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Abstract. This study develops and evaluates Convolutional Neural Network (CNN) models for classifying banana maturity 

stages using images, thereby addressing a significant challenge in the banana supply chain. The banana industry represents a 

major agricultural sector worldwide, with Brazil exporting 56.2 thousand tons in 2023. Accurate maturity classification is 

essential for optimizing harvest timing, reducing postharvest losses, and extending shelf life. We utilized a public Brazilian 

dataset of 1,000 images of Prata Catarina banana categorized into eight ripening stages based on peel coloration standards 

established by the Brazilian Program for Horticulture Modernization. The images were preprocessed to a standardized 200 × 

200-pixel resolution, and we evaluated the effectiveness of the data augmentation techniques, including horizontal flip, vertical 

flip, rotation, and zoom. Our CNN architecture consisted of five convolutional blocks with a dropout layer prior to flattening. 

We conducted six experiments to compare three classification scenarios (eight, five, and two ripeness classes) with and without 

data augmentation. Our findings demonstrate that CNN models can effectively classify banana ripeness, with performance 

improving significantly as classification granularity decreases. The best-performing model achieved 89.5% accuracy, 87.2% 

precision, and 89.6% recall when classifying bananas into two categories. 
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1. Introduction 

The banana industry is one of the most widely farmed and consumed fruits in the world, which is one of the reasons 

why it is one of the major agricultural commerce sectors worldwide [1].  For this reason, it is vital to have a solid 

understanding of the most effective production, harvesting, transportation, and storage techniques to ensure the 

safety of food supplies worldwide. In addition, Damasceno et al. (2019), Brazil exported 56,2 thousand tons of 

bananas by 2023 [2]. This had a substantial impact on the agricultural industry, which is responsible for 49 percent 

of Brazil's total exports [3], [4], [5].  

Owing to the relevance and effect of the banana supply chain, several initiatives have been developed to 

address the problems that have been experienced. Consequently, agricultural production operations have become 

more competitive and efficient. Maturity is one of these issues that must be addressed, and the maturity of the 

banana is an essential component in the harvesting process [6], [7] because it has a substantial impact on both the 

quality and market value of the fruit [8]. Farmers are required to determine the stages of maturity that bananas 

have reached to reduce losses during the post-harvest period and significantly extend the shelf life of the fruit. 

The utilization of Artificial Intelligence (AI) models in the production of bananas improves the comprehension 

of the various phases of ripeness [9], [10], which in turn makes it easier to choose the most appropriate time to 

harvest the bananas. Because of this, the completed product is guaranteed to be of excellent quality, which not 

only satisfies the expectations of consumers but also enhances the reputation of the business. Sabilla et al. (2019) 

investigated three unique phases of ripeness: unripe, ripe, and overripe maturity [11].  The overripe category was 

maintained by Mazen and Nashat (2019), who also investigated three earlier stages: green, yellowish, and half-

ripe [12].   

Increasing productivity, reducing waste, upgrading agricultural practices, and creating a more sustainable food 

industry are all possible outcomes that can be achieved via the utilization of artificial intelligence approaches and 
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models for determining the maturity level of bananas. Through the utilization of Artificial Neural Network 

methods, the purpose of this study is to develop a model capable of determining the ripeness of a banana based on 

its image. This model will consider practical applications, and will only require the camera of a mobile device. 

2.  Methods 

The photo dataset of Prata catarina banana, supplied by Martins Neto et al. (2023), was employed in this 

investigation [12].  Photos of bananas sorted into eight different phases of ripeness are included in the repository, 

which is the first Brazilian dataset to be made available to the public.  The collection comprises one one thousand 

photographs, ranging in resolution from 2248×4000 to 3120×4160, and is categorized into eight distinct stages of 

ripeness.  

The classification criteria for bananas set by the Brazilian Program for the Modernization of Horticulture and 

Integrated Fruit Production served as the basis for the establishment of these stages [13]. The eight stages were 

classified according to banana peel coloration. The stages were as follows: completely green, green with slight 

yellow, mostly green with some yellow, predominantly yellow with some green, yellow with green tips, fully 

yellow, yellow speckled with brown spots, and yellow with extensive browning.  The eight ripening phases that 

bananas go through are depicted in Figure 1. 

 

Figure 1. The eight stages of banana maturity, ranging from (a) "entirely green" to (h) "yellow with extensive 

brown spots." 

The preceding section referenced many maturity classifications. To enhance the comparability of the findings, 

we further evaluated the separation of the stages into five and two classes, alongside the initial division into eight 

classes. In the assessment, including five categories, bananas were classified as green (grades 1 and 2), green-

nearing yellow (grades 3 and 4), yellow (grades 5 and 6), somewhat yellow (grade 7), and heavily speckled (grade 

8). In the assessment, which included only two classes, a distinction was made between green bananas (grades 1–

4) and yellow bananas (grades 5–8).  

