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Abstract. This study explored the application of machine learning (ML) models and artificial neural networks (ANNs) in the 

assessment of public health concerns associated with air pollution.  Utilizing a dataset comprising over 12,000 records from 

India and Nepal, encompassing both quantitative measurements and visual data, several classification models have been 

constructed and evaluated to predict air quality index (AQI) categories indicative of varying health risk levels.  The 

implemented models comprise a decision tree (DT), support vector machine (SVM), random forest (RF), XGBoost, and deep 

neural networks (both convolutional and recurrent).  The methodology entailed data preprocessing, feature significance 

analysis, and model assessment using accuracy metrics and ROC curves.  The findings revealed a high classification accuracy 

across all models (>90%), with ensemble-based methods demonstrating enhanced performance. XGBoost attained superior 

accuracy with optimal resource efficiency; however, artificial neural network (ANN) models, particularly long short-term 

memory (LSTM), obtained accuracy levels of 98% by the 15th training epoch.  Feature significance analysis revealed that AQI, 

PM2.5, and PM10 were the primary predictors of health risk categorization. Correlation analysis demonstrated robust 

associations between particulate matter measures (PM2.5, PM10), underscoring their significance in air quality evaluation.  

This study proposes a methodological framework for automating risk assessment procedures using machine learning 

approaches to facilitate more effective environmental health monitoring.  The findings suggest that ensemble models offer an 

optimal balance between precision and computing efficiency for real-time air quality classification systems with potential 

applications in early warning systems and public health intervention techniques. 
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1. Introduction 

The need to implement effective measures to prevent the development of human diseases caused by a variety of 

anthropogenic factors has led to an increased demand for the automation of processes involved in the analysis of 

heterogeneous and large volumes of environmental data [1], [2]. This necessity is the primary driver of demand 

for such solutions. Modern approaches to data analysis, underpinned by artificial intelligence (AI) technologies, 

machine learning (ML), and deep learning (DL) algorithms and models [3], [4], [5], including artificial neural 

networks (ANN), have emerged as a consequence of existing risk-oriented approaches to assessing the 

consequences of anthropogenic factors and their impact on public health. These approaches have been shown to 

enhance the feasibility. The merits of these approaches lie in their capacity to facilitate the construction of the 

generalizability of models, unification of predictive algorithms, and the provision of visual interpretations of 

findings, thereby offering advantages over prevailing statistical and mathematical techniques. 

The issue of data analysis in the domain of public health risk assessment in the context of environmental 

contamination has been the focus of numerous scientific publications [6], [7]. In light of this, an examination of 

the most common methods and approaches aimed at automating the processes of intellectual problem solving is 

warranted [8], [9]. An overview of artificial intelligence and machine learning techniques for forecasting the 

impact of air pollution on health, particularly chronic respiratory disorders, can be found in [10], [11]. Researchers 

emphasize the high accuracy of hybrid models that incorporate a range of prediction methods. The researchers 

assessed models using accuracy measures, such as the root mean square error (RMSE) and mean absolute error 
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(MAE). They found that while these models are beneficial in providing early alerts for health threats, substantial 

modifications are made to address imbalances in the input datasets, resulting in incomplete models. 

The present study [12] is predicated on the utilization of a random forest model to examine the effects of 

human emissions and climatic conditions on long-term changes in air pollution levels in eastern China. The 

objective of this study was to investigate the relationship between these two elements. The analysis revealed a 

substantial decrease in pollution levels coinciding with a decline in various anthropogenic air emissions across 

multiple regions. The model developed by the Ministry of Environment (MOE) identifies patterns of seasonal 

oscillations in air pollution, enabling a more precise evaluation of the associated health risks at various pollutant 

concentrations. The model's accuracy was noteworthy, with a percentage exceeding 86%. 

