

significant differences in terms of model performance. 

4.  Conclusion 

In this research, the CNN method is implemented to 

identify emotion by classifying tweets in Indonesian by 

setting the parameter combinations, such as adding 50% 

dropout, applying L2 regularization, and lowering the 

Adam Optimizer’s learning rate to 0.0003. The 

performance results are pretty high, considering this 

research used a small dataset. The precision, recall, and 

F1-score were obtained respectively 90.1%, 90.3%, and 

90.2%, while the accuracy is 89.8%. It is worth 

mentioning that the parameter combinations played a 

huge role in optimizing the model. 

CNN works more effectively on a comprehensive user-

generated suite of tasks and datasets (e.g., user reviews) 

in a much faster computation and has shown better 

performance results compared to the LSTMs [23, 24]. 

Therefore, CNN is more suitable and applicable for 

datasets consist of tweets considering they are user-

generated texts. In this research, the CNN method has 

shown significant differences in performance results that 

outperformed LSTM. Hence, it is concluded that CNN 

has proven to be a better method to use for cases of text 

classification. 
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