For preprocessing, a variant of the data was produced by data augmentation (DA), a technique that involves 

creating synthetic data from existing data, thereby enhancing the overall data volume [14], [15]. Four distinct 

operations were employed: horizontal flip, vertical flip, rotation, and zoom, with probabilities of 50%, 50%, 70%, 

and 50%, respectively, for the occurrence of each operation for every image. Subsequent to the procedure, identical 

photographs were retained for each of the following phases with eight, five, or two classes, resulting in an 

additional 150 images for training purposes. The initial three processes were selected because they do not modify 

the banana's structure as they occur naturally. The zoom was adjusted to replicate the various image capture 

methods. 

Convolutional Neural Network (CNN) models have been developed [16], [17]. Python programming language 

was utilized, particularly the Keras packages for constructing deep learning models [18], [19] and the augmentor 

for data augmentation [14], [20]. The outcomes of the developed models were evaluated using the metrics of 

accuracy, precision, and recall, as delineated in Equations 1, 2, and 3, respectively:  

Accuracy =
𝑇𝐴

N
 (1) 

Precision =
𝑇𝑃

TP+FP
 (2) 
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Recall =
𝑇𝑃

TP+FN
 (3) 

In conclusion, six tests were conducted to assess the use of CNN in the maturity categorization of Catarina 

silver bananas, considering three maturity level separations and the inclusion or exclusion of data augmentation 

techniques. 

3. Results and Discussion 

Accordingly, the entire dataset compiled by Martins Neto et al. (2023) was employed.  Two different high 

resolutions were included in the source photographs.  Standardization of the resolution was necessary to guarantee 

that the models received the same input. Simultaneously, a reduction in resolution was necessary to improve 

computational efficiency and eliminate characteristics that were not necessary for class categorization.   

Based on the results of tests that evaluated a number of different resolutions, the decision was made to use 

photos with a resolution of 200 × 200 pixels. The needs of the experiment were taken into consideration when 

implementing data augmentation, which was performed in addition to changing the resolution.  Several examples 

of these four approaches are shown in Figure 2. These techniques include zooming, rotation, horizontal and vertical 

flipping.  To develop and evaluate the models, data were divided into three categories: 70 percent for training, 20 

percent for validation, and ten percent for testing.  This was simply the training set subjected to the data 

augmentation procedure. 

 

Figure 2. Illustrations of data augmentation techniques, including horizontal flip, vertical flip, rotation, and 

zoom. 

Interestingly, our analysis revealed that data augmentation techniques, contrary to conventional expectations 

in deep learning applications, generally reduced the model performance across most experimental configurations. 

To investigate this counterintuitive finding, we conducted a detailed examination of the augmented images and 

their impact on classification accuracy. The primary challenge appears to stem from the distinctive visual 

characteristics of the banana ripening patterns. When subjected to vertical flipping, the natural orientation of 

bananas is inverted, creating representations rarely encountered in real-world scenarios. Similarly, excessive 

rotation (applied with 70% probability) often distorted the distinctive curvature and color gradient patterns, which 

served as critical indicators of ripeness stages. 

Further examination of the misclassified instances revealed that augmentation particularly affected the 

differentiation between adjacent ripeness classes. For example, in the 8-class model, augmented images of stage 4 

(predominantly yellow with some green) were frequently misclassified as stage 3 (mostly green with some yellow 

tips) or stage 5 (yellow with green tips). The color transformations resulting from zoom operations sometimes alter 

the perceived color distribution across the banana surface, artificially modifying the features crucial for accurate 

ripeness assessment. 

We observed that horizontal flipping was the least detrimental augmentation technique, likely because it 

preserved the natural orientation of color progression in bananas. Conversely, zoom operations proved to be the 

most problematic, particularly when distinguishing between Stages 7 and 8, where brown speckling patterns are 

critical differentiators. The zoomed images sometimes magnify or diminish these speckles, leading to classification 

errors. Notably, the impact of data augmentation was less pronounced in the binary classification scenario (green 

versus yellow bananas), where the distinguishing features were sufficiently robust to withstand the transformation. 

This suggests that data augmentation might still be beneficial for coarse-grained classification tasks but requires 

careful calibration for finer-grained distinctions in banana ripeness classification. 

In the course of this research, a number of tests were conducted to determine the layers that constitute the 

CNN model. The tests included models that contained three to five convolutional blocks (Convolutional+ReLU 

and Max Pooling), with variations in the output dimension that either matched or differed from the input. The 

purpose of these tests was to evaluate the ability to capture broader regions as opposed to the allocation to specific 

points that were influenced by the movement of the convolution window across the images.  As a result of the 
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alterations made to achieve a satisfactory conclusion, the same model was utilized across all experiments. The 

only modification that was made was to the final classification layer to accommodate the varying number of classes 

that were present in each trial (as described in the methodology section).  