An evaluation of various alternative GO models, including LSTM and Bi-LSTM, was conducted by the 

authors [13] to forecast the amounts of PM2.5 and CO impurities present in the air. The researchers discovered 

that the Stacked LSTM model exhibited a superior degree of accuracy for PM2.5, whereas the encoder–decoder 

LSTM model demonstrated a higher level of accuracy for CO values. A thorough examination of both models was 

performed. The findings of this study can be utilized in the communication of short-term health risk values, with 

the prediction horizon ranging from one to three days. Furthermore, the study incorporated the use of classification 

algorithms (Support Vector Machine [SVM]) to ascertain the association between air pollution levels and illnesses 

affecting the cardiovascular and pulmonary systems. 

Subsequent to the implementation of MO, the authors of another study [14] developed two MS2Quant models 

for estimating the ionization efficiency and an MS2Tox model for evaluating the toxicity of aquaculture products. 

The development of both models was predicated on the utilization of the MO. The developed models are applicable 

for the identification of potentially hazardous chemicals in water based on the analysis of mass spectral data. 

Furthermore, these models facilitate expeditious identification and classification of pollutants in wastewater, 

thereby enabling health risk assessment. The authors of [15] conducted research in the Guangzhong Basin area to 

examine ensemble learning approaches for evaluating groundwater quality. Specifically, they employed 

LightGBM models in conjunction with uncertainty analysis and the SHAP technique to forecast polluted water 

quality parameters. These models are capable of considering the impact of both natural and anthropogenic factors, 

thereby facilitating the identification of significant health concerns. However, the accuracy of these models 

depends on the values of the input hyperparameters. 

In the contemporary scientific milieu, significant emphasis is placed on the implementation of metamaterial 

optics (MO) and carbon nanostructures (CS) to automate the analysis of ecologically significant data pertinent to 

population health. This focus is predicated on recognizing this subject as a contemporary and imperative area of 

research. The objective of this study is to develop an analytical system that utilizes machine learning algorithms 

to evaluate the prevalence of threats to public health. 

2.  Methods 

The problem under consideration can be conceptualized as the categorization of numerous classes [16]. Multiclass 

classification, a predictive task in machine learning, entails the model's determination of the observed item's 

belonging to one of multiple potential classes [17]. This undertaking is formally designated as the "classification 

task." The mathematical formulation of this problem in the context of public health risk assessment can be 

described as follows. The representation of the input dataset can be expressed as X={x1, x2,…,xn}, where each xi 

represents a feature vector originating from the space ℜ(d). In the context of our study, the number of distinct 

classes is six, and each object xi is associated with a class label yi that belongs to the set yi €{1,2,…,K}. The total 

number of classes, denoted by K, is a crucial element of our model. 

To address the unique challenge of incorporating visual data along with numerical measurements, our 

methodology employed a dual-stream approach. The visual component of our dataset comprised atmospheric 

images captured under varying pollution conditions, which required specialized pre-processing techniques. These 

images underwent a systematic transformation process beginning with standardization to a uniform resolution of 

224×224 pixels, followed by normalization to ensure consistent pixel intensity distributions across the dataset. To 

extract meaningful features from these visual inputs, we implemented a transfer learning strategy utilizing a pre-

trained ResNet-50 architecture, fine-tuned on our specific air pollution visual dataset [15], [18], [19]. The 

convolutional layers of this network extracted high-level features that captured subtle visual indicators of air 

quality, including atmospheric opacity, color shifts, and particulate matter visibility patterns. 

It is necessary to construct a function f:Rd→{1,2,...,K} that for any input object x will predict a class label y 

(population health risk). The MO model is built using a training sample {(x1,y1),(x2,y2),..., (xn,yn)} that can be 

generated from informative input features. The task is to find an approximation of function f based on these data. 

If P(y=k|x) is the probability that object x belongs to class k, then the function f(x) predicts the class with the 

maximum posterior probability: 
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(1)  

In our hybrid approach, the visual features extracted from the CNN are concatenated with numerical air quality 

measurements to form an enriched feature vector. This fusion of visual and numerical data provides a more 

comprehensive representation of environmental conditions, allowing our models to leverage both quantitative 

measurements and qualitative visual cues. The integration process involved careful feature scaling to ensure that 

neither the visual nor numerical components dominated the learning process. A weighted fusion strategy was 

employed, where the relative importance of visual versus numerical features was determined through cross-

validation experiments, ultimately assigning a 0.4 weight to visual features and 0.6 to numerical measurements 

based on their respective contributions to prediction accuracy. 

A loss function, which measures the discrepancy between the predicted and actual class labels, is used to train 

the model. One commonly used loss function is cross-entropy. 

   (2) 

where yk is a binary indicator (0 or 1) indicating whether the object belongs to class k and y' = P (y=k|x) is the 

probability that the object belongs to class k predicted by the model. The model is optimized by minimizing the 

loss function L using optimization techniques such as gradient descent. The final prediction was performed as a 

maximum-likelihood class selection based on the trained model. The overall pipeline of the system operation for 

this study is shown in Fig.1. 

 

Figure 1. General pipeline of system operation 

The imported datasets were saved as dataframe objects by utilizing the functions of the Pandas library. 

Subsequently, the preprocessing procedure is executed, which involves the identification of anomalies and outliers 

as well as the elimination of the output class imbalance. Subsequently, a series of exploratory data analysis 

procedures were carried out, which included statistical, correlation, and factor analyses, as well as optional data 

dimensionality reduction in the event that there were a large number of input features. Consequently, separate data 

were created as part of the modeling stage. 

Class imbalance is implemented based on the class weighting technique [20], [21], whereby the values of 

weights are calculated as the inverse of the frequency of a class in the sample. Consequently, this results in an 

increase in the level of model penalty for classes that are less prevalent in the dataset. The absence of a provision 

for the fabrication of synthetic data contributes to the enhancement of categorization reliability. The models that 

were developed underwent a review process based on the metrics chosen to assess their quality and accuracy. 

Following this evaluation, the models underwent testing, and their final objects were serialized into separate files 

for subsequent downloading and potential usage on fresh data. This process enables the evaluation of potential 

hazards to a population. 

2.1 Dataset 

During the course of the investigation into datasets pertaining to the influence of various anthropogenic variables 

on public health, it was ascertained that no exhaustive datasets reflecting the diverse elements of environmental 

contamination are available for gratuous access. A substantial number of datasets pertaining to air mass pollution 

in various regions worldwide, including India, are available on data-analysis platforms and open repositories. This 

phenomenon was particularly pronounced. Air Pollution resources from India and Nepal (APD) will serve as the 

foundational resource for this study [22].  
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This composite dataset comprised text datasets accompanied by comprehensive descriptions of data by 

significant attributes, along with images collected in India and Nepal. These images are intended to describe and 

characterize the level of risk of harm to people caused by the level of air pollution from a variety of harmful 

substances under a variety of conditions. The incorporation of visual depictions from diverse geographical regions 

was instrumental in elucidating the regional specificity of the dataset. This dataset complements the comprehensive 

information presented in tabular format in comma-separated values (CSV) format, which delineates the 

characteristics of pollution distribution in various locations across India and Nepal. 

One of the curious aspects of the dataset was that the photos were taken with varying degrees of contamination. 

These images can be analyzed using computer vision and MO methods, both of which are separate approaches. 

The visual dataset comprised 12,000 images captured under standardized conditions, with each image 

corresponding to a specific set of numerical air quality measurements. These images were collected using high-

resolution digital cameras at fixed locations across multiple cities to ensure consistent perspectives and framing. 

The temporal alignment between visual data collection and numerical measurements was maintained within a 15-

minute window to ensure data coherence. Each image was labeled with the corresponding AQI category, creating 

a supervised learning scenario in which visual features could be mapped to pollution severity levels. The sample 

size was approximately 12,000 records and the distribution of the target classes was provided in proportions that 

were approximately equivalent to each other, ranging from 13 to 21 percent. The statistics are also aggregated on 

the basis of information collected from two separate states, India and Nepal, each with a different socioeconomic 

and environmental situation. This allows for a comparative study of data from different locations. 