 

Figure 3. The architecture of the developed CNN model is illustrated using an experiment involving eight 

classes as a case study. 

Five convolutional blocks were established, incorporating a dropout layer that reduced weights by 20% prior 

to flattening, culminating in a fully connected layer utilizing the ReLU activation function, designed for eight 

output classes for each experiment. Figure 3 shows an example of the construction of the model. All models were 

trained across 10 seasons with a batch size of 32 samples, employing the Adam optimizer (Kingma and Ba, 2014) 

for parameter optimization, and utilizing a sparse categorical cross-entropy loss function. 

Many models have been constructed and assessed using the criteria of accuracy, precision, and recall. The 

outcomes derived from both the training and testing datasets are shown in Tables 1 (training) and 2 (testing). 

Table 1. Results of models used to categorize trials using 8, 5, and 2 classes, training data, and data 

augmentation (percentages show results) 

Number of 

Classes 

Accuracy Precision Recall 

Without DA With AD Without DA With AD Without DA With AD 

8 classes 52,3 46,0 51,0 49,0 40,0 43,4 

5 classes 65,3 69,2 64,3 72,4 61,0 63,0 

2 classes 88,6 78,6 87,9 79,4 87,7 81,7 

 

Table 2. Results of models used to categorize trials using 8, 5, and 2 classes together with test data, utilizing or 

not data augmentation (percentages show results) 

Number of 

Classes 

Accuracy Precision Recall 

Without DA With AD Without DA With AD Without DA With AD 

8 classes 45,3 34,7 30,3 23,3 36,7 31,1 

5 classes 57,9 60,0 59,3 48,6 56,5 52,3 

2 classes 89,5 76,8 87,2 77,0 89,6 81,3 

 

The outcomes for the eight classes during training, with and without data augmentation, yielded accuracies of 

52.3% and 46%, respectively. Precision was recorded at 51% and 49%, whereas recall was superior with data 

augmentation at 43.4%, in contrast to 40% without it. For the test data, the accuracy was 45.3% without data 

augmentation and 34.7% with it; the precision was 30.3% and 23.3%, while the recall was 36.7% and 31.1%, 

respectively. The optimal performance for this experiment was 45.3%, considering the eight distinct stages of 

development, and utilizing only the original data for training.  

The outcomes for the five classes exhibited distinct behaviors compared with the model trained with eight 

classes. As anticipated, the overall performance improved owing to the reduced number of classes. The accuracies 

were 65.3% and 69.2% for training with and without data augmentation, respectively, and the test accuracies were 

57.9% and 60%, respectively. The precision was 64.3% for training without data augmentation and 72.4% for 

training with data augmentation, accompanied by recall values of 61% and 63%, respectively. In the test, the 

precision was 59.3% and 48.6%, while the recall was 56.5% and 52.3%, respectively, with and without data 

augmentation. 
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Ultimately, with only two classes, the model demonstrated enhanced generalization capability, achieving 

accuracies of 88.6% and 78.6% with and without data augmentation, respectively, during training. The accuracy 

was 89.5% without data augmentation and 76.8% with data augmentation using test data. The precision was 87.9% 

and 79.4% during training, whereas the recall was 87.7% and 81.7% with and without data augmentation, 

respectively. In the test, the precision was 87.2% and 77%, while the recall was 89.6% and 81.3% for the scenarios 

with and without data augmentation, respectively. 

4. Conclusions 

The objective of this study was to develop a CNN model to determine the maturity of Prata catarina bananas.  The 

development of multiple models resulted in an accuracy with test data ranging from 45% to 89.5%. The ideal 

precision and recall were determined to be 87.2% and 89.6%, respectively, with the optimal outcomes contingent 

on the number of classes requiring detection.  An increase in the number of classes leads to a greater degree of 

resemblance across instances, which in turn complicates the procedure.  Future research should concentrate on 

several promising methodological enhancements to improve classification performance. The efficacy of transfer 

learning methodologies employing pretrained networks, such as ResNet-50, MobileNetV3, or EfficientNet, should 

be assessed. These architectures exhibit superior feature extraction capabilities in analogous visual classification 

tasks while requiring a reduced number of training samples. Attention mechanisms such as squeeze-and-excitation 

blocks or transformer-based approaches have the potential to be integrated into the model to assist in focusing on 

the most discriminative regions of banana images. This integration could lead to enhanced fine-grained 

classification between visually similar ripening stages. 
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