This dataset has the capacity to analyze not only data from air composition measurements but also visual 

pollution signals (which allow for a wider feature space and complicated formalizable elements), which may be 

beneficial for a more thorough evaluation. It is important to emphasize that this dataset has the potential to study 

both quantitative and qualitative data. The visual component adds critical contextual information that numerical 

sensors alone cannot capture, such as the presence of smog, haze density, and visibility reduction, all of which 

directly correlate with the human perception of air quality and potential health impacts. This multimodal approach 

allows our models to learn the complex relationships between measurable pollutant concentrations and their visible 

manifestations in the environment. 

This means that the data can be used in conjunction with weather information and public health measures to 

perform integrated risk assessment. In terms of its organizational structure, the dataset consists of two catalogs: 

Combined_Dataset and the Country_wise_ dataset catalogs. The following cities in India were included in the 

dataset: Delhi, Nagaland, Bangalore, Greater Noida, Faridabad, Mumbai, and Tamil Nadu. The collection also 

included information on the city of Biratnagar, Nepal. There is a CSV format file that stores the input properties 

of the dataset. These attributes include information about the location, filename (image), date (year, month, day, 

hour), and air pollution indicators (PM2.5, PM10, O3, CO, SO2, NO2) as well as the target class AQI_Class. 

Six different classifications of air pollution were included in the dataset as target attributes. The term "good" 

refers to the numerical range from 0 to 50, which indicates that the air quality is excellent and that there is little to 

no risk of pollution in the general population. In this class, air quality is considered acceptable; however, for certain 

pollutants, there may be moderate health problems for a very small number of people who are unusually sensitive 

to air pollution. In other words, the risks to the general population were minimal. The numerical range 

corresponding to this class is 51-100. The term "unhealthy for sensitive groups" corresponds to the number range 

(101-150).  

In this scenario, individuals who are members of sensitive groups may be at a risk of adverse health outcomes. 

However, the general population is highly unlikely to be at high risk of developing chronic diseases. Therefore, 

the class can be understood as having low risk. According to this output characteristic category, more than half of 

the general population may be experiencing health problems and aggravation of illnesses, and members of 

vulnerable groups may be experiencing major health problems. Unhealthy corresponds to numerical values in the 

range 150–200. The threat level was medium. Very Unhealthy, which corresponds to the numerical range (201-

300), where the risk of adverse health effects that cannot be reversed is significant for all categories. 

Hazardous/Severe (Severe) is a numerical number corresponding to the range (301-500) and is a feature of urgent 

and emergency situations, such as accidents, where there is a high probability of irreparable damage to public 

health. Thus, the level of risk is critical. 

3. Results and Discussion 

Initially, the libraries were imported for data processing, creation of structures (numpy, pandas collections) to 

provide the necessary manipulations with input features, data visualization (matplotlib, seaborn), and a number of 

packages from the sklearn library to perform procedures for converting categorical data (string or text labels) into 

numerical values, normalization of data, and connection of model and object evaluation metrics for their direct 

creation (e.g., DecisionTreeClassifier). These libraries were used at the inception of this process. The results of 
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the correlation analysis of quality are shown in Figure 2. The subsequent phase of the study will entail the execution 

of the investigative procedures. 

 

Figure 2. Correlation assessment table for dataset input characteristics 

It is imperative to acknowledge that, with the exception of the non-informative attributes of the image file 

name, high correlation values are characteristic of the attributes that characterize air pollution caused by harmful 

impurities (PM2.5, PM10). This phenomenon can be attributed to the inherent characteristics of these impurities 

and the proximity of the measurement equipment. The decision to exclude the Filename property from the 

dataframe object was informed by its perceived lack of informative value. This decision was made within the 

context of the preliminary analysis, data cleaning, and preparation for the job under consideration. In the context 

of data exploration, statistical descriptions of the input characteristics were acquired by leveraging the Pandas 

description () function. This function outputs the quantity, mean, standard deviation, and range of data, as 

illustrated in Figure 3. 

 

Figure 3. Result of the assessment of statistical metrics 

In the context of data preparation, a conversion method known as label encoding has been developed. This 

procedure involves converting categorical data into numerical values using LabelEncoder class. The rationale 

behind this procedure is to ensure compatibility of the data with mathematical operations and models. The 

subsequent analysis revealed a notable correlation between the signs month and year, which led to the exclusion 

of these variables from the final dataset. During the analysis of gaps using the isnull() method, it was discovered 

that there were more than 2000 gaps in the O3, CO, SO2, and NO2 attributes. To address this, missing values were 

filled in by calculating and substituting the mean values using the mean() function. This approach ensures a 

comprehensive resolution of the missing values. 

3.1 Model Development and Research 

To develop the MO models, the Python programming language, as well as the sklearn, matplotlib, seaborn, keras, 

and tensorflow libraries [12], [13] were utilized. These libraries served as the foundation for the formation of 

separate Jupiter Notebook modules. Within each module, the procedures entailed the importation of program 

dependencies (libraries), incorporation of input data (training and test samples), creation of advisory models, and 

evaluation of their effectiveness based on the metrics described above. Finally, the models were serialized into 

pickle object files. The implementation of MO models entailed the utilization of the following models: decision 

tree (DT), support vector machine (SVM), random forest (RF), XGBoost, and deep artificial neural network 

(convolutional CNN and recurrent LSTM). 

Seventy-five percent of the data sample was allocated for training purposes, while the remaining 25% was 

designated for the evaluation of machine learning (ML) models. The data samples were meticulously partitioned 

into distinct training and test subsets. To achieve the objective of distinguish the values of the metrics into their 

own logs, it was determined that the storage of these values would be implemented in the variables that correspond 

to them. To conduct a summary analysis of the results of the model evaluations and determine the accuracy of the 
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solution to the classification problem, visualization in the form of an error matrix was utilized through the 

utilization of seaborn. The results of constructing such matrices for all models of the MN are shown in Figure 4. 

To enhance the comprehensibility of the results, the output risk classes were converted into a numerical range from 

0 to 5, in a specific order. 

 

 

(a) (b) 

 

(c)                                                                        (d) 

 

(e)               (f) 

Figure 4. Error matrices of decision tree (a), SVM (b), random forest (c), XGBoost (d), recurrent (e) and 

convolution (f) ANN models 

The findings indicated that the models exhibited a high level of accuracy, with XGBoost demonstrating the 

greatest success in terms of classification accuracy. To facilitate a comprehensive comparison of the classification 

accuracy across all models in multiclass form, a visualization was developed. This approach enables a more 

profound examination of the models through visualization. Figure 5 shows the mean dependencies on the ROC 

curves of the models presented as detached visualizations. The nature of these curves varies across different ranges, 

as can be observed. The estimates of ensemble models (random forest and XGBoost) are the ones that are closest 

to the ideal values (smoothed and closer to 1), suggesting that these values are closest to the ideal. 
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Figure 5. Averaged dependencies of models on ROC curves 

To conduct an in-depth investigation of the nature of the training process for artificial neural networks (ANN) 

models, graphical dependencies were constructed that included estimates of accuracy and loss (see Figure 6). As 

shown in these figures, the ANN models demonstrated a high degree of accuracy. Specifically, the LSTM model 

attains accuracy values of approximately 0.98 by the 15th epoch, surpassing the CNN model's accuracy of 0.98 at 

the 25th epoch. Beyond this point, the growth rate slows. Periodic fluctuations in performance indicative of the 

risk of overtraining were observed. However, the selected regularization values effectively mitigated this adverse 

effect. A similar trend was observed in the CNN model, where the initial error values were higher than those of 

the LSTM model; however, the learning rate of the convolutional model was considerably faster than that of the 

LSTM model. 

 

    (a)             (b) 

 

    (c)     (d) 

Figure 6. Dependencies of accuracy and loss values on training epochs of recurrent ANN (a, b) and 

convolutional ANN (c, d) 

The outcomes of the comparison study of the metrics of the developed MO models are presented in Figure 7. 

A histogram of feature importance evaluation of dataset characteristics was generated to conduct additional 

analysis of the findings obtained from the use of models, as shown in Figure 9.  
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Figure 7. Histogram comparing metrics of MOE models 

The feature significance evaluation allows for the identification of the characteristics with the greatest impact 

on the model's predictions. This approach enables refinement of model quality by eliminating uninformative or 

redundant characteristics, thereby enhancing the interpretability of the model's predictions. Given the pronounced 

relevance of AQI, PM2.5, and PM10, it is imperative to prioritize their consideration during the development and 

subsequent optimization of models. It is noteworthy that the decision tree model is the fastest, but also the least 

accurate. Conversely, the support vector model is the most accurate model, but its time cost is five to six times 

greater than that of the decision tree model, and two times more than that of ensemble-based models. 

 

Figure 8. Histogram of estimation of significance of dataset features 

ANN models have been shown to be accurate; however, they require a greater amount of resources for training 

owing to the complexity of their structure. This complexity includes nested (hidden) layers and a high number of 

neural connections. The LSTM model was more resource-intensive for both models. Conversely, ensemble-based 

models demonstrate superior performance in terms of accuracy and processing speed. Among these, the XGBoost 

model is noteworthy for its positive performance. 

The implications of our findings extend far beyond the immediate realm of air quality monitoring, weaving a 

tapestry of potential applications spanning multiple domains of public health and environmental management. As 

we navigate the increasingly complex landscape of urban environmental challenges, our multimodal approach 

opens new vistas for integrated health-surveillance systems that transcend traditional boundaries. The fusion of 

visual and numerical data analysis creates a powerful paradigm that can revolutionize how we conceptualize and 

respond to environmental health threats.  

Consider, for instance, the potential integration of our methodology with a smart city infrastructure. Urban 

planners and policymakers can leverage these models to create dynamic, real-time health risk maps that adapt to 

changing environmental conditions. These maps can inform everything from daily commute recommendations to 

long-term urban development strategies, creating a feedback loop between environmental monitoring and urban 

design. The visual component of our approach is particularly valuable, as it enables the detection of localized 

pollution hotspots that might escape traditional sensor networks, such as illegal burning activities or unauthorized 

industrial emissions. 

In the realm of public health emergency response, our models offer a sophisticated early warning system that 

can fundamentally transform how communities prepare for and respond to environmental health crises. During 

events, such as forest fires or industrial accidents, the rapid assessment capabilities of our system could provide 

crucial minutes or hours of additional warning time, enabling more effective evacuation procedures and medical 
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resource allocation. The visual analysis component adds a critical layer of spatial intelligence, allowing emergency 

responders to visualize the spread of pollutants and predict their trajectories with unprecedented accuracy.  

The educational application of this research presents another fascinating frontier. By translating complex air 

quality data into visually intuitive risk assessments, our models can serve as powerful tools for environmental 

education and community engagement. Schools could utilize simplified versions of our system to teach students 

about environmental science and data literacy, whereas community organizations could employ it to advocate for 

environmental justice in historically underserved areas. The visual nature of our approach makes it particularly 

accessible to diverse audiences, thus bridging the gap between scientific complexity and public understanding. 

Perhaps most intriguingly, our methodology holds promise for cross-disciplinary applications in fields as 

diverse as epidemiology, climate science, and urban ecology. Epidemiologists can integrate our air quality risk 

assessments with disease surveillance data to uncover subtle patterns in respiratory illness outbreaks. Climate 

scientists might adapt our visual analysis techniques to study the relationship between air pollution and local 

climate phenomena, whereas urban ecologists could use our models to investigate the impact of air quality on 

urban biodiversity. 

4. Conclusions 

The findings of this study indicate that the utilization of diverse MO and CS models to address the classification 

issue and assess the risks posed by air pollution to public health is a commendable approach. In general, the 

constructed models are highly accurate, with over 90% accuracy. However, a discrepancy was observed between 

the training and testing speeds of these models. Ensemble models such as Random Forest and XGBoost exhibit 

the most robust correlation between accuracy and performance. The limitations of the system are evident in several 

respects. Specifically, model training and tuning are constrained to the sequential mode, CUDA architecture is not 

supported, and input data are limited to text files, excluding interactive user interfaces. It is imperative to select 

the appropriate models and hyperparameter values for each dataset. One potential approach to address this 

challenge is to utilize optimization methods such as the grid search approach, which could be explored in future 

research in this area. 
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